
The rise of the codebots:
How AI is changing

software development

Ethan Mollick is not a professional
coder and nor does he pretend to be one.

Yet recently he was able to create a program
 for an elementary but playable video game

in honour of Doom’s 30th anniversary.

How? Simply by prompting a chatbot.

The interaction was no more complicated than this:

2

rtificial Intelligence just lets you code by intent” says
Mollick, an Associate Professor of management at the
Wharton School of the University of Pennsylvania, and the
author of Co-Intelligence: Living And Working With AI.

The chatbot Mollick used was ChatGPT, which is
underpinned by generative AI. This is an emerging, powerful
class of algorithms that can create new content—text, music,
video, imagery—and as Mollick’s experience shows, it has
an aptitude for software development. ‘Large language
models’ (LLMs), a category of deep learning model that
powers many gen AI tools, have an astonishing ability to
write and complete computer code.

Thanks to a new range of generative AI coding assistants,
the technology is already making programming faster and
more productive. “AI represents a significant leap forward
for software engineering,” says Mike Mason, Chief AI Officer
at global technology consultancy Thoughtworks. “The
rapid adoption and constant advancement of AI tools for
developers shows the transformative impact this is already
having, and will continue to have, on our industry.”

But what precisely will those changes look like and
how far will they go? Will there be trade offs that need
mitigating? And what will all this ultimately mean for the
role of developers and the kind of software they create?

After all, some believe generative AI represents a
technological inflection point as significant as the shift
from command line to graphical interface or even the birth
of the web. Perhaps, they suggest, it will come to change
computing as we know it.

But first, a look at the here and now…

“AI REPRESENTS
A SIGNIFICANT
LEAP FORWARD
FOR SOFTWARE
ENGINEERING”

Mike Mason, Chief AI Officer at Global
Technology Consultancy Thoughtworks

3

https://www.penguinrandomhouse.com/books/741805/co-intelligence-by-ethan-mollick/?ref=PRH410E2C567AF

4

There is a reason generative AI has proven inherently
well-suited to coding. Writing software is a language-driven
task, but one that is highly structured and rule-based, and
there are massive pre-existing repositories of viable code
for the models to draw on.

The last two years have thus seen the rise of specialized
tools that can complete code from partial inputs in real
time or even script it from scratch. They are smart enough
to understand context, so can write code that aligns with
developer requirements, and often include a chat interface
for asking coding-related questions.

“Like autocomplete on steroids”, is how Mason
characterizes AI coding assistants. They take a lot of the
drudgery out of programming, speeding up routine coding
processes, detecting errors and providing an on-the-spot
resource for troubleshooting and problem-solving. “There
are times when it literally feels like it has read my mind
regarding the block of code I wanted to write,” says Mason,
who started coding at the age of six.

One crucial advantage of these tools is that they
can eliminate the need to leave the creative bubble of
the Integrated Development Environment (IDE), the
programming suite used by coders, in order to trawl search
engines or other sites to find solutions to problems. Leaving
the IDE can break a programmer’s all-important ‘flow’—a
state of full immersion in the task at hand, associated with
higher performance.

And they are proving hugely popular. As of January
2024, one of the leading tools now has 1.3 million paying
subscribers around the world—a 30 percent increase quarter
on quarter—and counts more than 50,000 companies as
customers. According to a recent survey, 95 percent of
developers are already using AI tools to write code.

Increasingly, coders see them less as optional extras than
as necessities. “It wasn’t like our developers were asking
me for it, they were begging me!” says Andreas Nauerz,
CTO and Executive Vice President at Bosch Digital. His
division implements digital solutions across the entire
Bosch engineering and technology group. After evaluating
the potential risks and benefits, the company onboarded a
leading AI coding tool in December last year and is using it
as a programming aid across many of its projects. “It’s a huge

Hello, (brave new)
world!

“IT’S A HUGE
EFFICIENCY
BOOSTER”
Andreas Nauerz, CTO and Executive
Vice President at Bosch Digital

5

https://www.crn.com/news/cloud/2024/microsoft-q2-2024-earnings-ceo-nadella-shows-ai-growth
https://venturebeat.com/ai/developers-embrace-ai-tools-but-face-big-code-challenges-survey-finds/

efficiency booster,” he says. “And it makes people happier,
because they can focus on actual problems, and not just the
everyday boring tasks that you have to do.”

Evidence suggests code-completion tools are best seen
as providers of useful suggestions for further development,
rather than as writers of finished code, but nevertheless
the benefits are quantifiable. A study by a management
consultancy found that 75 percent of programmers who
had adopted AI coding assistants said the tools had met
or exceeded their expectations, with ‘speed to market’
seen as the biggest bonus. In a survey of more than 2,000
developers by a leading vendor, 88 percent responded that
they were now more productive when using an AI coding
assistant. A comprehensive paper about measuring the
impact of code-completing AI on productivity concluded
that, while “developer productivity is a multidimensional
topic that cannot be summarized by a single metric” the
reported benefits of AI coding suggestions “span the full
range of typically investigated aspects of productivity, such
as task time, product quality, cognitive load, enjoyment, and
learning,” noting that “perceived productivity gains are
reflected in objective measurements of developer activity.”

Being a good software engineer is, of course, about
much more than speed—and here’s where the picture
gets more complicated. A recent investigation by a code
analysis company found that the general quality of code has
decreased since the introduction of AI assistants. Indeed,
a benchmark study by another code analysis company
looked at refactoring—the process of improving the design
of existing code without changing its behavior. It found
that existing AI solutions only deliver functionally correct
refactorings in 37 percent of cases.

“One of the trade-offs to the usefulness of coding
assistants is their unreliability,” says Birgitta Böckeler,
Global Lead for AI-First Software Delivery at Thoughtworks.
“The underlying models they use are quite generic and
based on a huge amount of training data that is not always
relevant to the task in hand. And large language models
also make things up—they ‘hallucinate’.”

What’s concerning is that the mistakes AI makes can

When AI isn’t
so intelligent

6

https://dl.acm.org/doi/pdf/10.1145/3633453
https://www.bain.com/insights/ai-coding-assistants-are-already-living-up-to-expectations-infographic/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://dl.acm.org/doi/pdf/10.1145/3633453
https://arc.dev/developer-blog/impact-of-ai-on-code/
https://codescene.com/hubfs/whitepapers/Refactoring-vs-Refuctoring-Advancing-the-state-of-AI-automated-code-improvements.pdf

7

be subtle and therefore hard to spot. While the code it
produces is best seen as merely a starting point, it can
look correct and convincing even when it contains errors,
so if a developer doesn’t have their wits about them, they
can let bugs slip past unnoticed. This cuts to the paradox
of these tools. While they make coding more accessible to
the less experienced, it is precisely the less experienced
who are more likely to fall victim to their shortcomings.

“I worry about giving coding assistants to inexperienced
developers,” says Rebecca Parsons, CTO Emerita at
Thoughtworks. “Someone who’s been coding as long as I
have can spot off-by-one errors and little things like that,
but that’s not so easy if you’re not experienced. These coding
models really don’t know what good code is, so there’s a
danger that we end up getting a lot of poor quality code
with more bugs.”

The security concerns are obvious. Academic research
has found that coders using AI assistants not only write
significantly less secure code than those not using them,
they are simultaneously more likely to believe they are
writing secure code. AI can hallucinate fixes for common
vulnerabilities and leave off essential validation checks,
exposing systems to hackers. And as younger coders come
to depend on these tools more and more, this might also
be storing up a more fundamental security problem for
years to come. “I see a huge risk of a degradation of coding
skills for the future,” says Nauerz. “The more people lose
the deep knowledge of how systems work, the more we
lose control of them and the more we are exposed to new
attack vectors.”

There is an ethical-cum-legal consideration, too.
Examples of AI being trained on copyright-protected data
have been making headlines in recent months, and coding
assistants now also find themselves in the dock. One of the
leading vendors has been targeted in a proposed class action
lawsuit that describes the vendor’s actions as “software
piracy on an unprecedented scale”. This refers to the long
lines of licensed code that can be regurgitated by assistants
without credit. However, the case is in its very early stages.

Clearly, as developers venture further into this brave
new world, it will be imperative to mitigate the risks.
Companies will need to have clear policies around the use

8

https://arxiv.org/abs/2211.03622

Developers do more than writing code. On average,
programming occupies less than a third of their time.
The rest is spent on a variety of tasks including testing,
debugging, talking to end users, designing new solutions,
or learning additional skills. And then there are the bigger-
picture creative tasks: what does the software actually need
to achieve in the first place, and is the client thinking about
that in the right way?

“AI does a great job in terms of coding assistants and
it’s currently on a path of increasingly providing more
relevant suggestions,” says Amjad Masad, founder and
CEO of AI-assisted coding platform Replit. “But in terms
of what features you want to build, the structure of the
product, integration tests and components, all that stuff,
AI currently is still at a very early stage.”

In the future, this is likely to become a growth area.
Thoughtworks has recently been running a number
of experiments across the development lifecycle to see
where generative AI might make a significant difference.
Early results have shown a 10- to 30-percent increase in
productivity—and not just in coding. In China, it has used
generative AI as a knowledge-sharing mechanism, allowing
all the context of a project to be synthesized for intelligibility.
The company has also used generative AI as an ideation tool,
constructing it in such a way that it can provide ideas on
a spectrum ranging from conservative through pragmatic
to blue-sky.

Where next?
From scripts
to systems

of AI—keeping humans in the loop, not using models that
incorporate prompt data—and developers should adopt a
mindset of healthy skepticism when it comes to reviewing
AI output.

When Böckeler began working with an AI assistant, she
decided to give it a persona, as if it were a new colleague. It
helped crystallize how she should approach working with
it. She defined it as eager to help, stubborn, very well-read
but inexperienced, and unwilling to admit when it doesn’t
know something. She then put the description, together
with different animal characters, into AI image generator
Midjourney, which produced a picture of a grinning, slightly
manic donkey surrounded by books.

9

10

Bosch Digital is also currently exploring that question,
too. Nauerz believes AI will not only enhance the full gamut
of existing processes, but also underpin the processes we’ll
require tomorrow, such as bias detection. “It’s a challenge
that’s specific to AI,” he says, “and we’ll need a new tool
for it.”

As generative AI rolls through software development,
there will be a number of implications for IT departments
and ultimately the C-suite. Most immediately: what happens
to all the time that is saved? Perhaps this will be reallocated
to those creative tasks, perhaps it will be spent on solving
associated challenges around security, or perhaps it will
simply let teams do more, faster. All organizations will
have different priorities, but clearly it will be important
to be intentional.

Management will also have to resist seeing this as a panacea
for productivity. Faster coding can, counterintuitively, create
bottlenecks in the pipeline. “Most organizations actually
have a fairly slow test and deploy cycle to verify that the
software is correct and actually put it into production,”
says Mason. “So if you’ve got a slow test and deploy cycle,
but you’re rapidly spewing out code, you’re actually going
to make that problem worse, because you’re going to have
more things to put out in each release, and you’re going to
have bigger releases and more risk.”

And then there are larger, organizational questions.
Software development currently tends to rely on Agile—a
term that refers to both a set of values and principles, as
well as established project management and engineering
methodologies. The latter come in a variety of forms but
tend to emphasize rapid iteration by cross-functional teams,
with continual customer evaluation. The introduction of AI
may change those methodologies. “All of the methods we
use for organizing work only take into account one kind of
intellect, which is human intellect, but that’s no longer the
case,” says Mollick. “So we have to do some major reinvention
of how we think about systems.” What this means is that
Agile processes are likely to change if, say, generative AI can
gather client requirements or if we can simply tell it about
a product and ask what it would think about it if it were a
specific kind of person. Within this paradigm, current Agile
methodologies may suddenly look decidedly non-agile.

“WE HAVE TO DO
SOME MAJOR
REINVENTION
OF HOW WE THINK
ABOUT SYSTEMS”
Ethan Mollick, Associate
Professor at the Wharton School
of the University of Pennsylvania

11

Will we one day reach a stage where anybody can create
software using generative AI, regardless of whether they
understand a programming language? And if that’s the end
game, what might the path from here to there look like?

An intermediary step takes the concept of an AI coding
assistant and gives it agency. ‘AI agents’—chatbots that
can autonomously use applications, complete tasks, and
carry out multi-stage processes—are a hot topic in the
field, with major players investing heavily in bringing
the concept to life. Replit’s Amjad Masad believes it holds
enormous potential for software developers; start-ups are
already building agents designed to manage engineering
processes from writing code to debugging and deployment.
Masad foresees a time in the relatively near future when
programmers become “god-like” project managers operating
on an architecture and design level who “command armies
of software agents to build increasingly complex software
in insane record times”.

In the more distant future, perhaps agents may also be
able to handle higher-order goals: rather than giving the AI
a defined picture of what you want the software to do, you
could tell it what function you ultimately want it to fulfil,
and then everything would happen automatically from
there. If a tool like that could produce even the most complex
software at a production-grade level, ‘programming’ as it
is currently understood, would ultimately cease to exist.

Visions of the future

This discussion has now entered the realm of the unknown,
and it raises a number of profound questions. Here are three:

The big questions

The possibility of large language models transforming
the nature of software development to the fullest extent
described depends on whether those models can continue to
make giant leaps in abilities. Arguably, for tools to operate
at this hypothetical level, they would need to approximate
human-level intelligence. Some believe this will emerge
spontaneously as LLMs have more data and more compute
thrown at them. Others, however, are more skeptical. Right
now, it’s impossible to say one way or the other. “At some
point, AI will definitely hit a limit, and when it hits that

Will AI really
get that good?

1.

12

13

There is a concern that we might end up in a vicious cycle
in which AI churns out bug-ridden, unsecure code, which
then becomes part of the pool of code that other language
models draw on. Böckeler doesn’t dismiss that anxiety.
“We depend so much on software, and that sometimes
makes me nervous,” says Böckeler. “Ideally AI will help
us build better, more reliable software, but what if it just
makes everything worse, because anybody in theory will
be able to create code? We always say to our clients that AI
amplifies indiscriminately, so you have to be careful where
you apply it.”

Will this inundate
the world with poor
quality software?

2.

limit, the question will be: is that the end of the ballgame?”
says Mollick. “Or is there a lot of extra slack that no one’s
bothered developing yet because everyone’s rushing to build
bigger models? We don’t have the answers yet.”

The basic idea of software has remained the same since
the dawn of computing. If you want to perform a task
you either buy or build a specific tool to perform that
task. What’s different about generative AI is that it can
perform a wide range of tasks across many different data
modalities—some believe potentially any task. Does
that mean it can become smart enough to operate as
a universal ‘super-app’, a single interface you use to do
everything? If so, one might imagine we have less software,
not more of it, and the question for developers would
be what the user experience ought to look like and how
best to build for it. Then again, does history suggest this
is a realistic outcome? Will LLMs not be unbundled into
task-specific tools just as spreadsheets were unbundled
into specialist apps such as bookkeeping and CRM software?
Perhaps the extent of the shift will depend on whether
generative AI causes voice interfaces to take off, suggests
Mike Mason. “The digital ‘smart assistants’ we have on our
phones and around our houses today are smart in some ways
but annoyingly limited in others. With advances in AI they
may become our primary mechanism for interacting with the
world,” says Mason. “Rather than using an airline’s app we

What does generative
AI mean for the nature
of software itself?

3.

14

Generative AI is now the technology world’s center of
gravity, but it hasn’t occupied that position for long and
it is evolving fast. It is an arena still defined by questions
more than answers. It seems a safe bet to say that the role of
software developers will change— and that their expertise
will increasingly be deployed at a higher level of abstraction
across the development process—but in what ways and to
what extent? Time will tell.

Of course, the most pressing concern for those in the
profession is whether, fundamentally, ‘software developer’
will remain a job. Rebecca Parsons is optimistic.

“The world is going to continue to change, and we’re
going to be faced with new challenges,” she says. “But the
thing we have to realize about these generative AI models is
that they effectively work on what’s happened in the past.”
So, when novel situations arise in the future and something
that nobody has seen before needs to be represented in code,
who are we going to call?

“The skill that we as software developers have is to imagine
how to map what’s in the real world and the abstractions
that are needed,” Parsons says. “There’s still going to be a
role for humans. At least for a very long time.”

The path ahead...

“THERE’S STILL
GOING TO BE A
ROLE FOR HUMANS.
AT LEAST FOR
A VERY LONG TIME”
Rebecca Parsons, Chief Technology
Officer - Emerita at Thoughtworks

might just ask our personal AI to book flights, check us in, or
find our lost luggage. This absolutely opens up a revolution
in what software looks like and how we’ll interact with it.”

15

Thoughtworks is a global technology consultancy that
integrates strategy, design and engineering to drive
digital innovation. We are over 10,500 Thoughtworkers
strong across 48 offices in 19 countries. For 30 years,
we’ve delivered extraordinary impact together with
our clients by helping them solve complex business

WIRED is where tomorrow is realised. It is the essential
source of fresh thinking and deep expertise on the
technological, scientific and societal trends that are
changing our world. Consulting is a division of WIRED
that brings the unique WIRED network, insights and
brand to commercial organisations — helping them to
build internal knowledge, develop strategy and create
thought-leading content that positions them at the
cutting edge.

