更多

雷达交互页面中的信息目前只有英文版本。欲获得本地语言版本,请在这里下载相应PDF。

语言 & 框架

TensorFlow Mobile

NOT ON THE CURRENT EDITION
This blip is not on the current edition of the radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the radarUnderstand more
Nov 2017
assess?

TensorFlow Mobile makes it possible for developers to incorporate a wide range of comprehension and classification techniques into their iOS or Android applications. This is particularly useful given the range of sensor data available on mobile phones. Pretrained TensorFlow models can be loaded into a mobile application and applied to inputs such as live video frames, text or speech. Mobile phones present a surprisingly opportune platform for implementing these computational models. TensorFlow models are exported and loaded as protobuf files, which can present some problems for implementers. Protobuf's binary format can make it hard to examine models and requires that you link the correct protobuf library version to your mobile app. But local model execution offers an attractive alternative to TensorFlow Serving without the communication overhead of remote execution.