发布于 : Apr 02, 2025
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。
了解更多
Apr 2025
试验
在上次关于检索增强生成(RAG)的更新中,我们已经介绍了 GraphRAG 。它最初在微软的文章中被描述为一个两步的流程:(1) 对文档进行分块,并使用基于大语言模型的分析构建知识图谱;(2) 通过嵌入检索的方式在查询时检索相关块,沿着知识图谱的边缘发现更多相关的分块,这些分块后续会被添加到增强提示中。在许多情况下,这种方法提高了大语言模型生成的响应数据的质量。我们在使用生成式 AI 理解遗留代码库的过程中也观察到了类似的好处——通过像抽象语法树和代码依赖这样的结构化信息去构建知识图谱。GraphRAG 模式正在获得更多的关注,像 Neo4j 的GraphRAG Python 库这样的工具与架构正在不断出现以支持该模式。同时,我们认为Graphiti也符合广义上的 GraphRAG 模式。