Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Last updated : Apr 13, 2021
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Apr 2021
试验 ? 值得一试。了解为何要构建这一能力是很重要的。企业应当在风险可控的前提下在项目中尝试应用此项技术。

在之前的技术雷达中,我们就关注到了Great Expectations,我们继续看好它,并在本期技术雷达中将它挪入试验阶段。Great Expectations这个框架可以搭建内置控件,来标记数据流水线中的异常或质量问题。正如单元测试在构建流水线中运行一样,Great Expectations在执行数据流水线时也会进行断言。它的简单性和易用性深得我们喜爱——断言的规则用JSON文件存储,可以由我们的数据科学家来修改,所以不需要数据工程技能。

Oct 2020
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索

随着 CD4ML 的兴起,数据工程和数据科学的运维方面获得了更多的关注。自动化数据治理是发展的结果之一。Great Expectations 是一款可以帮助你在数据流水线中,编制内建控件用于标记异常和质量问题的框架。就像运行在构建流水线中的单元测试,Great Expectations 在数据流水线的执行过程中作出断言。这不仅对于为数据流水线实现某种 Andon,或是确保基于模型的算法保持在训练数据决定的操作范围内,都有帮助。像这样的自动化控件可以帮助分发以及民主化数据访问和保管。Great Expectations 还配有一个探查工具,帮助理解特定数据集的质量,并设置合适的约束。

已发布 : Oct 28, 2020
Radar

下载第25期技术雷达

English | Español | Português | 中文

Radar

获取最新技术洞见

 

立即订阅

查看存档并阅读往期内容