ThoughtWorks
  • Kontakt
  • Español
  • Português
  • English
  • 中文
Übersicht
  • Delivery Mindset trifft Software-Exzellenz

    Verfolgen Sie einen innovativen Ansatz in der Softwareentwicklung, um noch schneller erfolgreich zu sein.

    Erkenntnisgestützte Entscheidungsfindung

    Nutzen Sie Ihre Datenbestände, um neue Geschäftsmöglichkeiten zu erschließen.

  • Betriebsmodelle ohne Reibungsverluste

    Verbessern Sie die Fähigkeit Ihres Unternehmens, auf Veränderungen zu reagieren.

    Plattform Strategie

    Entwicklung dynamischer Technologieplattformen, die sich an Ihre Geschäftsstrategie anpassen.

  • Experience Design und innovative Produkte

    Liefern Sie schnell außergewöhnliche Produkte und Kundenerlebnisse. Entwickeln Sie Design und Funktion kontinuierlich weiter.

    Partnerschaften

    Nutzung unseres Netzwerks aus vertrauenswürdigen Partnern, um noch bessere Ergebnisse für unsere Kunden zu erzielen.

Übersicht
  • Automobil
  • Clientech, Energie und Versorgung
  • Banken und Versicherungen
  • Gesundheit
  • Medien
  • Non-Profit
  • Öffentlicher Sektor
  • Handel und E-Commerce
  • Reise und Transport
Übersicht

Unsere Empfehlungen

  • Technologie

    Ausführliche Betrachtungen neuer Technologien.

  • Business

    Aktuelle Business-Insights, Strategien und Impulse für digitale Querdenker.

  • Kultur

    Insights zu Karrieremöglichkeiten und unsere Sicht auf soziale Gerechtigkeit und Inklusivität.

Digitale Veröffentlichungen und Tools

  • Technology Radar

    Unser Leitfaden für aktuelle Technologietrends.

  • Perspectives

    Unsere Publikation für digitale Vordenker*innen

  • Digital Fluency Model

    Ein Modell zur Priorisierung digitaler Fähigkeiten, um für das Unvorhersehbare bereit zu sein.

  • Decoder

    Der Technology-Guide für Business Entscheider

Alle Insights

  • Artikel

    Expertenwissen für Ihr Unternehmen.

  • Blogs

    Persönliche Perspektiven von ThoughtWorkern aus aller Welt.

  • Bücher

    Stöbern Sie durch unsere umfangreiche Bibliothek.

  • Podcasts

    Spannende Gespräche über das Neueste aus Business und Technologie.

Übersicht
  • Bewerbungsprozess

    Finde heraus, was dich in unserem Bewerbungsprozess erwartet.

  • Hochschulabsovent*innen und Quereinsteiger*innen

    Dein Einstieg in die IT-Welt.

  • Stellenangebote

    Finde offene Stellen in deiner Region.

  • In Kontakt bleiben

    Abonniere unsere monatlichen Updates.

Übersicht
  • Konferenzen und Events
  • Diversity und Inclusion
  • Neuigkeiten
  • Open Source
  • Management
  • Social Change
  • Español
  • Português
  • English
  • 中文
ThoughtWorksMenü
  • schließen   ✕
  • Unsere Services
  • Unsere Kunden
  • Insights
  • Karriere
  • Über uns
  • Kontakt
  • Zurück
  • schließen   ✕
  • Übersicht
  • Delivery Mindset trifft Software-Exzellenz

    Verfolgen Sie einen innovativen Ansatz in der Softwareentwicklung, um noch schneller erfolgreich zu sein.

  • Experience Design und innovative Produkte

    Liefern Sie schnell außergewöhnliche Produkte und Kundenerlebnisse. Entwickeln Sie Design und Funktion kontinuierlich weiter.

  • Betriebsmodelle ohne Reibungsverluste

    Verbessern Sie die Fähigkeit Ihres Unternehmens, auf Veränderungen zu reagieren.

  • Erkenntnisgestützte Entscheidungsfindung

    Nutzen Sie Ihre Datenbestände, um neue Geschäftsmöglichkeiten zu erschließen.

  • Partnerschaften

    Nutzung unseres Netzwerks aus vertrauenswürdigen Partnern, um noch bessere Ergebnisse für unsere Kunden zu erzielen.

  • Plattform Strategie

    Entwicklung dynamischer Technologieplattformen, die sich an Ihre Geschäftsstrategie anpassen.

  • Zurück
  • schließen   ✕
  • Übersicht
  • Automobil
  • Clientech, Energie und Versorgung
  • Banken und Versicherungen
  • Gesundheit
  • Medien
  • Non-Profit
  • Öffentlicher Sektor
  • Handel und E-Commerce
  • Reise und Transport
  • Zurück
  • schließen   ✕
  • Übersicht
  • Unsere Empfehlungen

  • Technologie

    Ausführliche Betrachtungen neuer Technologien.

  • Business

    Aktuelle Business-Insights, Strategien und Impulse für digitale Querdenker.

  • Kultur

    Insights zu Karrieremöglichkeiten und unsere Sicht auf soziale Gerechtigkeit und Inklusivität.

  • Digitale Veröffentlichungen und Tools

  • Technology Radar

    Unser Leitfaden für aktuelle Technologietrends.

  • Perspectives

    Unsere Publikation für digitale Vordenker*innen

  • Digital Fluency Model

    Ein Modell zur Priorisierung digitaler Fähigkeiten, um für das Unvorhersehbare bereit zu sein.

  • Decoder

    Der Technology-Guide für Business Entscheider

  • Alle Insights

  • Artikel

    Expertenwissen für Ihr Unternehmen.

  • Blogs

    Persönliche Perspektiven von ThoughtWorkern aus aller Welt.

  • Bücher

    Stöbern Sie durch unsere umfangreiche Bibliothek.

  • Podcasts

    Spannende Gespräche über das Neueste aus Business und Technologie.

  • Zurück
  • schließen   ✕
  • Übersicht
  • Bewerbungsprozess

    Finde heraus, was dich in unserem Bewerbungsprozess erwartet.

  • Hochschulabsovent*innen und Quereinsteiger*innen

    Dein Einstieg in die IT-Welt.

  • Stellenangebote

    Finde offene Stellen in deiner Region.

  • In Kontakt bleiben

    Abonniere unsere monatlichen Updates.

  • Zurück
  • schließen   ✕
  • Übersicht
  • Konferenzen und Events
  • Diversity und Inclusion
  • Neuigkeiten
  • Open Source
  • Management
  • Social Change
Blogs
Wählen Sie ein Thema
Alle Themen ansehenschließen
Technologie 
Agiles Projektmanagement Cloud Continuous Delivery  Data Science & Engineering Defending the Free Internet Evolutionäre Architekturen Experience Design IoT Sprachen, Tools & Frameworks Modernisierung bestehender Alt-Systeme Machine Learning & Artificial Intelligence Microservices Plattformen Sicherheit Software Testing Technologiestrategie 
Geschäft 
Financial Services Global Health Innovation Retail  Transformation 
Karriere 
Karriere Hacks Diversity und Inclusion Social Change 
Blogs

Themen

Thema auswählen
  • Technologie
    Technologie
  • Technologie Überblick
  • Agiles Projektmanagement
  • Cloud
  • Continuous Delivery
  • Data Science & Engineering
  • Defending the Free Internet
  • Evolutionäre Architekturen
  • Experience Design
  • IoT
  • Sprachen, Tools & Frameworks
  • Modernisierung bestehender Alt-Systeme
  • Machine Learning & Artificial Intelligence
  • Microservices
  • Plattformen
  • Sicherheit
  • Software Testing
  • Technologiestrategie
  • Geschäft
    Geschäft
  • Geschäft Überblick
  • Financial Services
  • Global Health
  • Innovation
  • Retail
  • Transformation
  • Karriere
    Karriere
  • Karriere Überblick
  • Karriere Hacks
  • Diversity und Inclusion
  • Social Change
Financial ServicesMachine Learning & Artificial IntelligenceGeschäftTechnologie

The Promise and Perils of AI in Compliance

Argyro (Iro) Tasitsiomi Argyro (Iro) Tasitsiomi
Prashant Gandhi Prashant Gandhi

Published: Dec 14, 2016

“It is no longer sufficient to do sampling for auditing, you have to boil the ocean," according to Joseph Lodato, global head of compliance technology and surveillance at Guggenheim Partners, in his keynote at the RegTech Summit US. Organizations are now required to trawl through the plethora of emails they send and receive each day to ensure they comply with regulations during an SEC examination. Making technology all the more important, a machine learning solution that flags suspicious emails would be advantageous in such a situation.

As the remit for compliance officers continues to expand, they are increasingly looking at technology to augment their capabilities. Artificial intelligence powered by machine learning and big data has the potential to completely revolutionize the compliance world.   

The promise and perils of AI in Compliance

Machine learning solutions are already widely used in front office activities such as dynamic portfolio rebalancing and high-frequency trading. We are now witnessing the first wave of regulatory compliance solutions that use artificial intelligence for delivering efficiency through automation and comprehensive risk coverage.  

Solutions exist today to understand and analyze the high volume of regulatory changes. Natural Language Processing (NLP) solutions can parse regulatory text and pattern match with a cluster of keywords to identify the changes relevant to the organization. 

Capital stress testing solutions use predictive analytics and scenario builders to help organizations remain compliant with regulatory capital requirements. 

Huge volumes of conversations from phone recordings, chats and emails can now be analyzed using voice and text analysis algorithms to determine unusual employee behavior. Contextual analysis of these conversations can help identify potential market manipulation and collusion activities.

Money laundering transactions have traditionally been uncovered using old-school investigative methods and static business rules to highlight suspicious activities. Using deep learning techniques on the transactions, the business rules can become more sophisticated and significantly reduce the volume of activities flagged for investigation.

The current wave of these types of solutions highlight what is possible for addressing specific needs. They are heavily focused on efficiency, reduction of false positives, accuracy and providing better coverage than sampling.

The next wave of solutions will need to be more comprehensive and cover the lifecycle of all events that matter to compliance teams. Spanning across the customer journey, these solutions would need to solve for the actual concern of the compliance officer. For example, to establish collusion amongst market participants, employee activity data would need to be contextualized with communication logs as well as market movements. 

Many executives are keen to latch on to this promise of machine learning solutions and leverage the rich data that is being collected. A word of caution though—acquiring the technology is not the panacea. Fred Brooks sums it up well in his popular paper No Silver Bullet. “There is no single development, in either technology or in management technique, that by itself promises even one order-of-magnitude improvement in productivity, in reliability, in simplicity”. Every organization needs to start with the problem they need to solve, before they embark on technology choices.

As executives focus on the problems they need to solve with AI,  they also need to be mindful of the risks that an AI solution can bring. Some of these risks are not new. For example herding behavior, out-of-sample extrapolation, and spurious correlations, to name a few. However, there are some additional risks to consider as compliance teams become more technology driven and reliant on machines to do their jobs. 

1. Amplified impact of misinformation

In 2013, a single bogus tweet from a verified account about an explosion in the White House briefly wiped out about $140 billion in US market value. The incident serves to highlight the systemic risk posed by trading algorithms vulnerable to fake, unverifiable news.

We have already seen that the proliferation of fake news during the election may have influenced the final outcome. As is often the case, the advantage is often the curse: tons of information processed and widely transmitted instantly.  

In an AI driven world, the ability to manipulate the market using fake news or social media takeover is significantly amplified. 

2. Codification of bias

Discrimination against a particular gender, race or social class can be perpetuated by technology. AI learns this discrimination through historical data, which can often be skewed for decision making. Take for instance word embedding algorithms in NLP. These algorithms have the ability to carry historical stereotypes (sexism for example) into the future simply by learning patterns regarding words that often appear together in historical data. Use of AI can result in such biases creeping into business practices such as lending or hiring.

3. The distance problem

Automating decisions based on known conditions can deliver massive efficiency for the compliance professionals. On the flip side, this increases the distance of the compliance professional from the actual decision-making process. For example, an NLP solution that tracks thousands of regulatory changes can deliver a false sense of confidence about the comprehensiveness of coverage.

AI also creates an opacity for the regulators in establishing whether due process is being followed for the different business practices such as sanctions screening or suspicious activity reporting.  

4. Ethics

Mercedes-Benz’s self-driving car chooses passenger safety over pedestrian safety by design. In the banking world, AI can be used for activities that have potential conflicts of interest such as portfolio allocation, trading, and investment advice. The organization needs to have policies and principles that guide the design of such algorithms. Industry leaders like Satya Nadella of Microsoft have suggested ten laws that should govern the design of an AI.

These risks are particularly important for compliance divisions, whose raison d’etre is to protect the institution rather than introduce “hidden” risks. Such risks can undo the whole institutions performance, wiping out the edge on its revenue generation side. The tech world including Microsoft, Amazon and Facebook have recognized these risks and have been developing ethical best practices for AI development.  

The volume of regulatory changes, increased sophistication of fraudsters as well as increased scrutiny from regulators will inevitably make compliance teams turn to AI. Given the additional considerations, here are some of our recommendations for adopting a machine learning solution within a compliance division: 

1. Change the team mix

The revenue side of financial institutions have always been early to adopt the latest technologies that have the potential to give a competitive edge, be it from the world of mathematics, computer science and data science. That has been reflected in the evolution of the “typical” trader over time: from college graduates that learned the art of trading next to the veterans 20 years ago, to quants with PhDs in math and science in more recent times.

Compliance teams have traditionally comprised of lawyers and risk professionals. As these activities becomes more tech driven, there is a need to change the mix to include more technical people and data scientists to bridge the knowledge gap. Active involvement during the development and integration, such as specifying and testing the outcomes, go a long way to ensure that the solution does not remain inscrutable. 

2. Build confidence gradually

Business leaders need to be thoughtful about where and how to apply machine learning. Confidence on such solutions needs to be built gradually in the algorithm and the data.  We have already witnessed how wide adoption of a not-so-well understood formula can lead to total catastrophe with the Gaussian Copula function to price mortgage-backed securities.

Executives need an experimental mindset to validate the data insights and automate the decisions. “Garbage in Garbage out” is an industry clichè but nevertheless true. A good data engineering approach that delivers clean and timely data is absolutely essential.

A phased approach should be adopted for developing the algorithmic solution. Automate the more mundane decisions initially, followed by the more critical ones later. Parallel run the solution to ensure the consistency of decision making and make active efforts to continue training the solution.

To confirm the experiments, a cross-validation of conclusions should occur via different data sources well before any action is taken before the misinformation ends up reinforcing itself.

3. Maintenance

Regulations and their interpretations and consequences are always changing. Thus, it is important to continually update the suite of tests to reflect these changes and continuously adapt the algorithms themselves when needed to avoid getting blindsided. The model itself can become stale over a period of time as the data it has learned from is no longer relevant.This can be particularly true when it comes to organized financial criminal activity, for example, money laundering, which by design is meant to escape detection. To achieve that, it is conceivable that the methods used for such criminal activities are constantly evolving; that is to say that in principle, the same advances that can help enforce regulatory compliance can also enable smarter financial crimes.

4. Manage expectations

Stakeholders need to recognize the limitations of machine learning and AI in solving a problem. It may find hidden insights from a vast amount of data, but it will be unable to solve the problem on its own or point out the problems we should actually be solving. In the context of compliance problems, the machine learning is operational rather than cognitive. The learning depends on the data being fed into it and the algorithms we direct it to use.

Adopting an experimentation mindset with the expectation to fail frequently, and the hope to fail fast will also be a necessity in this journey. Experiments will fail, either because of suboptimal choice of algorithm or because of data unavailability and quality issues. Often because of both.  

It is important that stakeholders understand that all learning occurs from past experience. Therefore, they need to acknowledge and budget for the risk of missing black swan events.

There will be a proliferation of AI solutions in the future as computing gets cheaper, data availability becomes higher and technology becomes democratized. AI will pervade the compliance world by augmenting professionals in their jobs. A thoughtful approach to implementing AI solutions with a close eye on risks posed can deliver significant business value for the organizations. 
Weitere Blogposts
Financial Services

Financial Services 2025: How to Grow in the Challenging Years Ahead

Aneesh Lele
Anupam Kundu
Mehr hier
Financial Services

Financial Services 2025: Eight Strategic Forces that are Transforming the Industry

Aneesh Lele
Anupam Kundu
Mehr hier
Financial Services

8 Fintech Trends to Watch

Aneesh Lele
Anupam Kundu
Mehr hier
  • Unsere Services
  • Unsere Kunden
  • Insights
  • Karriere
  • Über uns
  • Kontakt

WeChat

×
QR code to ThoughtWorks China WeChat subscription account

Presseanfragen | Datenschutz | Impressum | Modern Slavery statement ThoughtWorks| Barrierefreies Webdesign | © 2021 ThoughtWorks, Inc.