Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Published : Apr 02, 2025
Not on the current edition
This blip is not on the current edition of the Radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar Understand more
Apr 2025
Assess ?

DeepSeek-R1 is DeepSeek's first-generation of reasoning models. Through a progression of non-reasoning models, the engineers at DeepSeek designed and used methods to maximize hardware utilization. These include Multi-Head Latent Attention (MLA), Mixture of Experts (MoE) gating, 8-bit floating points training (FP8) and low-level PTX programming. Their high-performance computing co-design approach enables DeepSeek-R1 to rival state-of-the-art models at significantly reduced cost for training and inference.

DeepSeek-R1-Zero is notable for another innovation: the engineers were able to elicit reasoning capabilities from a non-reasoning model using simple reinforcement learning without any supervised fine-tuning. All DeepSeek models are open-weight, which means they are freely available, though training code and data remain proprietary. The repository includes six dense models distilled from DeepSeek-R1, based on Llama and Qwen, with DeepSeek-R1-Distill-Qwen-32B outperforming OpenAI-o1-mini on various benchmarks.

Download the PDF

 

 

 

English | Español | Português | 中文

Sign up for the Technology Radar newsletter

 

Subscribe now

Visit our archive to read previous volumes