Enable javascript in your browser for better experience. Need to know to enable it? Go here.
本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
发布于 : Nov 30, 2017
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2017
评估 ? 在了解它将对你的企业产生什么影响的前提下值得探索

TensorFlow Mobile makes it possible for developers to incorporate a wide range of comprehension and classification techniques into their iOS or Android applications. This is particularly useful given the range of sensor data available on mobile phones. Pretrained TensorFlow models can be loaded into a mobile application and applied to inputs such as live video frames, text or speech. Mobile phones present a surprisingly opportune platform for implementing these computational models. TensorFlow models are exported and loaded as protobuf files, which can present some problems for implementers. Protobuf's binary format can make it hard to examine models and requires that you link the correct protobuf library version to your mobile app. But local model execution offers an attractive alternative to TensorFlow Serving without the communication overhead of remote execution.

下载第27期技术雷达

English | Español | Português | 中文

获取最新技术洞见

 

立即订阅

查看存档并阅读往期内容