Enable javascript in your browser for better experience. Need to know to enable it? Go here.
radar blip
radar blip

Aprendizado de máquina automatizado (AutoML)

publicado : Nov 20, 2019
Not on the current edition
This blip is not on the current edition of the Radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar Understand more
Nov 2019
Experimente ? Vale a pena ir atrás. É importante entender como desenvolver essa capacidade. As empresas devem experimentar esta tecnologia em um projeto que possa lidar com o risco.

O poder e a promessa do aprendizado de máquina criaram uma demanda por expertise que ultrapassa a quantia de cientistas de dados que se especializam nessa área. Em resposta a essa lacuna de habilidades, temos visto o aparecimento de ferramentas de aprendizado de máquina automatizado (AutoML) que têm como objetivo tornar mais fácil para quem não é especialista automatizar o processo de ponta-a-ponta de seleção e treinamento do modelo. Exemplos incluem o AutoML do Google, o DataRobot, e a interface H2O AutoML. Embora tenhamos visto resultados promissores com essas ferramentas, aconselhamos as empresas a não vê-las como a soma total necessária em sua jornada em aprendizado de máquina. Como dito no site do H2O, “ainda há um bom pedaço de conhecimento e background em ciência de dados que é necessário para produzir modelos de aprendizado de máquina de alta performance”. Confiar cegamente em técnicas automatizadas também aumenta o risco de introduzir vieses éticos ou tomar decisões que colocam minorias em desvantagem. Embora as empresas possam usar essas ferramentas como ponto de partida para gerar modelos úteis, treinados, encorajamos que elas procurem cientistas de dados com experiência para validar e refinar os resultados.

Radar

Baixar o Technology Radar Volume 25

English | Español | Português | 中文

Radar

Mantenha-se por dentro das tendências de tecnologia

 

Seja assinante

Visite nosso arquivo para acessar os volumes anteriores