Menu

As informações desta página não estão completamente disponíveis no seu idioma de escolha. Esperamos disponibiliza-las integralmente em outros idiomas em breve. Para ter acesso às informações no idioma de sua preferência, faça o download do PDF aqui.

Ferramentas

Apache Pig

NOT ON THE CURRENT EDITION
This blip is not on the current edition of the radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the radarUnderstand more
May 2013
Experimente?
Hadoop continues to be the most popular framework to develop distributed data-processing applications. Although programming Hadoop applications in Java is not particularly difficult, designing efficient MapReduce pipelines does require a good amount of experience. Apache Pig simplifies Hadoop development by offering a high level language, called Pig Latin, and an execution runtime. Pig Latin is procedural and provides a SQL-like interface to work with large datasets. The execution infrastructure compiles Pig Latin into an optimized sequence of MapReduce programs that run on the cluster. Pig Latin is extensible through user-defined functions in different languages such as Ruby, JavaScript, Python and Java.
Oct 2012
Experimente?