Large language models (LLMs) are the Swiss Army knives of natural language processing (NLP). But they’re also quite expensive and not always the best tool for the job — sometimes it's more effective to use a proper corkscrew. Indeed, there’s a lot of potential in combining traditional NLP with LLMs, or in building multiple NLP approaches in conjunction with LLMs to implement use cases and leverage LLMs for the steps where you actually need their capabilities. Traditional data science and NLP approaches for document clustering, topic identification and classification and even summarization are cheaper and can be more effective for solving a part of your use case problem. We then use LLMs when we need to generate and summarize longer texts, or combine multiple large documents, to take advantage of the LLM's superior attention span and memory. For example, we’ve successfully used this combination of techniques to generate a comprehensive trends report for a domain from a large corpus of individual trend documents, using traditional clustering alongside the generative power of LLMs.