Menu
NOT ON THE CURRENT EDITION
This blip is not on the current edition of the radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the radarUnderstand more
Nov 2019
Avalie?

A transformação de dados é uma parte essencial dos fluxos de trabalho de processamento de dados: filtra, agrupa ou reune múltiplas fontes em um formato adequado para analisar dados ou alimentar modelos de aprendizado de dados. dbt é uma ferramenta de código aberto e um produto SaaS comercial que fornece capacidades de transformação simples e efetivas para analistas de dados. Os frameworks atuais e o ferramental para transformação de dados caem ou no grupo de poderosos e flexíveis – requisitando um entendimento íntimo do modelo de programação e linguagens do framework, tais como Apache Spark – ou no grupo das ferramentas bobas de UI, de arrastar e soltar, que não se prestam a práticas de engenharia confiáveis, tais como testes automatizados e implantação. dbt preenche um nicho: usa SQL – uma interface amplamente entendida – para modelar simples transformações em lote, enquanto fornece ferramentas de linha de comando que incentivam boas práticas de engenharia, como versionamento, testes automatizados e implantações. Essencialmente, implementa a modelagem de transformação baseada em SQL como código. dbt atualmente suporta múltiplas fontes de dados, incluindo Snowflake e Postgres, e fornece várias opções de execução, como a Airflow e a própria oferta de nuvem da Apache. Sua capacidade de transformação está limitada ao que o SQL oferece e, até a publicação deste texto, não suporta transformações de streaming em tempo real.