Enable javascript in your browser for better experience. Need to know to enable it? Go here.
Publicado : Mar 29, 2022
Mar 2022
Evaluar ? Vale la pena explorarlo con el objetivo de entender cómo afectará a tu empresa.

Hasta hace poco, la ejecución de un modelo de machine-learning (ML) se consideraba costosa desde el punto de vista computacional y, en algunos casos, requería un hardware de propósito especial. Si bien la creación de los modelos todavía entra dentro de esta clasificación, es posible crearlos de forma que puedan ejecutarse en dispositivos pequeños, de bajo coste y bajo consumo de energía. Esta técnica, denominada TinyML, ha abierto la posibilidad de ejecutar modelos de ML en situaciones que muchos podrían considerar inviables. Por ejemplo, en dispositivos que funcionan con baterías o en entornos desconectados con una conectividad limitada o irregular, el modelo puede ejecutarse localmente sin un coste prohibitivo. Si te has planteado utilizar el ML pero has creído que no era realista debido a las limitaciones informáticas o de red, merece la pena evaluar esta técnica.

Radar

Descarga el Radar Tecnológico Volumen 26

 

English | Español | Português | 中文

Radar

Mantente informada sobre Tecnología

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores