Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Last updated : Nov 10, 2015
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2015
试验 ? 值得一试。了解为何要构建这一能力是很重要的。企业应当在风险可控的前提下在项目中尝试应用此项技术。

For a while now the Hadoop community has been trying to bring low-latency, interactive SQL capability to the Hadoop platform (better known as SQL-on-Hadoop). This has led to a few open source systems such as Cloudera Impala, Apache Drill, Facebook’s Presto etc being developed actively through 2014. We think the SQL-on-Hadoop trend signals an important shift as it changes Hadoop's proposition from being a batch oriented technology that was complementary to databases into something that could compete with them.  Cloudera Impala was one of the first SQL-on-Hadoop platforms. It is a distributed, massively-parallel, C++ based query engine. The core component of this platform is the Impala daemon that coordinates the execution of the SQL query across one or more nodes of the Impala cluster. Impala is designed to read data from files stored on HDFS in all popular file formats. It leverages Hive's metadata catalog, in order to share databases and tables between the two database platforms. Impala comes with a shell as well as JDBC and ODBC drivers for applications to use. 

May 2015
试验 ? 值得一试。了解为何要构建这一能力是很重要的。企业应当在风险可控的前提下在项目中尝试应用此项技术。
已发布 : May 05, 2015
Radar

下载第25期技术雷达

English | Español | Português | 中文

Radar

获取最新技术洞见

 

立即订阅

查看存档并阅读往期内容