Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Published : Apr 24, 2019
Not on the current edition
This blip is not on the current edition of the Radar. If it was on one of the last few editions it is likely that it is still relevant. If the blip is older it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar Understand more
Apr 2019
Trial ? Worth pursuing. It is important to understand how to build up this capability. Enterprises should try this technology on a project that can handle the risk.

One of the challenges of search is ensuring the most relevant results for the user appear at the top of the list. This is where learning to rank (LTR) can help. LTR is the process of applying machine learning to rank documents retrieved by a search engine. If you're using Elasticsearch, you can achieve search-relevant ranking with the Elasticsearch LTR plugin. The plugin uses RankLib for generating the models during the training phase. Then, when querying Elasticsearch, you can use this plugin to "rescore" the top results. We've used it in a few projects and have been happy with the results. There's also an equivalent LTR solution for Solr users.

Radar

Download Technology Radar Volume 25

English | Español | Português | 中文

Radar

Stay informed about technology

 

Subscribe now

Visit our archive to read previous volumes