Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Publicado : Apr 02, 2025
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Apr 2025
Evaluar ?

DeepSeek-R1 es la primera generación de modelos de razonamiento de DeepSeek. A través de una progresión de modelos no basados en razonamiento, los ingenieros de DeepSeek diseñaron y utilizaron métodos para maximizar la utilización del hardware. Estos incluyen Multi-Head Latent Attention (MLA), Mixture of Experts (MoE) gating, 8-bit floating points training (FP8) y low-level PTX programming. Su enfoque de co-diseño de computación de alto rendimiento permite a DeepSeek-R1 competir con los modelos de vanguardia a un costo significativamente reducido para el entrenamiento y la inferencia. DeepSeek-R1-Zero destaca también por otra innovación: los ingenieros han podido obtener capacidades de razonamiento a partir de un modelo no basado en razonamiento utilizando un simple aprendizaje por refuerzo, sin necesidad de ajustes finos supervisados. Todos los modelos de DeepSeek son de open-weight, lo que significa que están disponibles gratuitamente, aunque el código de entrenamiento y los datos siguen siendo propietarios. El repositorio incluye seis modelos densos destilados de DeepSeek-R1, basados en Llama y Qwen, con DeepSeek-R1-Distill-Qwen-32B superando a OpenAI-o1-mini en varios puntos de referencia.

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín del Radar Tecnológico

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores