Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Última actualización : Apr 13, 2021
Not on the current edition
This blip is not on the current edition of the Radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar Understand more
Apr 2021
Probar ? Vale la pena intentarlo. Es importante entender cómo construir esta habilidad. Las empresas deberían implementar esta tecnología en un proyecto que pueda manejar el riesgo.

Habíamos escrito sobre Great Expectations en la edición anterior del Radar. Nos encanta y hemos decidido moverlo al anillo "Probar" en esta edición. Great Expectations es un marco de trabajo que permite crear controles que etiquetan anomalías o problemas de calidad en los pipelines de datos. Igual que la ejecución de una prueba unitaria en un pipeline de compilación, Great Expectations realiza verificaciones durante la ejecución del pipeline de datos. Nos gusta su simplicidad y facilidad de uso: las reglas almacenadas en formato JSON pueden ser modificadas por nuestros expertos del dominio de datos sin necesidad de tener habilidades de ingeniería de datos.

Oct 2020
Evaluar ? Vale la pena explorarlo con el objetivo de entender cómo afectará a tu empresa.

Con el surgimiento de CD4ML, los aspectos operacionales de la ingeniería y la ciencia de datos han recibido más atención. La gobernanza de datos automatizada es un aspecto de este desarrollo. Great Expectations es un framework que permite crear controles integrados que señalan anomalías o problemas de calidad en los pipelines de datos. Al igual que las pruebas unitarias corren en un pipeline de compilación, Great Expectations realiza verificaciones durante la ejecución de un pipeline de datos. Esto es útil no solo para implementar una especie de Andon para pipelines de datos sino también para garantizar que los algoritmos basados en modelos permanezcan dentro del rango operativo determinado por sus datos de entrenamiento. Los controles automatizados como este pueden ayudar a distribuir, democratizar y custodiar el acceso a los datos. Great Expectations también contiene una herramienta de generación de perfiles para ayudar a comprender las cualidades de un conjunto de datos en particular y establecer límites apropiados.

Publicado : Oct 28, 2020
Radar

Descarga el Radar Tecnológico Volumen 25

English | Español | Português | 中文

Radar

Mantente informada sobre Tecnología

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores