Enable javascript in your browser for better experience. Need to know to enable it? Go here.
publicado : Apr 13, 2021
Not on the current edition
This blip is not on the current edition of the Radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar Understand more
Apr 2021
Experimente ? Vale a pena ir atrás. É importante entender como desenvolver essa capacidade. As empresas devem experimentar esta tecnologia em um projeto que possa lidar com o risco.

Contextual bandits é um tipo de aprendizado por reforço, adequado para problemas que envolvem o dilema entre explorar investigando e explorar tirando proveito. Nomeado em referência às "bandits" – como são informalmente chamadas as máquinas caça-níqueis, em inglês –, o algoritmo investiga diferentes opções para aprender mais sobre os resultados esperados e equilibra tirando proveito das opções que funcionarem bem. Usamos com sucesso essa técnica em cenários com poucos dados disponíveis para treinar e implantar outros modelos de aprendizado de máquina. O fato de podermos adicionar contexto à relação explorar investigando e explorar tirando proveito torna a técnica adequada para uma ampla variedade de casos de uso, incluindo testes A/B, recomendações e otimizações de layout.

Radar

Baixar o Technology Radar Volume 25

English | Español | Português | 中文

Radar

Mantenha-se por dentro das tendências de tecnologia

 

Seja assinante

Visite nosso arquivo para acessar os volumes anteriores