Master
Published: Apr 13, 2021
Apr 2021
Evaluar?

La creación de modelos a partir de un conjunto de datos de entrenamiento se encuentra en el corazón de muchos métodos de aprendizaje automático. Una vez que el modelo ha sido creado, se puede utilizar muchas veces. Sin embargo, el mundo no es estacionario y con frecuencia los modelos necesitan ser modificados a medida que se hacen disponibles nuevos datos. Solamente volver a ejecutar el paso de creación del modelo puede ser lento y costoso. El aprendizaje incremental soluciona este problema, haciendo posible aprender de flujos de datos incrementalmente para reaccionar más rápido ante los cambios. Como punto adicional, los requerimientos tanto de cómputo como de memoria son menores y predecibles. En nuestras implementaciones hemos tenido buenas experiencias con el marco de trabajo denominado River, aunque hemos añadido verificaciones, a veces manuales, luego de actualizar el modelo.