菜单

本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。

技术

NLP的迁移学习

May 2020
试验?

该技术之前处于技术雷达的评估维度。NLP(Natural Language Processing,自然语言处理领域的创新在持续快速发展,并且由于无处不在的 迁移学习 ,使得我们可以将这些创新应用到项目中。GLUE基准测试(一套语言理解任务)的得分在过去几年里有了显著的进步,平均分数从刚发布时的70.0上升到2020年4月处于领导地位的90.0。我们在NLP领域的很多项目,从ELMo、BERTERNIE等预训练模型开始,然后根据项目需求进行微调,可以取得重大进展。

Apr 2019
评估?

Transfer learning has been quite effective within the field of computer vision, speeding the time to train a model by reusing existing models. Those of us who work in machine learning are excited that the same techniques can be applied to natural language processing (NLP) with the publication of ULMFiT and open source pretrained models and code examples. We think transfer learning for NLP will significantly reduce the effort to create systems dealing with text classification.