Master
Published: Apr 13, 2021
Apr 2021
评估?

众多机器学习方法的核心皆在于从一组训练数据创建一个模型。一旦创建了模型,就可以反复使用它。然而世界并不是静止的,通常模型需要随着新数据的出现而改变。单纯地重新训练模型可能会非常缓慢和昂贵。增量学习解决了这个问题,它使从数据流中增量地学习成为可能,从而更快地对变化做出反应。作为额外的好处,计算和内存需求更低,而且是可预测的。我们在基于River框架的实现中积累了良好的经验,但到目前为止,我们需要在模型更新后增加校验,有时要手动进行。