Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Publicado : Nov 30, 2017
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Nov 2017
Evaluar ? Vale la pena explorarlo con el objetivo de entender cómo afectará a tu empresa.

The amount of data collected by IT operations has been increasing for years. For example, the trend toward microservices means that more applications are generating their own operational data, and tools such as Splunk, Prometheus, or the ELK stack make it easier to store and process data later on, to gain operational insights. When combined with increasingly democratized machine learning tools, it’s inevitable that operators will start to incorporate statistical models and trained classification algorithms into their toolsets. Although these algorithms have been available for years, and various attempts have been made to automate service management, we're only just starting to understand how machines and humans can collaborate to identify outages earlier or pinpoint the source of failures. Although there is a risk of overhyping Algorithmic IT operations , steady improvement in machine learning algorithms will inevitably change the role of humans in operating tomorrow's data centers.

Radar

Descarga el Radar Tecnológico Volumen 26

 

English | Español | Português | 中文

Radar

Mantente informada sobre Tecnología

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores