Enable javascript in your browser for better experience. Need to know to enable it? Go here.
已发布 : Nov 14, 2018
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2018
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索

Google Cloud Dataflow is useful in traditional ETL scenarios for reading data from a source, transforming it and then storing it to a sink, with configurations and scaling being managed by dataflow. Dataflow supports Java, Python and Scala and provides wrappers for connections to various types of data sources. However, the current version won’t let you add additional libraries, which may make it unsuitable for certain data manipulations. You also can’t change the dataflow DAG dynamically. Hence, if your ETL has conditional execution flows based on parameters, you may not be able to use dataflow without workarounds.

Radar

下载第25期技术雷达

English | Español | Português | 中文

Radar

获取最新技术洞见

 

立即订阅

查看存档并阅读往期内容