Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Complacency with AI-generated code

更新于 : Nov 05, 2025
Nov 2025
暂缓 ?

As AI coding assistants and agents gain traction, so does the body of data and research highlighting concerns about complacency with AI-generated code. While there’s ample evidence these tools can accelerate development — especially for prototyping and greenfield projects — studies show that code quality can decline over time.

GitClear's 2024 research found that duplicate code and code churn have risen more than expected, while refactoring activity in commit histories has dropped. Reflecting a similar trend, Microsoft research on knowledge workers shows that AI-driven confidence often comes at the expense of critical thinking — a pattern we’ve observed as complacency sets in with prolonged use of coding assistants.

The rise of coding agents further amplifies these risks, since AI now generates larger change sets that are harder to review. As with any system, speeding up one part of the workflow increases pressure on the others. Our teams are finding that using AI effectively in production requires renewed focus on code quality. We recommend reinforcing established practices such as TDD and static analysis, and embedding them directly into coding workflows, for example through curated shared instructions for software teams.

Apr 2025
暂缓 ?

随着 AI 编码助手的普及,越来越多的数据和研究也揭示了关于 自满于 AI 生成的代码 所带来的问题。GitClear 最新的代码质量研究显示,到 2024 年,重复代码和代码频繁变更的现象比预测的还要严重,而提交历史中的重构活动却在减少。同样反映出对 AI 的自满,微软的研究显示,AI 驱动的信心往往以牺牲批判性思维为代价——这种模式在长期使用编码助手时表现得尤为明显。随着监督式软件工程代理的兴起,这种风险进一步放大,因为当 AI 生成的变更集越来越大时,开发者在审查这些结果时面临的挑战也随之增加。而 vibe coding 的出现——即开发者在审查极少的情况下让 AI 生成代码——更是说明了人们对 AI 生成输出的信任正在增长。这种方法可能适用于原型或其他一次性代码,但我们强烈建议不要将其用于生产环境的代码。

Oct 2024
暂缓 ?

AI 编程助手,如 GitHub CopilotTabnine,已经变得非常受欢迎。根据 StackOverflow 2024 年开发者调查 的数据,“72% 的受访者对开发中的 AI 工具持赞成或非常赞成的态度”。尽管我们也看到了这些工具的好处,但我们对它们在中长期对代码质量的影响持谨慎态度,并提醒开发者警惕 自满于 AI 生成的代码 。在经历了几次积极的 AI 辅助体验后,很容易在审查 AI 建议时变得不够谨慎。像 GitClear 的这项研究 显示了代码库快速增长的趋势,我们怀疑这与更大的 Pull Request 有关。还有 GitHub 的这项研究 让我们开始思考,提到的 15% 的 Pull Request 合并率的增加是否真的是好事,还是人们因为过于信任 AI 的结果而更快地合并了更大的请求。我们仍在使用 一年多前提供的基本 “入门建议”,也就是要警惕自动化偏见、沉没成本谬误、锚定偏见和审查疲劳。我们还建议程序员建立一个良好的 在何时何地不使用和信任 AI 心理框架

发布于 : Oct 23, 2024

Download the PDF

 

 

 

English | Español | Português | 中文

Sign up for the Technology Radar newsletter

 

 

Subscribe now

查看存档并阅读往期内容