Enable javascript in your browser for better experience. Need to know to enable it? Go here.
本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Jul 30, 2011
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Jul 2011
试验 ? 值得一试。了解为何要构建这一能力是很重要的。企业应当在风险可控的前提下在项目中尝试应用此项技术。
Like iterative software development, there is lot of value to be gained by delivering data warehousing projects using iterative techniques. Iterative data warehousing techniques allow the end users of the data warehouse to determine what reports they want and the ETL developers and data modelers to deliver those features without wasting time with data modeling and ETL jobs that do not provide immediate value to the business.
Aug 2010
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索
The industry has seen significant changes to the way we use and store data over the past few years. Agile development practices have lead to greater emphasis on evolutionary database design, requiring new tools that support migration of schemas in line with changes to the domain model of an application. As storage space consistently becomes cheaper and data access speeds increase, many organizations are investigating the use of multiple schemas to hold data for different purposes, e.g. transactional and analysis schemas. Incremental data warehousing is becoming increasingly popular as the cost of moving data between a transactional data store and an analysis environment is less than the value of having access to near real-time reporting of critical business data.
Apr 2010
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索
Jan 2010
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索
发布于 : Jan 11, 2010
Radar

下载第26期技术雷达

English | Español | Português | 中文

Radar

获取最新技术洞见

 

立即订阅

查看存档并阅读往期内容