Enable javascript in your browser for better experience. Need to know to enable it? Go here.
publicado : Nov 20, 2019
NÃO ENTROU NA EDIÇÃO ATUAL
Este blip não está na edição atual do Radar. Se esteve em uma das últimas edições, é provável que ainda seja relevante. Se o blip for mais antigo, pode não ser mais relevante e nossa avaliação pode ser diferente hoje. Infelizmente, não conseguimos revisar continuamente todos os blips de edições anteriores do Radar. Saiba mais
Nov 2019
Avalie ? Vale a pena explorar com o objetivo de compreender como isso afetará sua empresa.

Treinamento de modelo geralmente requer coleta e transporte de dados de sua fonte para uma localização centralizada onde o algoritmo de treinamento é executado. Isso se torna particularmente problemático quando os dados em treinamento consistem de informações pessoalmente identificáveis. Estamos otimistas com o aparecimento do aprendizado federado como um método de treinamento que preserva a privacidade em um grande conjunto de dados relacionados a indivíduos. As técnicas de aprendizado federado permitem que os dados permaneçam no dispositivo do usuário, sob seu controle, e ainda contribuindo para um conjunto de dados de treinamento. Assim, cada dispositivo do usuário atualiza um modelo independentemente; então, os parâmetros do modelo, em vez dos dados em si, são combinados em uma visualização centralizada. Largura de banda e limitações computacionais do dispositivo apresentam desafios técnicos significativos, mas gostamos da maneira que o aprendizado federado deixa o usuário no controle de sua própria informação pessoal.

Radar

Baixar o Technology Radar Volume 25

English | Español | Português | 中文

Radar

Mantenha-se por dentro das tendências de tecnologia

 

Seja assinante

Visite nosso arquivo para acessar os volumes anteriores