
An opinionated guide to
technology frontiers

Volume 25

Technology Radar

https://thght.works/3AttoUM

2

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

About the
Radar
Thoughtworkers are passionate about
technology. We build it, research it,
test it, open source it, write about it
and constantly aim to improve it — for
everyone. Our mission is to champion
software excellence and revolutionize IT.
We create and share the Thoughtworks
Technology Radar in support of that
mission. The Thoughtworks Technology
Advisory Board, a group of senior
technology leaders at Thoughtworks,
creates the Radar. They meet regularly to
discuss the global technology strategy for
Thoughtworks and the technology trends
that significantly impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions
in a format that provides value to a wide
range of stakeholders, from developers
to CTOs. The content is intended as a
concise summary.

We encourage you to explore these
technologies. The Radar is graphical in
nature, grouping items into techniques,
tools, platforms and languages &
frameworks. When Radar items could
appear in multiple quadrants, we chose
the one that seemed most appropriate.
We further group these items in four rings
to reflect our current position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq.

https://thght.works/3llE7Mw

3

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Radar at a glance
The Radar is all about tracking interesting things, which we refer to as blips. We organize the blips in the
Radar using two categorizing elements: quadrants and rings. The quadrants represent different kinds of
blips. The rings indicate what stage in an adoption lifecycle we think they should be in.

A blip is a technology or technique that plays a role in software development. Blips are things that are
“in motion” — that is, we find their position in the Radar is changing — usually indicating that we’re
finding increasing confidence in them as they move through the rings.

Our Radar is forward-looking. To make room for new items, we fade items that haven’t moved
recently, which isn’t a reflection on their value but rather on our limited Radar real estate.

Hold Assess Trial Adopt

Adopt: We feel strongly that the industry
should be adopting these items. We use
them when appropriate in our projects.

Trial: Worth pursuing. It’s important to
understand how to build up this capability.
Enterprises can try this technology on a
project that can handle the risk.

Assess: Worth exploring with the goal of
understanding how it will affect your
enterprise.

Hold: Proceed with caution.

New Moved in/out No change

4

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Contributors
The Technology Advisory Board (TAB)
is a group of 18 senior technologists at
Thoughtworks. The TAB meets twice a
year face-to-face and biweekly by phone.
Its primary role is to be an advisory
group for Thoughtworks CTO,
Rebecca Parsons.

The TAB acts as a broad body that can
look at topics that affect technology and
technologists at Thoughtworks. With the
ongoing global pandemic, we once again
created this volume of the Technology
Radar via a virtual event.

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Bharani Subramaniam
Birgitta Böckeler
Brandon Byars
Camilla Falconi Crispim
Cassie Shum
Erik Doernenburg
Fausto de la Torre
Hao Xu
Ian Cartwright
James Lewis
Lakshminarasimhan Sudarshan
Mike Mason
Neal Ford
Perla Villarreal
Scott Shaw
Shangqi Liu
Zhamak Dehghani

https://www.thoughtworks.com/profiles/rebecca-parsons
https://www.thoughtworks.com/profiles/martin-fowler
https://www.thoughtworks.com/profiles/bharani-subramaniam
https://www.thoughtworks.com/profiles/birgitta-bockeler
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/camilla-crispim
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://www.thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/james-lewis
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://www.thoughtworks.com/profiles/mike-mason
https://www.thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/perla-villarreal
https://www.thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/liu-shangqi
https://www.thoughtworks.com/profiles/zhamak-dehghani

5

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Themes
Adapting Kafka
We discussed several topics in this edition of the Radar (some of which eventually failed to make
the final cut) where teams are employing tools to adapt to/from Kafka. Some of these tools allow
more traditional interfaces to Kafka (such as ksqlDB, Confluent Kafka REST Proxy, and Nakadi),
while others are designed to provide extra services such as GUI frontends and orchestration add-
ons. We suspect that part of the underlying reason for this bounty of tools is the underlying sharp-
edged complexity of some of Kafka’s parts combined with increased presence in organizations
that need to bend it to existing architectures and processes. Some teams end up treating Kafka as
a next-generation enterprise service bus — one example of The slippery slope of convenience
theme — but other teams use Kafka to provide universal access to business events as they happen.
These organizations recognize that it is sometimes easier to have a centralized infrastructure with
adaptation at the edges and try to avoid sprawl with careful design and governance. In any case,
it shows that Kafka continues toward status as a de facto standard for asynchronous publish/
subscribe messaging at volume.

The slippery slope of convenience
An antipattern as old as the Radar is the tendency for teams to place behavior within their
ecosystem at convenient but improper nexus points that lead to long-term technical debt and
worse. Examples abound, including using a database as an integration point, using Kafka as a
global orchestrator, intermingling business logic with infrastructure code and so on. Modern
software development offers many places for developers to stash behavior, and inexperienced
or inconsiderate teams often entangle concerns by not carefully considering the long-term
consequences of inappropriate coupling. Inappropriate team structures and other deviations from
Conway’s Law don’t help either. As software systems become more complex, development teams
must show diligence to both create and maintain thoughtful architecture and design, not slap-dash
decisions for expediency. Often, thinking about the testability of a particular approach leads teams
away from some of these potentially problematic decisions. Software tends toward complexity
when left to its own devices. Careful design and, perhaps more importantly, ongoing governance
works to ensure that schedule pressure or one of the other numerous disruptive forces doesn’t
cause teams to make convenient but improper decisions.

https://thoughtworks.com/radar/languages-and-frameworks/ksqldb
https://thoughtworks.com/radar/platforms/confluent-kafka-rest-proxy
https://thoughtworks.com/radar/techniques/recreating-esb-antipatterns-with-kafka
https://thoughtworks.com/radar/techniques/recreating-esb-antipatterns-with-kafka
https://thoughtworks.com/radar/tools/apache-kafka
https://en.wikipedia.org/wiki/Conway's_law

6

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Conway’s is still the law
Many architects cite Conway’s Law, the 1960s observation that teams’ communication structures
influence design, to justify changes to team organization, and we discovered across several
nominated blips in this edition that an organization’s team structure remains a key enabler when
handled well and a serious impediment when handled poorly. Examples we discuss include the
need for product thinking around platform teams rather than treating them as order-takers; Team
Topologies and the increasing recognition of team cognitive load in relation to effectiveness; and
the new framework developed around programmer productivity called SPACE. Organizations spend
enormous funds on tools, yet many find better productivity gains by paying attention to the people
who build the software and what makes them effective within a particular organization.

Clever tech we shouldn’t need
Many in the software world prize clever solutions to complex problems, yet often those clever
solutions result from self-inflicted accidental complexity. Numerous examples of this phenomenon
exist today, including the unfortunate but common practice of secreting orchestration or
coordination code in an inappropriate location. For example, we see clever workflow management
tools such as Airflow or Prefect that are overeagerly used to manage complex data pipelines
through orchestration. We find a host of tools that work around the issues caused by monorepos,
such as Nx and many more. Teams often don’t realize they’re doubling or tripling down on needless
complexity without stepping back to look at the big picture and question whether the current
solution is worse than the problem. Rather than jump to more technology to solve a problem,
teams should do root cause analysis, address the underlying essential complexity and course
correct. Data mesh is an example of an approach that addresses the underlying organizational and
technical assumptions that have led to overly complex data pipelines and tooling.

Fewer technology platforms on the Radar
We found a serious drop in the number of platform-related blips in this edition of the Radar, which
we attribute to the increased consolidation on some industry standards: most companies have
already chosen their cloud vendors, and they’ve mostly standardized on Kubernetes for container
orchestration and Kafka for high-performance messaging. Does this mean that platforms no
longer matter? Or are we experiencing the equivalent of a business cycle of alternating periods
of expansion and contraction — we’ve seen similar periods of rapid innovation followed by stasis
(what Stephen Jay Gould called “punctuated equilibrium”) in database technologies, for example.
Perhaps the industry has entered a period of relative calm as organizations assimilate the tectonic
shift to the cloud and await the next wave of disruptive innovation.

https://en.wikipedia.org/wiki/Conway's_law
https://teamtopologies.com/book
https://teamtopologies.com/book
https://thoughtworks.com/radar/techniques/team-cognitive-load
https://queue.acm.org/detail.cfm?id=3454124
https://thoughtworks.com/radar/tools/airflow
https://thoughtworks.com/radar/tools/prefect
https://thoughtworks.com/radar/tools/nx
https://thoughtworks.com/radar/techniques/data-mesh
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/apache-kafka

7

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Hold HoldAssess AssessTrial TrialAdopt Adopt

37

39
58

5

12

16

7

10

2

1

1930

31

32

33

34
35

20

23

24

25

27

28 29

4

11

13

14

17

15

6

9

40

46

47 48

49 50

51 52
54

55

56
57

59

60
61

62

63
64

65

41
42

44

45

67

66

68

69

87 88 89

90
91

92

93
94

95

96

70

72

74

76 77

79
80

84

85
86

21

22 26

78

73
75

81

82 83

71

3

8

18

36

38

53

43

The Radar

New Moved in/out No change

8

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Adopt
1. Four key metrics
2. Platform engineering product teams
3. Zero trust architecture

Trial
4. CBOR/JSON bilingual protocols
5. Data mesh
6. Living documentation in legacy systems
7. Micro frontends for mobile
8. Remote mob programming
9. Single team remote wall
10. Team cognitive load

Assess
11. AR spatial anchors
12. Hotwire
13. Operator pattern for

nonclustered resources
14. Remote spontaneous huddling
15. Software Bill of Materials

Hold
16. Peer review equals pull request
17. Production data in test environments

Adopt
—

Trial
18. Backstage
19. ClickHouse
20. Confluent Kafka REST Proxy
21. GitHub Actions
22. K3s
23. Mambu
24. MirrorMaker 2.0
25. OPA Gatekeeper for Kubernetes
26. Pulumi
27. Sealed Secrets
28. Vercel
29. Weights & Biases

Assess
30. Azure Cognitive Search
31. Babashka
32. ExternalDNS
33. Konga
34. Milvus 2.0
35. Thought Machine Vault
36. XTDB

Hold
—

Techniques Platforms

The Radar

9

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Adopt
37. fastlane

Trial
38. Airflow
39. Batect
40. Berglas
41. Contrast Security
42. Dive
43. Lens
44. Nx
45. Wav2Vec 2.0

Assess
46. cert-manager
47. Cloud Carbon Footprint
48. Code With Me
49. Comby
50. Conftest
51. Cosign
52. Crossplane
53. gopass
54. Micoo
55. mob
56. Modern Unix commands
57. Mozilla Sops
58. Operator Framework
59. Pactflow
60. Prefect
61. Proxyman
62. Regula
63. Sourcegraph
64. Telepresence
65. Vite

Hold
—

Adopt
66. Jetpack Compose
67. React Hooks

Trial
68. Arium
69. Chakra UI
70. DoWhy
71. Gatsby.js
72. Jetpack Hilt
73. Kotlin Multiplatform Mobile
74. lifelines
75. Mock Service Worker
76. NgRx
77. pydantic
78. Quarkus
79. React Native Reanimated 2.0
80. React Query
81. Tailwind CSS
82. TensorFlow Lite
83. Three.js
84. ViewInspector
85. Vowpal Wabbit
86. Zap

Assess
87. Headless UI
88. InsightFace
89. Kats
90. ksqlDB
91. Polars
92. PyTorch Geometric
93. Qiankun
94. React Three Fiber
95. Tauri
96. Transloco

Hold
—

Tools Languages and Frameworks

The Radar

10

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Techniques

Hold HoldAssess AssessTrial TrialAdopt Adopt

37

39
58

5

12

16

7

10

2

1

1930

31

32

33

34
35

20

23

24

25

27

28 29

4

11

13

14

17

15

6

9

40

46

47 48

49 50

51 52
54

55

56
57

59

60
61

62

63
64

65

41
42

44

45

67

66

68

69

87 88 89

90
91

92

93
94

95

96

70

72

74

76 77

79
80

84

85
86

21

22 26

78

73
75

81

82 83

71

3

8

18

36

38

53

43

Adopt
1. Four key metrics
2. Platform engineering product teams
3. Zero trust architecture

Trial
4. CBOR/JSON bilingual protocols
5. Data mesh
6. Living documentation in legacy systems
7. Micro frontends for mobile
8. Remote mob programming
9. Single team remote wall
10. Team cognitive load

Assess
11. AR spatial anchors
12. Hotwire
13. Operator pattern for

nonclustered resources
14. Remote spontaneous huddling
15. Software Bill of Materials

Hold
16. Peer review equals pull request
17. Production data in test environments

New Moved in/out No change

11

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

1. Four key metrics
Adopt
To measure software delivery performance, more and more organizations are turning to the four
key metrics as defined by the DORA research program: change lead time, deployment frequency,
mean time to restore (MTTR) and change fail percentage. This research and its statistical analysis
have shown a clear link between high delivery performance and these metrics; they provide a great
leading indicator for how a team, or even a whole delivery organization, is doing.

We’re still big proponents of these metrics, but we’ve also learned some lessons since we first started
monitoring them. And we’re increasingly seeing misguided measurement approaches with tools
that help teams measure these metrics based purely on their continuous delivery (CD) pipelines. In
particular when it comes to the stability metrics (MTTR and change fail percentage), CD pipeline
data alone doesn’t provide enough information to determine what a deployment failure with real user
impact is. Stability metrics only make sense if they include data about real incidents that degrade
service for the users.

And as with all metrics, we recommend to always keep in mind the ultimate intention behind a
measurement and use them to reflect and learn. For example, before spending weeks to build up
sophisticated dashboard tooling, consider just regularly taking the DORA quick check in team
retrospectives. This gives the team the opportunity to reflect on which capabilities they could work on
to improve their metrics, which can be much more effective than overdetailed out-of-the-box tooling.

2. Platform engineering product teams
Adopt
We continue to see platform engineering product teams as a sensible default with the key insight
being that they’re just another product team, albeit one focused on internal platform customers.
Thus it is critical to have clearly defined customers and products while using the same engineering
disciplines and ways of working as any other (externally focused) product team; platform teams aren’t
special in this regard. We strongly caution against just renaming existing internal teams “platform
teams” while leaving ways of working and organizational structures unchanged. We’re still big fans of
using concepts from Team Topologies as we think about how best to organize platform teams. We
consider platform engineering product teams to be a standard approach and a significant enabler for
high-performing IT.

3. Zero trust architecture
Adopt
We keep hearing about enterprises finding their security badly compromised due to an overreliance
on the “secure” network perimeter. Once this external perimeter is breached, internal systems prove
to be poorly protected with attackers quickly and easily able to deploy automated data extraction
tools and ransomware attacks that all too often remain undetected for long periods. This leads us to
recommend zero trust architecture (ZTA) as a now sensible default.

ZTA is a paradigm shift in security architecture and strategy. It’s based on the assumption that a
network perimeter is no longer representative of a secure boundary and no implicit trust should
be granted to users or services based solely on their physical or network location. The number of

Techniques

https://www.devops-research.com/
https://www.devops-research.com/quickcheck.html
https://www.devops-research.com/research.html#capabilities
https://martinfowler.com/articles/products-over-projects.html
https://teamtopologies.com/

12

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

resources, tools and platforms available to implement aspects of ZTA keeps growing and includes
enforcing policies as code based on the least privilege and as-granular-as-possible principles and
continuous monitoring and automated mitigation of threats; using service mesh to enforce security
control application-to-service and service-to-service; implementing binary attestation to verify the
origin of the binaries; and including secure enclaves in addition to traditional encryption to enforce
the three pillars of data security: in transit, at rest and in memory. For introductions to the topic,
consult the NIST ZTA publication and Google’s white paper on BeyondProd.

4. CBOR/JSON bilingual protocols
Trial
Although it’s been around for a while, we’re seeing more and more use cases where using the CBOR
specification for data interchange makes sense — especially in environments containing multiple
types of applications communicating with one another: service to service, browser to service, and
so on. One thing we’ve found useful with Borer, a Scala implementation of a CBOR encoder/decoder,
is the ability for clients to negotiate content between the binary representation and plain old JSON
format. It’s quite useful to have a text version viewable in a browser as well as the concise binary
format. We foresee CBOR/JSON bilingual protocols picking up in popularity with the continuing rise of
IoT and edge computing and other situations where the environment is tightly constrained.

5. Data mesh
Trial
Increasingly, we see a mismatch between what data-driven organizations want to achieve and what
the current data architectures and organizational structures allow. Organizations want to embed
data-driven decision-making, machine learning and analytics into many aspects of their products
and services and how they operate internally; essentially they want to augment every aspect of their
operational landscape with data-driven intelligence. Yet, we still have a ways to go before we can
embed analytical data, access to it and how it is managed into the business domains and operations.
Today, every aspect of managing analytical data is externalized outside of the operational business
domains to the data team and to the data management monoliths: data lakes and data warehouses.
Data mesh is a decentralized sociotechnical approach to remove the dichotomy of analytical
data and business operation. Its objective is to embed sharing and using analytical data into each
operational business domain and close the gap between the operational and analytical planes. It’s
founded on four principles: domain data ownership, data as a product, self-serve data platform and
computational federated governance.

Our teams have been implementing the data mesh architecture; they’ve created new architectural
abstractions such as the data product quantum to encapsulate the code, data and policy as an
autonomous unit of analytical data sharing embedded into operational domains; and they’ve built
self-serve data platform capabilities to manage the lifecycle of data product quanta in a declarative
manner as described in Data Mesh. Despite our technical advances, we’re still experiencing friction
using the existing technologies in a data mesh topology, not to mention the resistance of business
domains to embrace sharing and using data as a first-class responsibility in some organizations.

Techniques

https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/service-mesh
https://thoughtworks.com/radar/techniques/binary-attestation
https://thoughtworks.com/radar/techniques/secure-enclaves
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://cloud.google.com/security/beyondprod
http://cbor.io/
https://github.com/sirthias/borer
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-mesh-principles.html
https://www.oreilly.com/library/view/data-mesh/9781492092384/

13

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

6. Living documentation in legacy systems
Trial
Living documentation, which comes from the behavior-driven development (BDD) community, is
often considered a privilege for those well-maintained codebases with executable specifications.
We found that this technique can also be applied to legacy systems. Lack of business knowledge is
a common obstacle encountered by teams when doing system modernization. Code is usually the
only trustworthy source of truth because staff turnover and existing documentation are outdated.
Therefore it’s very important to reestablish the association between the documentation and the code
and spread the business knowledge among the team when we take over a legacy system. In practice,
we would first try to go to the codebase and deepen our understanding of the business through
simple cleanup and safe refactoring. During the process, we’ll need to add annotations to the code
so that we’re able to automatically generate living documentation later. This is very different from
doing BDD in green-field projects, but it’s a good start in legacy systems. Based on the generated
documentation, we would try to convert some of the specs into executable high-level automation
tests. Do this iteratively, and eventually you could get living documentation in legacy systems that is
closely associated with the code and partially executable.

7. Micro frontends for mobile
Trial
Since introducing them in the Radar in 2016, we’ve seen widespread adoption of micro frontends
for web UIs. Recently, however, we’ve seen projects extend this architectural style to include micro
frontends for mobile applications as well. When the application becomes sufficiently large and
complex, it becomes necessary to distribute the development over multiple teams. This presents the
challenge of maintaining team autonomy while integrating their work into a single app. Some teams
write their own frameworks to enable this development style, and in the past we’ve mentioned Atlas
and Beehive as possible ways to simplify the problem of integrating multiteam app development.
More recently, we’ve seen teams using React Native to accomplish the same thing. Each React
Native micro frontend is kept in its own repository where it can be built, tested and deployed
separately. The team responsible for the overall application can then aggregate those micro
frontends built by different teams into a single released app.

8. Remote mob programming
Trial
We continue to see many teams working and collaborating remotely; for these teams remote mob
programming is a technique that is well worth trying. Remote mob programming allows teams to
quickly “mob” around an issue or piece of code without the physical constraints of only being able
to fit so many people around a pairing station. Teams can quickly collaborate on an issue or piece of
code using their video conferencing tool of choice without having to connect to a big display, book a
physical meeting room or find a whiteboard.

9. Single team remote wall
Trial
With the increased use of remote distributed teams, one of the things we hear people have missed
having is the physical team wall. This is a single place where all the various story cards, tasks, status
and progress can be displayed, acting as an information radiator and hub for the team. Often the

Techniques

https://livebook.manning.com/book/specification-by-example/chapter-3/
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/languages-and-frameworks/atlas-and-beehive
https://thoughtworks.com/radar/languages-and-frameworks/atlas-and-beehive
https://thoughtworks.com/radar/languages-and-frameworks/react-native

14

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

wall was an integration point with the actual data being stored in different systems. As teams have
become remote, they’ve had to revert to looking into the individual source systems and getting an “at
a glance” view of a project has become very difficult. A single team remote wall is a simple technique
to reintroduce the team wall virtually. While there might be some overhead in keeping this up-to-date,
we feel the benefits to the team are worth it. For some teams, updating the physical wall formed part
of the daily “ceremonies” the team did together, and the same can be done with a remote wall.

10. Team cognitive load
Trial
A system’s architecture mimics organizational structure and its communication. It’s not big news
that we should be intentional about how teams interact — see, for instance, the Inverse Conway
Maneuver. Team interaction is one of the variables for how fast and how easily teams can deliver
value to their customers. We were happy to find a way to measure these interactions; we used the
Team Topologies author’s assessment which gives you an understanding of how easy or difficult the
teams find it to build, test and maintain their services. By measuring team cognitive load, we could
better advise our clients on how to change their teams’ structure and evolve their interactions.

11. AR spatial anchors
Assess
Many augmented reality (AR) applications depend on knowing the location and orientation of the
user’s device. The default is to use GPS-based solutions, but spatial anchors, a newer technique to
address this requirement, are also worth considering. Spatial anchors work with the image recorded
by the device’s camera, using image features and their relative position in 3D space to recognize a
real-world location. For this location a corresponding anchor is created in the AR space. Although
spatial anchors can’t replace all GPS and marker-based anchors, they do provide more accuracy
than most GPS-based solutions and are more resilient to different viewing angles than marker-based
anchors. Our experience is currently limited to Google’s Cloud Anchors for Android, which worked
well for us. Somewhat uncharacteristically Google also offers Cloud Anchors for iOS and with Azure
Spatial Anchors Microsoft supports even more platforms.

12. Hotwire
Assess
After successfully launching their email application HEY as a server-side application, Basecamp
reported migrating its flagship product, Basecamp 3, to Hotwire this summer. As organizations
increasingly default to single-page applications (SPAs) for new web development, we continue
to be excited by Hotwire swimming against the stream. Unlike SPAs, Hotwire applications keep
most of the logic and navigation on the server, relying on a minimal amount of browser JavaScript.
Hotwire modularizes HTML pages into a set of components (called Turbo Frames) that can be lazy
loaded, provide independent contexts and send HTML updates to those contexts based on user
actions. SPAs offer undeniable user responsiveness, but the simplicity of traditional server-side
web programming combined with modern browser tooling provides a refreshing take on balancing
developer effectiveness and user responsiveness.

Techniques

https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://teamtopologies.com/book
https://github.com/TeamTopologies/Team-Cognitive-Load-Assessment
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://developers.google.com/ar/develop/ios/cloud-anchors/quickstart
https://docs.microsoft.com/en-us/azure/spatial-anchors/overview
https://docs.microsoft.com/en-us/azure/spatial-anchors/overview
https://hey.com/
https://world.hey.com/dhh/bringing-hotwire-to-basecamp-91a442d6
https://basecamp.com/
https://hotwire.dev/
https://turbo.hotwired.dev/

15

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

13. Operator pattern for nonclustered resources
Assess
We’re seeing increasing use of the Kubernetes Operator pattern for purposes other than managing
applications deployed on the cluster. Using the operator pattern for nonclustered resources takes
advantage of custom resource definitions and the event-driven scheduling mechanism implemented
in the Kubernetes control plane to manage activities that are related to yet outside of the cluster. This
technique builds on the idea of Kube-managed cloud services and extends it to other activities,
such as continuous deployment or reacting to changes in external repositories. One advantage of
this technique over a purpose-built tool is that it opens up a wide range of tools that either come
with Kubernetes or are part of the wider ecosystem. You can use commands such as diff, dry-run
or apply to interact with the operator’s custom resources. Kube’s scheduling mechanism makes
development easier by eliminating the need to orchestrate activities in the proper order. Open-source
tools such as Crossplane, Flux and ArgoCD take advantage of this technique and we expect to see
more of these emerge over time.

14. Remote spontaneous huddling
Assess
We’re seeing continued innovation in remote collaboration tools. The new Huddles feature in Slack
provides a Discord-like experience of persistent audio calls that users can jump in and out of at any
time. Gather provides a creative way to emulate a virtual office with avatars and video. IDEs provide
direct collaboration features for pairing and debugging: we’ve previously blipped Visual Studio Live
Share and included JetBrains Code With Me to the list in this edition. As tools continue to evolve
modalities for collaboration in addition to video conferencing, we’re increasingly seeing teams
participating in remote spontaneous huddling, recreating the spontaneity of informal conversations
over the intentionality of scheduling a Zoom or Microsoft Teams meeting. We don’t expect to ever
fully recreate the richness of face-to-face communication through digital tools, but we do see
improved remote team effectiveness by giving teams multiple channels of collaboration rather than
relying on one toolchain for everything.

15. Software Bill of Materials
Assess
In May 2021, the U.S. White House published its Executive Order on Improving the Nation’s
Cybersecurity. The document puts forward several technical mandates that relate to items we’ve
featured in past Radars, such as zero trust architecture and automated compliance scanning
using security policy as code. Much of the document is devoted to improving the security of the
software supply chain. One item in particular that caught our attention was the requirement that
government software should contain a machine-readable Software Bill of Materials (SBOM), defined
as “a formal record containing the details and supply chain relationships of various components used
in building software.” In other words, it should detail not just the components shipped but also the
tools and frameworks used to deliver the software. This order has the potential to usher in a new
era of transparency and openness in software development. This will undoubtedly have an impact
on those of us who produce software for a living. Many, if not all software products produced today
contain open-source components or employ them in the build process. Often, the consumer has
no way of knowing which version of which package might have an impact on the security of their

Techniques

https://thoughtworks.com/radar/tools/kubernetes-operators
https://thoughtworks.com/radar/techniques/kube-managed-cloud-services
https://thoughtworks.com/radar/tools/crossplane
https://fluxcd.io/
https://thoughtworks.com/radar/platforms/argo-cd
https://slack.com/help/articles/4402059015315-Start-a-huddle-in-a-channel-or-direct-message
https://www.gather.town/
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/tools/code-with-me
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://thoughtworks.com/radar/techniques/zero-trust-architecture
https://thoughtworks.com/radar/techniques/security-policy-as-code

16

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

product. Instead they must rely on the security alerts and patches provided by the retail vendor.
This executive order will ensure that an explicit description of all components is made available to
consumers, empowering them to implement their own security controls. And since the SBOM is
machine-readable, those controls can be automated. We sense that this move also represents a
shift toward embracing open-source software and practically addressing both the security risks and
benefits that it provides.

16. Peer review equals pull request
Hold
Some organizations seem to think peer review equals pull request; they’ve taken the view that the
only way to achieve a peer review of code is via a pull request. We’ve seen this approach create
significant team bottlenecks as well as significantly degrade the quality of feedback as overloaded
reviewers begin to simply reject requests. Although the argument could be made that this is one way
to demonstrate code review “regulatory compliance,” one of our clients was told this was invalid since
there was no evidence the code was actually read by anyone prior to acceptance. Pull requests are
only one way to manage the code review workflow; we urge people to consider other approaches,
especially where there is a need to coach and pass on feedback carefully.

17. Production data in test environments
Hold
We continue to perceive production data in test environments as an area for concern. Firstly, many
examples of this have resulted in reputational damage, for example, where an incorrect alert has
been sent from a test system to an entire client population. Secondly, the level of security, specifically
around protection of private data, tends to be less for test systems. There is little point in having
elaborate controls around access to production data if that data is copied to a test database that
can be accessed by every developer and QA. Although you can obfuscate the data, this tends to be
applied only to specific fields, for example, credit card numbers. Finally, copying production data
to test systems can break privacy laws, for example, where test systems are hosted or accessed
from a different country or region. This last scenario is especially problematic with complex cloud
deployments. Fake data is a safer approach, and tools exist to help in its creation. We do recognize
there are reasons for specific elements of production data to be copied, for example, in the
reproduction of bugs or for training of specific ML models. Here our advice is to proceed with caution.

Techniques

17

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Platforms

Hold HoldAssess AssessTrial TrialAdopt Adopt

37

39
58

5

12

16

7

10

2

1

1930

31

32

33

34
35

20

23

24

25

27

28 29

4

11

13

14

17

15

6

9

40

46

47 48

49 50

51 52
54

55

56
57

59

60
61

62

63
64

65

41
42

44

45

67

66

68

69

87 88 89

90
91

92

93
94

95

96

70

72

74

76 77

79
80

84

85
86

21

22 26

78

73
75

81

82 83

71

3

8

18

36

38

53

43

Adopt
—

Trial
18. Backstage
19. ClickHouse
20. Confluent Kafka REST Proxy
21. GitHub Actions
22. K3s
23. Mambu
24. MirrorMaker 2.0
25. OPA Gatekeeper for Kubernetes
26. Pulumi
27. Sealed Secrets
28. Vercel
29. Weights & Biases

Assess
30. Azure Cognitive Search
31. Babashka
32. ExternalDNS
33. Konga
34. Milvus 2.0
35. Thought Machine Vault
36. XTDB

Hold
—

New Moved in/out No change

18

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

18. Backstage
Trial
As the focus on improving the developer experience and efficiency increases across organizations,
we’re seeing Backstage rise in popularity, alongside the adoption of developer portals. These
organizations are looking to support and streamline their development environments. As the number
of tools and technologies increases, some form of standardization is becoming increasingly important
for consistency so that developers can focus on innovation and product development instead of
getting bogged down with reinventing the wheel. Backstage is an open-source developer portal
platform created by Spotify. It’s based on software templates, unifying infrastructure tooling and
consistent and centralized technical documentation. The plugin architecture allows for extensibility
and adaptability into an organization’s infrastructure ecosystem. We’ll be watching the new
Backstage Service Catalog, currently in alpha, which keeps track of ownership and metadata for all
the software in an organization’s ecosystem.

19. ClickHouse
Trial
ClickHouse is an open-source, columnar online analytical processing (OLAP) database for real-
time analytics. It started as an experimental project in 2009 and since has matured into a highly
performant and linearly scalable analytical database. It’s efficient query processing engine together
with data compression makes it suitable to run interactive queries without pre-aggregation. We’ve
used ClickHouse and are quite impressed with its performance.

20. Confluent Kafka REST Proxy
Trial
Kafka is a common default for event-driven architectures, but adapting it to legacy environments
introduces an impedance mismatch. In a few cases, we’ve had success minimizing the legacy
complexity using Confluent Kafka REST Proxy. The proxy allows developers to access Kafka through
an HTTP interface, which is useful in environments that make using the native Kafka protocol difficult.
For example, we were able to consume events emitted through SAP simply by having the SAP team
invoke an HTTP POST command through a preconfigured SAP remote function call, avoiding the need
to spin up a Java abstraction around SAP (and a team to manage it). The proxy is quite full-featured,
although, as with any such adapter tool, we recommend caution and a clear-eyed view of the trade-
offs involved. We believe the proxy is valuable when it enables legacy producers to send events, but
would be careful creating event consumers through the proxy as the abstraction gets more complex.
The proxy doesn’t change the fact that Kafka consumers are stateful, which means that consumer
instances created through the REST API are tied to a specific proxy, and the need to make an HTTP
call to consume messages from a topic changes the standard semantics of Kafka eventing.

21. GitHub Actions
Trial
Despite our cautionary advice when we last blipped it, we’ve seen continued enthusiasm for
GitHub Actions. What we said before still holds true: GitHub Actions is not yet a full-fledged CI/CD
replacement for complex workflows. It cannot, for example, re-trigger a single job of a workflow, call
other actions inside a composite action or support a shared library. Furthermore, while the ecosystem
in the GitHub Marketplace offers obvious advantages, giving third-party GitHub Actions access to
your build pipeline risks sharing secrets in insecure ways (we recommend following GitHub’s advice

Platforms

https://backstage.io/
https://backstage.io/docs/features/software-catalog/software-catalog-overview
https://clickhouse.com/
https://docs.confluent.io/3.0.0/kafka-rest/docs/index.html
https://docs.github.com/en/actions
https://github.com/marketplace?type=actions

19

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

on security hardening). Despite those concerns, the convenience of creating your build workflow
directly in GitHub next to your source code is a compelling option for some teams, and act helps you
run GitHub Actions locally. As always, we recommend a clear-eyed assessment of the trade-offs, but
some of our teams are happy with the simplicity of GitHub Actions.

22. K3s
Trial
K3s is a lightweight Kubernetes distribution built for IoT and edge computing. You get the benefits
of a fully compliant Kubernetes but with reduced operational overhead. Its enhancements include
lightweight storage backends (sqlite3 as default instead of etcd), a single binary package with
minimal OS dependencies and reduced memory footprint, all of which make K3s suitable for
resource-constrained environments. We’ve used K3s in point-of-sale machines, and we’re quite
happy with our decision.

23. Mambu
Trial
Mambu is a SaaS cloud banking platform. It empowers customers to easily and flexibly build and
change their banking and lending products. Unlike other out-of-box core banking platforms that you
can only adapt with hard-coded integration, Mambu is designed for constantly changing financial
offerings. It comes with an opinionated workflow, while also providing an API-driven approach to
customize business logic, process and integrations. We currently have several projects using Mambu.
With its cloud-based scalability and highly customizable capabilities, it’s becoming one of the
sensible default domain systems when building financial products.

24. MirrorMaker 2.0
Trial
MirrorMaker 2.0 (also known as MM2), built using the Kafka Connect framework, solves many tool
shortcomings of previous Kafka replication approaches. It can successfully geo-replicate topic data
and metadata across clusters, including offsets, consumer groups and authorization command lines
(ACLs). MM2 preserves partitioning and detects new topics and partitions. We appreciated the ability
to stage a cluster migration over time, an approach that can be useful in migrating from an on-prem
cluster to a cloud cluster. After synchronizing the topics and consumer groups, we first migrated the
clients to the new cluster location, then we migrated the producers to the new location and finally
turned off MM2 and decommissioned the old cluster. We’ve also seen MM2 used in disaster recovery
and high-availability scenarios.

25. OPA Gatekeeper for Kubernetes
Trial
OPA Gatekeeper for Kubernetes is a customizable admission webhook for Kubernetes that enforces
policies executed by the Open Policy Agent (OPA). We’re using this extension of the Kubernetes
platform to add a security layer to clusters, providing automated governance mechanisms that
ensure applications are compliant with defined policies. Our teams like it because of its customization
capability; using CustomResourceDefinitions (CRD) allows us to define ConstraintTemplates and
Constraints which make defining rules and the objects (e.g., deployments, jobs, cron jobs) and
namespaces under evaluation an easy task.

Platforms

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://github.com/nektos/act
https://k3s.io/
https://docs.python.org/3/library/sqlite3.html
https://etcd.io/
https://www.mambu.com/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-382%3A+MirrorMaker+2.0
https://kafka.apache.org/documentation/#georeplication
https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-for-kubernetes/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/open-policy-agent-opa

20

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

26. Pulumi
Trial
We’ve been seeing an increase in teams using Pulumi in various organizations. Pulumi fills a gaping
hole in the infrastructure coding world where Terraform maintains a firm hold. While Terraform is
a tried-and-true standby, its declarative nature suffers from inadequate abstraction facilities and
limited testability. Terraform is adequate when the infrastructure is entirely static, but dynamic
infrastructure definitions call for a real programming language. Pulumi distinguishes itself by allowing
configurations to be written in TypeScript/JavaScript, Python and Go — no markup language or
templating required. Pulumi is tightly focused on cloud-native architectures — including containers,
serverless functions and data services — and provides good support for Kubernetes. Recently, AWS
CDK has mounted a challenge, but Pulumi remains the only cloud-neutral tool in this area.

27. Sealed Secrets
Trial
Kubernetes natively supports a key-value object known as a secret. However, by default, Kubernetes
secrets aren’t really secret. They’re handled separately from other key-value data so that precautions
or access control can be applied separately. There is support for encrypting secrets before they are
stored in etcd, but the secrets start out as plain text fields in configuration files. Sealed Secrets is a
combination operator and command-line utility that uses asymmetric keys to encrypt secrets so that
they can only be decrypted by the controller in the cluster. This process ensures that the secrets
won’t be compromised while they sit in the configuration files that define a Kubernetes deployment.
Once encrypted, these files can be safely shared or stored alongside other deployment artifacts.

28. Vercel
Trial
Since we first evaluated JAMstack, we’ve seen more and more web applications of this style.
However, when the infrastructure for building traditional dynamic websites and back-end services
is too heavy for JAMstack, our teams choose Vercel. Vercel is a cloud platform for static site
hosting. More importantly, it provides a seamless workflow for developing, previewing and shipping
JAMstack sites. The configuration for the deployment is quite simple. By integrating with GitHub,
each code commit or pull request could trigger a new website deployment that has a URL for
preview, which greatly accelerates development feedback. Vercel also uses CDN to scale and
speed up production sites. It’s worth mentioning that the team behind Vercel also supports another
popular framework, Next.js.

29. Weights & Biases
Trial
Weights & Biases is a machine learning (ML) platform for building models faster through experiment
tracking, data set versioning, visualizing model performance and model management. You can
integrate it with existing ML code and quickly get live metrics, terminal logs and system statistics
streamed to the dashboard for further analysis. Our teams have used Weights & Biases, and we like
its collaborative approach to model building.

30. Azure Cognitive Search
Assess
Azure Cognitive Search provides search as a service for applications that require text search over
heterogeneous content. It provides push or pull-based APIs to upload and index images, unstructured
text or structured document content, with limitations on supported pull-based data source types.

Platforms

https://pulumi.io/
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://thoughtworks.com/radar/languages-and-frameworks/go-language
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/kubernetes
https://etcd.io/
https://github.com/bitnami-labs/sealed-secrets
https://thoughtworks.com/radar/techniques/jamstack
https://vercel.com/
https://thoughtworks.com/radar/languages-and-frameworks/next-js
https://wandb.ai/
https://docs.microsoft.com/en-us/azure/search/
https://docs.microsoft.com/en-us/rest/api/searchservice/create-data-source

21

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

It provides APIs over REST and .NET SDK to execute search queries, either using a simple query
language or more powerful Apache Lucene queries with field-scoped queries, fuzzy search, infix and
suffix wildcard search and regular expression search, among other features. We’ve successfully used
Azure Cognitive Search alongside other Azure services, including searching content uploaded from
Cosmos DB.

31. Babashka
Assess
Even today, considering all the development and infrastructure tools at our disposal, we often reach
a point where we need a script to glue several things together or to automate a recurring task.
Current favorites for writing these scripts are bash and Python, but we’re happy to report that there’s
a new, exciting option: Clojure. This is made possible with Babashka, a complete Clojure run time
implemented with GraalVM. Babashka ships with libraries that cover most of the use cases for which
you’d use a scripting tool, and loading of further libraries is possible, too. The use of GraalVM brings
startup times within range of native tools, and it also makes Babashka one of the few options for a
multithreaded scripting environment, for those rare cases when it’s needed.

32. ExternalDNS
Assess
ExternalDNS synchronizes Kubernetes ingresses and services with external DNS providers, filling
a hole previously filled by kops dns-controller, Zalando’s Mate or route53-kubernetes — the last
two of which have been deprecated in favor of ExternalDNS. The tool makes internal Kubernetes
resources discoverable via public DNS servers, removing a sometimes manual step to update DNS
records when an ingress host or service’s IP address changes. It supports a huge list of DNS service
providers out of the box with more being added via community support. As the old joke goes, it’s
always DNS.

33. Konga
Assess
Konga is an open-source UI for administering the Kong API Gateway, previously featured in the Radar
in Trial. Our teams liked the quick setup and rich feature set that allowed them to experiment with and
try out configurations easily. And the fact it’s open-source software eases concerns about licensing
costs.

34. Milvus 2.0
Assess
Milvus 2.0 is a cloud-native, open-source vector database built to search and manage embedding
vectors generated by machine-learning models and neural networks. It supports several vector
indexes for approximate nearest neighbors (ANN) search across embedding vectors of audio, video,
image or any unstructured data. Milvus 2.0 is a relatively new database, and we recommend you
assess it for your similarity search needs.

35. Thought Machine Vault
Assess
It’s rare for us to feature commercial, off-the-shelf software in the Radar, much less a core banking
platform. However, Thought Machine Vault (no connection to Thoughtworks) is an example of a
product in this class designed to support good software engineering practices such as test-driven

Platforms

https://lucene.apache.org/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://babashka.org/
https://thoughtworks.com/radar/platforms/graalvm
https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes/kops/tree/HEAD/dns-controller
https://github.com/linki/mate
https://github.com/wearemolecule/route53-kubernetes
https://imgur.com/YKvOiA4
https://imgur.com/YKvOiA4
https://pantsel.github.io/konga/
https://thoughtworks.com/radar/tools/kong-api-gateway
https://github.com/milvus-io/milvus
https://milvus.io/docs/index_selection.md
https://milvus.io/docs/index_selection.md
https://thoughtmachine.net/vault

22

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

development, continuous delivery and infrastructure as code. Developers define banking products
in Vault by writing smart contracts in Python code. This is distinctly different from the standard
no-code approach where customization is done through graphical interfaces or proprietary
configuration files or both. Because products are defined in regular Python code, developers have
access to a range of tools such as test frameworks and version control to ensure that their work
is safe and accurate. We wish more financial services platforms were designed with developer
effectiveness in mind.

36. XTDB
Assess
XTDB is an open-source document database with bitemporal graph queries. It natively supports
two time axes for each record: valid time, when a fact occurs, and transaction time, when a fact
is processed and recorded by the database. Support for bitemporality is beneficial in numerous
scenarios, including analytical use cases executing time-aware queries; auditing historical changes to
facts; supporting distributed data architectures that must guarantee globally consistent point-in-time
queries such as data mesh; and preserving data immutability. XTDB takes information in document
form, expressed in the Extensible Data Notation (EDN) format, a subset of the Clojure language. XTDB
supports graph as well as SQL queries and is extensible through a REST API layer and Kafka Connect,
among other modules. We’re excited to see a growth in adoption of XTDB and the addition of features
such as support for transactions and SQL.

Platforms

https://www.xtdb.com/main/index.html
https://thoughtworks.com/radar/techniques/data-mesh

23

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Tools

Adopt
37. fastlane

Trial
38. Airflow
39. Batect
40. Berglas
41. Contrast Security
42. Dive
43. Lens
44. Nx
45. Wav2Vec 2.0

Assess
46. cert-manager
47. Cloud Carbon Footprint
48. Code With Me
49. Comby
50. Conftest
51. Cosign
52. Crossplane
53. gopass
54. Micoo
55. mob
56. Modern Unix commands
57. Mozilla Sops
58. Operator Framework
59. Pactflow
60. Prefect
61. Proxyman
62. Regula
63. Sourcegraph
64. Telepresence
65. Vite

Hold
—

New Moved in/out No change

Hold HoldAssess AssessTrial TrialAdopt Adopt

37

39
58

5

12

16

7

10

2

1

1930

31

32

33

34
35

20

23

24

25

27

28 29

4

11

13

14

17

15

6

9

40

46

47 48

49 50

51 52
54

55

56
57

59

60
61

62

63
64

65

41
42

44

45

67

66

68

69

87 88 89

90
91

92

93
94

95

96

70

72

74

76 77

79
80

84

85
86

21

22 26

78

73
75

81

82 83

71

3

8

18

36

38

53

43

24

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

37. fastlane
Adopt
Releasing applications for iOS involves a code-signing step. Although supported by Apple’s toolchain,
the process can be cumbersome, error prone and full of unexpected surprises. We’re happy to report
that fastlane, already our tool of choice for automating the release process of mobile applications,
provides a better solution: match is integrated into fastlane’s smooth process, and it implements
a new approach to manage code signing for teams. Instead of storing the signing keys in the
developer’s macOS keychain — the default approach — the new approach revolves around storing
the keys and certificates in a Git repository. This not only makes it easier to on-board new team
members and set up new development machines; in our experience, it also is the easiest method to
integrate signing into continuous delivery pipelines.

38. Airflow
Trial
In recent years we’ve seen the rise of generic and domain-specific workflow management tools. The
drivers behind this rise include the increased usage of data-processing pipelines and the automation
of the machine-learning (ML) model development process. Airflow is one of the early open-source
task orchestration tools that popularized the definition of directed acyclic graphs (DAGs) as code, an
improvement over an XML/YAML pipeline configuration. Although Airflow remains one of the most
widely adopted orchestration tools, we encourage you to evaluate other tools based on your unique
situation. For example, you may want to choose Prefect, which supports dynamic data-processing
tasks as a first-class concern with generic Python functions as tasks; or Argo if you prefer a tight
integration with Kubernetes; or Kubeflow or MLflow for ML-specific workflows. Given the rise of new
tools, combined with some of the shortfalls of Airflow (such as lack of native support for dynamic
workflows and its centralized approach to scheduling pipelines), we no longer recommend Airflow as
the default orchestration tool.

We believe that with the increased usage of streaming in analytics and data pipelines, as well as
managing data through a decentralized data mesh, the need for orchestration tools to define and
manage complex data-processing pipelines is reduced.

39. Batect
Trial
Batect continues to gain traction among our developers and is considered by many to be a
default approach for configuring local development and test environments. This open-source tool
(which happens to be developed by a Thoughtworker) makes it easy to set up and share a build
environment based on Docker. Batect then becomes the entry point for your build system, replacing
the ubiquitous go script as the basis for a “check out and go” approach. Batect continues to evolve
in response to developer feedback and recently added support for Docker’s BuildKit and shell tab
completion.

40. Berglas
Trial
Berglas is a tool for managing secrets on Google Cloud Platform (GCP). We’ve recommended
secrets as a service as a technique to store and share secrets in modern distributed architectures
in the past, and GCP offers Secret Manager for that purpose, and Berglas works well with Secret
Manager. This is especially useful for those GCP services that don’t have direct integration with

Tools

https://fastlane.tools/
https://docs.fastlane.tools/actions/match
https://codesigning.guide/
https://airflow.apache.org/
https://thoughtworks.com/radar/tools/prefect
https://argoproj.github.io/
https://thoughtworks.com/radar/tools/kubeflow
https://thoughtworks.com/radar/tools/mlflow
https://thoughtworks.com/radar/techniques/data-mesh
https://batect.dev/
https://thoughtworks.com/radar/techniques/docker-for-builds
https://www.thoughtworks.com/insights/blog/praise-go-script-part-i
https://github.com/GoogleCloudPlatform/berglas
https://thoughtworks.com/radar/platforms/google-cloud-platform
https://thoughtworks.com/radar/techniques/secrets-as-a-service
https://cloud.google.com/secret-manager

25

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Secret Manager yet; the alternative in such cases would be to write custom code or scripts. Berglas
ships as a command-line tool and as a library, and both also come in handy in use cases beyond
secrets as a service. The author of Berglas, who also happens to be the original author of HashiCorp
Vault, now works at Google; however, Berglass is not an official Google product.

41. Contrast Security
Trial
Contrast Security offers a security platform with multiple components, including static application
security testing (SAST), interactive application security testing (IAST), open-source scanning and
runtime application self-protection (RASP). It’s been around for a few years now, and we’ve used it in
multiple projects. One of the things we quite like about the Contrast platform is its run-time analysis
of libraries; it helps identify libraries that are not used, which in turn helps our teams prioritize
vulnerabilities and potentially get rid of unused libraries. This is particularly relevant given the
increased importance of securing the software supply chain. We also quite like its IAST component;
we’ve found it effective in our continuous delivery (CD) pipeline with reduced false positives, and it
manages to catch a good range of vulnerabilities.

42. Dive
Trial
Dive is a tool for analyzing Docker images; it helps explore each layer in the image and identify
what’s changed in each layer. Dive estimates image efficiency and wasted space in an image and
can be integrated into the continuous integration (CI) pipeline to fail the build based on the efficiency
score or amount of wasted space. We’ve used it in a few projects, and it has proven to be a useful
tool — particularly if you’re building images with a very low tolerance for additional tools or space
consumption.

43. Lens
Trial
Our teams continue to report good results when using Lens to visualize and manage their
Kubernetes clusters. Billed as an “IDE for Kubernetes,” Lens makes it possible to interact with
the cluster without having to memorize commands or manifest file structures. Kubernetes can be
complex, and we understand that a tool for visualizing cluster metrics and deployed workloads can
save time and reduce some of the toil involved in maintaining a Kubernetes cluster. Instead of hiding
complexity behind a simple point-and-click interface, Lens brings together the tools an administrator
would run from the command line. But be cautious about interactively making changes to a running
cluster via any mechanism. We generally prefer that infrastructure changes be implemented in code
so they are repeatable, testable and less prone to human error. However, Lens does excel as a one-
stop tool to interactively navigate through and comprehend your cluster status.

44. Nx
Trial
Over the years we’ve debated several times whether to feature monorepos in the Radar. Each time
we ended up concluding that the trade-offs introduced by monorepos require a nuanced discussion
and the technique is “too complex to blip.” Now we’re seeing increased interest in monorepos in
the JavaScript community, for example, for building applications composed of micro frontends, as
discussed in this podcast episode. Whether this is a good idea depends a lot on your situation, and

Tools

https://thoughtworks.com/radar/tools/hashicorp-vault
https://thoughtworks.com/radar/tools/hashicorp-vault
https://www.contrastsecurity.com/
https://thoughtworks.com/radar/techniques/software-bill-of-materials
https://github.com/wagoodman/dive
https://k8slens.dev/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://semaphoreci.com/blog/monorepo-micro-frontends-jonathan-creamer

26

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

we certainly don’t want to give a general recommendation. What we do want to comment on is the
tooling. In our teams we see a shift away from Lerna and a strong preference to use Nx for managing
JavaScript-based monorepos.

45. Wav2Vec 2.0
Trial
Wav2Vec 2.0 is a self-supervised learning framework for speech recognition. With this framework
the model is trained in two phases. First, it begins in self-supervised mode using unlabeled data
and tries to achieve the best possible speech representation. Then it uses supervised fine-tuning,
during which labeled data teaches the model to predict particular words or phonemes. We’ve used
Wav2Vec and find its approach quite powerful for building automatic speech recognition models for
regional languages with limited availability of labeled data.

46. cert-manager
Assess
cert-manager is a tool to manage your X.509 certificates within your Kubernetes cluster. It models
certificates and issuers as first-class resource types and provides certificates as a service securely
to developers and applications working within the Kubernetes cluster. With built-in support for Let’s
Encrypt, HashiCorp Vault and Venafi, cert-manager is an interesting tool to assess for certificate
management.

47. Cloud Carbon Footprint
Assess
Stakeholders increasingly expect businesses to account for the environmental externalities of
their decisions, as evidenced by the rise of environmental, social and corporate governance (ESG)
investing and employee activism around climate change. Migrating to the cloud offers the potential
for more efficient energy usage — the cloud providers have much more scale to justify investment in
green energy sources and R&D — but the downside of software abstractions for cloud users is that
those abstractions also hide the energy impact as the actual data centers are hidden from view and
financed by another company. Cloud Carbon Footprint, a new open-source tool, takes advantage
of cloud APIs to provide visualizations of estimated carbon emissions based on usage across AWS,
GCP and Azure. It uses heuristics like Etsy’s Cloud Jewels to estimate energy usage and public data
sources to convert energy usage into emissions based on the carbon intensity of the cloud region’s
underlying energy grid (GCP publishes this data already). The tool’s dashboards act as information
radiators, allowing decision makers to modify setups to cut costs and emissions at the same time.
The linkage of cloud regions to carbon intensity of the underlying grid provides a nudge to switch
dirty workloads to regions with greener energy sources.

48. Code With Me
Assess
JetBrains’ collaborative coding tool, Code With Me, has been increasing in popularity as many teams
use various JetBrains tools in this remote-first world. Along with other remote collaboration tools
such as VSCode’s Visual Studio Live Share, Code With Me gives development teams an improved
experience with remote pairing and collaboration. Code With Me’s abilities to invite teammates
into the IDE projects and collaborate in real time are worth exploring. However, we’ve seen some
limitations with regard to refactoring seamlessly and some issues in high-latency environments. We’ll
continue to watch this tool in this space.

Tools

https://lerna.js.org/
https://nx.dev/
https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
https://cert-manager.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/let-s-encrypt
https://thoughtworks.com/radar/tools/let-s-encrypt
https://thoughtworks.com/radar/tools/hashicorp-vault
https://www.cloudcarbonfootprint.org/
https://codeascraft.com/2020/04/23/cloud-jewels-estimating-kwh-in-the-cloud/
https://cloud.google.com/sustainability/region-carbon
https://www.jetbrains.com/code-with-me/
https://thoughtworks.com/radar/tools/visual-studio-live-share

27

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

49. Comby
Assess
This edition of the Radar introduces two tools that search and replace code using an abstract syntax
tree (AST) representation. They occupy a similar space as jscodeshift but contain parsers for a wide
range of programming languages. Although they share some similarities, they also differ in several
ways. One of these tools, Comby, is unique in its simple, command-line interface designed in the
spirit of Unix tools such as awk and sed. While the Unix commands are based on regular expressions
operating matching text, Comby employs a pattern syntax that is specific to programming language
constructs and parses the code before searching. This helps developers search large code bases for
structural patterns. Like sed, Comby can replace the patterns it matches with new structures. This is
useful for automating wholesale changes to large codebases or for making repetitive changes across
a suite of microservice repositories. Since these tools are fairly new, we expect to see a range of
creative uses that have yet to be discovered.

50. Conftest
Assess
Conftest is a tool for writing tests against structured configuration data. It relies on the Rego
language from Open Policy Agent to write tests for Kubernetes configurations, Tekton pipeline
definitions or even Terraform plans. Configurations are a critical part of the infrastructure, and we
encourage you to assess Conftest to verify assumptions and get quick feedback.

51. Cosign
Assess
Cosign is a container signing and verification tool. Part of Sigstore — a project under the Cloud
Native Computing Foundation (CNCF) umbrella aimed at simplifying software signing and
transparency — Cosign supports not only Docker and Open Container Initiative (OCI) images but also
other artifacts that can be stored in a container registry. We previously talked about Docker Notary,
which also operates in this space; Notary v1, however, has some disadvantages: it’s not registry
native and needs a separate Notary server. Cosign avoids this problem and stores the signatures in
the registry next to an image. It currently has integrations with GitHub actions and Kubernetes using
a Webhook with further integrations in the pipeline. We’ve used Cosign in some of our projects and it
looks quite promising.

52. Crossplane
Assess
Crossplane is another entry in the class of tools implemented by the Kubernetes Operator pattern
but with side effects that extend beyond the Kubernetes cluster. In our last Radar we mentioned
Kube-managed cloud services as a technique, and Crossplane does just that. The idea is to leverage
the Kubernetes control plane to provision cloud services on which your deployment is dependent,
even if they aren’t deployed on the cluster itself. Examples include managed database instances, load
balancers or access control policies. This tool is noteworthy for two reasons. First, it demonstrates
the powerful and flexible execution environment of the underlying Kubernetes control plane. There is
no real limit to the range of supported custom resources. Second, Crossplane provides an alternative
to the usual options of Terraform, CDK or Pulumi. Crossplane comes with a set of predefined
providers for the major cloud services that cover the most commonly provisioned services. It isn’t
trying to be a general-purpose infrastructure-as-code (IaC) tool but rather a companion to workloads

Tools

https://thoughtworks.com/radar/tools/jscodeshift
https://comby.dev/
https://github.com/open-policy-agent/conftest
https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego
https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/tekton
https://thoughtworks.com/radar/tools/terraform
https://github.com/sigstore/cosign
https://thoughtworks.com/radar/tools/docker-notary
https://github.com/marketplace/actions/install-cosign
https://github.com/sigstore/helm-charts/tree/main/charts/cosigned
https://crossplane.io/
https://thoughtworks.com/radar/tools/kubernetes-operators
https://thoughtworks.com/radar/techniques/kube-managed-cloud-services
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/pulumi

28

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

being deployed in Kubernetes. Often associated with the practice of GitOps, Crossplane stands
on its own and allows you to stay within the Kubernetes ecosystem when it’s necessary to manage
external cloud resources. However, Crossplane doesn’t help with provisioning Kubernetes itself; you’ll
need at least one other IaC tool to bootstrap the cluster.

53. gopass
Assess
gopass is a password manager for teams, built on GPG and Git. It’s a descendant of pass and adds
several features, including interactive search and multiple password stores in a single tree. Since we
first mentioned gopass, our teams have used it on several projects, sometimes stretching it beyond
its limits. A sorely missed feature was the ability to deprecate secrets. Discoverability was already an
issue, but not being able to mark secrets as no longer in use compounded this problem. The biggest
issue, though, was scale. When you have teams with 50+ people using the same repository for
several years, we found that the repository could grow to multiple gigabytes in size. Re-encrypting
the secrets when onboarding new members could take more than half an hour. The underlying issue
seems to be that in our teams everything changes all the time: people come and go, secrets are
rotated, the architecture evolves, new secrets are added, old ones are no longer needed. gopass
seems to work well, even for large numbers of users, when there’s less change.

54. Micoo
Assess
Micoo is a new entrant into the crowded space of visual regression tools; it’s an open-source
solution and is self-contained, providing Docker images to enable an easy and quick environment
setup. It also provides different clients for Node.js, Java and Python as well as a Cypress plugin so
it can be easily integrated with most of the common frontend UI automation testing frameworks or
solutions. Although Micoo doesn’t provide all the functionality of some of the SaaS-based or other
commercial solutions, our teams have been using it extensively and have had positive experiences.
They’ve especially called out that it works for mobile and desktop apps as well as the web.

55. mob
Assess
Sometimes you come across a tool that you didn’t realize you needed until you do; mob is just such
a tool. Living as we do in a world where remote pair programming has become the norm for many
teams, having a tool that allows for seamless handover either between pairs or a wider group as
part of a mob programming session is super useful. mob hides all the version control paraphernalia
behind a command-line interface that makes participating in mob programming sessions simpler.
It also provides specific advice around how to participate remotely, for example, to “steal the
screenshare” in Zoom rather than ending a screenshare, ensuring the video layout doesn’t change for
participants. A useful tool and thoughtful advice, what’s not to like?

56. Modern Unix commands
Assess
There are many reasons to love Unix, but the one that has profoundly affected our industry is the
Unix philosophy of building applications that “do one thing and do it well.” Unix commands embody
this philosophy. A set of small functions that can be piped together to create more complex solutions.
In recent years, programmers have contributed to a growing set of modern Unix commands. These

Tools

https://thoughtworks.com/radar/techniques/gitops
https://www.gopass.pw/
http://www.passwordstore.org/
https://github.com/Mikuu/Micoo
https://thoughtworks.com/radar/tools/visual-regression-testing-tools
https://github.com/remotemobprogramming/mob
https://thoughtworks.com/radar/techniques/remote-mob-programming

29

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

modern versions attempt to be smaller and faster, often written in Rust. They include additional
features such as syntax highlighting and utilize features of modern terminals. They aim to support
programmers natively by integrating nicely with git and recognizing source code files. For
example, bat is a replacement for cat with paging and syntax highlighting; exa is a replacement for
ls with extended file information and ripgrep is a faster grep replacement that by default ignores
gitignore, binary and hidden files. The Modern Unix repository has a reference to some of these
commands. We’ve been enjoying using these Unix commands. You should try them in improving
your command-line experience. However, we caution against using them in scripts as replacements
for the standard command-line utilities that are shipped in default OS distributions, because they
reduce the scripts’ portability running on other machines.

57. Mozilla Sops
Assess
Plaintext secrets checked into source control (usually Github) are one of the most pervasive security
mistakes developers make. For this reason we thought it useful to feature Mozilla Sops, a tool for
encrypting secrets in text files that our developers find useful in situations where it is impossible
to remove secrets from legacy code repositories. We’ve mentioned many tools of this type before
(Blackbox, git-crypt), but Sops has several features that set it apart. For example, Sops integrates
with cloud-managed keystores such as AWS and GCP Key Management Service (KMS) or Azure
Key Vault as sources of encryption keys. It also works cross-platform and supports PGP keys. This
enables fine-grained access control to secrets on a file-by-file basis. Sops leaves the identifying key
in plain text so that secrets can still be located and diffed by git. We’re always supportive of anything
that makes it easier for developers to be secure; however, remember that you don’t have to keep
secrets in source control to begin with. See Decoupling secret management from source code in our
November 2017 issue.

58. Operator Framework
Assess
We continue to see the adoption of Kubernetes in new and novel scenarios. For example, we see
Kubernetes is being extended to manage resources running outside of its cluster or across multiple
infrastructure providers, or it is used in managing stateful applications beyond Kubernetes’s original
scope. These extensions are possible using the Kubernetes Operator pattern: building Kubernetes
controllers that have the domain-specific knowledge of the custom resource they manage. For
example, an operator that manages a stateful application can use the Kubernetes primitives to
automate an application’s specific tasks beyond its deployment, such as restore, backup and upgrade
its database.

Operator Framework is a set of open-source tools that simplifies building and managing the
lifecycle of Kubernetes operators. Although there are multiple frameworks to help you build
Kubernetes operators, Operator Framework remains a good choice. It supports rich operator lifecycle
management using its Operator Lifecycle Manager module; it supports multiple languages to build
the operator code itself using its Operator SDK; and it provides a catalog for publishing and sharing
the operators. If you’re planning to build Kubernetes operators, we recommend giving the Operator
Framework a try to accelerate your development reliably.

Tools

https://thoughtworks.com/radar/languages-and-frameworks/rust
https://github.com/sharkdp/bat
https://github.com/ogham/exa
https://github.com/BurntSushi/ripgrep#quick-examples-comparing-tools
https://github.com/ibraheemdev/modern-Unix
https://github.com/mozilla/sops
https://thoughtworks.com/radar/tools/blackbox
https://github.com/AGWA/git-crypt
https://thoughtworks.com/radar/techniques/decoupling-secret-management-from-source-code
https://thoughtworks.com/radar/techniques/operator-pattern-for-nonclustered-resources
https://thoughtworks.com/radar/tools/crossplane
https://thoughtworks.com/radar/tools/crossplane
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://operatorframework.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://github.com/cncf/tag-app-delivery/blob/eece8f7307f2970f46f100f51932db106db46968/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md#operator-frameworks-for-kubernetes
https://github.com/operator-framework/operator-lifecycle-manager/
https://sdk.operatorframework.io/
https://operatorhub.io/

30

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

59. Pactflow
Assess
For organizations with larger and more complex API ecosystems, especially those who are already
using Pact, we think it’s worth assessing whether Pactflow could be useful. Pactflow manages the
workflow and continuous deployment of tests written in Pact, lowering the barrier to consumer-
driven contract testing. The complexity of coordination between multiple producers and various
disparate consumers can become prohibitive. We’ve seen some teams invest significant effort in
hand-crafting solutions to this problem and think it’s worth assessing whether Pactflow can look after
this for you.

60. Prefect
Assess
Prefect is a data workflow management tool that makes it easy to add semantics such as retries,
dynamic mapping, caching and failure notifications to data pipelines. You can mark Python functions
as tasks and chain them together through function calls to build the data flow. The Python API
combined with a collection of predefined tasks for common data operations makes Prefect a
noteworthy option to assess for your data pipeline needs.

61. Proxyman
Assess
It may not be a tool that you need everyday, but when you’re in the weeds trying to diagnose a
nasty network problem, it’s very useful to be able to reach for a feature-rich HTTP debugging proxy.
Proxyman is just such a tool. Quite a few of our teams have been using it for a while now as a macOS-
specific drop-in replacement for Charles and really like its streamlined interface and cert management.

62. Regula
Assess
One of the key tenets of infrastructure as code (IaC) is automated testing. If we have a solid test
pyramid with good code-level coverage at the bottom, we can produce a better and more secure
infrastructure. Unfortunately, tools to assist in this space have been sparse. Conftest is frequently
used to test Terraform JSON and HCL code, but it is a general-purpose tool. Regula is an attractive
alternative. Similar to Conftest, Regula checks for compliance of infrastructure code by applying rules
written in Open Policy Agent’s Rego language, but it also provides a set of primitives specifically for
validating infrastructure configurations. Because both tools are based on the Rego language, Regula
rules can be run by Conftest. However, Regula comes with its own command-line tool for running
tests as part of a pipeline with no dependence on Conftest or OPA. Our developers have found that
Regula saves time and produces much more readable, maintainable and succinct test code. Still, both
tools only validate the infrastructure code. A complete suite should also test the infrastructure to
ensure the code is being accurately interpreted.

63. Sourcegraph
Assess
Another abstract syntax tree–based code search tool that received our attention is Sourcegraph. In
contrast to Comby, which is open source, Sourcegraph is a commercial tool (with a 10-user free tier).
Sourcegraph is particularly suited for searching, navigating or cross-referencing in large codebases.

Tools

https://github.com/pact-foundation
https://pactflow.io/
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://github.com/prefecthq/prefect
https://proxyman.io/
https://www.charlesproxy.com/
https://thoughtworks.com/radar/tools/conftest
https://regula.dev/
https://about.sourcegraph.com/
https://thoughtworks.com/radar/tools/comby

31

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

The cloud-hosted version can be accessed through Sourcegraph’s website and is designed to
search publicly available open-source repositories. Whereas Comby is a lightweight command-line
tool for automating repetitive tasks, Sourcegraph’s emphasis is on interactive developer tools for
understanding and navigating large code bases. Unlike Comby’s sed-like interface, Sourcegraph’s
automated code rewriting capability is driven from a UI, allowing users to review changes before
they’re made. Because Sourcegraph is a hosted service, it also has the ability to continuously monitor
code bases and send alerts when a match occurs.

64. Telepresence
Assess
Telepresence is a tool that helps shorten the feedback loop of changes that usually require a
deployment for proper testing. Developers can use it to plug a process that is running on their
local machines into a remote Kubernetes cluster. This gives the local process access to the remote
cluster’s services and features, and the local service can also temporarily replace one of the cluster
services.

In situations where the service integration setup has become somewhat unwieldy, Telepresence
can boost developer productivity and enable more effective local testing. However, if you get
into the habit of using a clever tool like this, you may have bigger problems. For example, if you
use Telepresence because it has become impossible to set up all necessary dependencies for
local development, you may want to investigate the complexity of your setup and architecture. If it
becomes the only way for you to do service integration tests, consider looking into consumer-driven
contract testing or other automated ways of integration testing.

65. Vite
Assess
Fast feedback is crucial for a good developer experience. Nothing breaks the flow of development
more than having to wait a minute or two before getting feedback on the last code changes.
Unfortunately, with applications growing in size and complexity, the popular build tools for front-
end pipelines are often not fast enough anymore. Previously, we featured esbuild, which offers a
significant performance improvement, because it’s implemented in a compile-to-native language
rather than JavaScript. Vite, which is built on top of esbuild, delivers significant improvements over
other tools. It consists of two major parts: a dev server that provides rich feature enhancements over
native ES modules, such as extremely fast Hot Module Replacement (HMR), and a build command
that bundles your code with Rollup. Vite relies on ES modules, and unlike most older tools, it doesn’t
provide shimming or polyfills, which means it’s not compatible with older browsers that don’t support
ES modules. In cases where older browsers had to be supported, some of our teams used Vite during
development and other tools for production builds.

Tools

https://www.telepresence.io/
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/tools/esbuild
https://vitejs.dev/
https://vitejs.dev/guide/why.html

32

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Languages and
Frameworks

Adopt
66. Jetpack Compose
67. React Hooks

Trial
68. Arium
69. Chakra UI
70. DoWhy
71. Gatsby.js
72. Jetpack Hilt
73. Kotlin Multiplatform Mobile
74. lifelines
75. Mock Service Worker
76. NgRx
77. pydantic
78. Quarkus
79. React Native Reanimated 2.0
80. React Query
81. Tailwind CSS
82. TensorFlow Lite
83. Three.js
84. ViewInspector
85. Vowpal Wabbit
86. Zap

Assess
87. Headless UI
88. InsightFace
89. Kats
90. ksqlDB
91. Polars
92. PyTorch Geometric
93. Qiankun
94. React Three Fiber
95. Tauri
96. Transloco

Hold
—

New Moved in/out No change

Hold HoldAssess AssessTrial TrialAdopt Adopt

37

39
58

5

12

16

7

10

2

1

1930

31

32

33

34
35

20

23

24

25

27

28 29

4

11

13

14

17

15

6

9

40

46

47 48

49 50

51 52
54

55

56
57

59

60
61

62

63
64

65

41
42

44

45

67

66

68

69

87 88 89

90
91

92

93
94

95

96

70

72

74

76 77

79
80

84

85
86

21

22 26

78

73
75

81

82 83

71

3

8

18

36

38

53

43

33

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

66. Jetpack Compose
Adopt
In a move that mirrors Apple’s introduction of SwiftUI, Google introduced Jetpack Compose as a new
and quite different approach to building user interfaces for modern Android applications. Compose
brings more powerful tools and an intuitive Kotlin API. In most cases less code is needed, and it has
become easier to create user interfaces at runtime rather than defining a static UI that can be filled
with data. With Compose Multiplatform and Kotlin Multiplatform developers now have a unified
toolkit to build desktop, web and native Android apps. Wear OS 3.0+ is included, too, and with
support for iOS already present in Kotlin Multiplatform Mobile, it’s likely that iOS will be supported by
Compose in the future.

67. React Hooks
Adopt
React Hooks have introduced a new approach to managing stateful logic; given React components
have always been closer to functions than classes, Hooks have embraced this and brought state to
the functions, instead of using classes to take function to the state with methods. Another staple of
state management in React applications is Redux, and we’ve already noted that it has come under
scrutiny, suggesting that sometimes the complexity of Redux isn’t worth it and in such cases a simple
approach using Hooks is preferable. Rolling this completely on your own can quickly become tricky;
therefore we recommend considering a combination of React Context and the useContext and
useReducer hooks, along the lines explained in this blog post.

68. Arium
Trial
Arium is an automated testing framework for 3D applications written in Unity. Functional tests
are an important part of a healthy test pyramid. Arium, which is built as a wrapper on the Unity
Test framework, lets you write functional tests for 3D apps on multiple platforms. We’ve used it
successfully in a few of our projects.

69. Chakra UI
Trial
Chakra UI is a UI component library for React.js that is designed for accessibility. We like it,
especially for its accessibility features, including dark mode and compatibility with the Web
Accessibility Initiative – Accessible Rich Internet Applications (WAI-ARIA) guidelines. Moreover, it
is easy to test and customize which makes for a good development experience, accelerating the
development process of UI solutions in production environments.

70. DoWhy
Trial
DoWhy is a Python library to perform end-to-end causal inference and analysis. Although machine-
learning models can make predictions based on factual data, exploiting the correlation of variables
that were present at the time, they’re insufficient in scenarios where we need to ask What if and Why
questions: What if a variable changed? What would be the impact on the outcome? Causal inference
is an approach to answer such questions. It estimates the causal effect, that is, the magnitude by

Languages and Frameworks

https://thoughtworks.com/radar/languages-and-frameworks/swiftui
https://developer.android.com/jetpack/compose
https://blog.jetbrains.com/kotlin/2021/08/compose-multiplatform-goes-alpha
https://kotlinlang.org/docs/multiplatform.html
https://thoughtworks.com/radar/languages-and-frameworks/kotlin-multiplatform-mobile
https://reactjs.org/docs/hooks-intro.html
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://reactjs.org/docs/context.html
https://blog.logrocket.com/guide-to-react-usereducer-hook/
https://github.com/thoughtworks/Arium
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
https://chakra-ui.com/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://github.com/Microsoft/dowhy

34

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

which an outcome would change, if we changed one of the causal variables. This approach is applied
when we can’t arrive at the answer through observations and collecting data from A/B testing —
due to the cost of experiments or limitations. The DoWhy library estimates the causal effect based
on a process that uses the past collected facts and data as well as assumptions one can make
knowing the domain. It uses a four-step process of modeling the causal relationships graph based on
assumptions, identifying a cause for an outcome, estimating the causal effect and finally challenging
those assumptions by refuting the result. We’ve used this library successfully in production, and it’s
one of the commonly used libraries in causal estimation use cases.

71. Gatsby.js
Trial
Although several frameworks promise the same ease of development and scalability typical of static
site generators, we continue to have good experiences with Gatsby.js. In particular we’ve used
it to build and deploy websites that scale to very large numbers of users without having to worry
about capacity planning or deployment infrastructure. Our developers have also been impressed
by the focus on accessibility and support for old browsers and that they could reuse their React.js
experience. All in all, we feel Gatsby has matured well and is a solid choice in this space.

72. Jetpack Hilt
Trial
Jetpack Hilt has recently reached version 1.0, and we can report that we’ve had good experiences
with it. Jetpack Hilt offers extensions for integrating Hilt with various other AndroidX libraries, such
as WorkManager and Navigation. It further expands the reach of Hilt, to provide developers with
a standard way of incorporating Dagger dependency injection into Android applications. We’ve
featured Koin as a Kotlin-native dependency injection framework in the Radar before, and we would
advise against attempting to replace Koin in a large existing codebase. However, when starting a new
project, Hilt, it seems, is now the way to go.

73. Kotlin Multiplatform Mobile
Trial
For many organizations, cross-platform mobile development is becoming a strong option especially
as the end-to-end experience of building mobile cross-platform applications becomes more
enjoyable and efficient. Kotlin Multiplatform Mobile (KMM) is an SDK provided by JetBrains that
leverages the multiplatform capabilities in Kotlin and includes tools and features designed to
streamline the developer experience. With KMM you write code once for business logic and the app
core in Kotlin and then share it with both Android and iOS applications. You write platform-specific
code only when necessary, for example, to take advantage of native UI elements; and the specific
code is kept in different views for each platform. We’re moving KMM to Trial as it is evolving rapidly
and we’re seeing a few organizations use this as their default.

74. lifelines
Trial
lifelines is a library for survival analysis in Python. Originally developed for birth and death events, it
has evolved into a complete survival analysis library to predict any duration of time. Beyond medical
use cases (such as answering, How long does this population live for?), we’ve used it in retail and
manufacturing to answer questions like How long users are subscribed to a service? or When should
we do the next preventive maintenance?

Languages and Frameworks

https://www.gatsbyjs.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://developer.android.com/jetpack/androidx/releases/hilt
https://thoughtworks.com/radar/languages-and-frameworks/dagger
https://thoughtworks.com/radar/languages-and-frameworks/koin
https://kotlinlang.org/docs/mobile/home.html
https://kotlinlang.org/docs/multiplatform.html
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://kotlinlang.org/docs/mobile/kmm-evolution.html
https://lifelines.readthedocs.io/en/latest/

35

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

75. Mock Service Worker
Trial
Web applications, especially those for internal use in enterprises, are usually written in two parts. The
user interface and some business logic run in the web browser while business logic, authorization
and persistence run on a server. These two halves normally communicate via JSON over HTTP.
The endpoints shouldn’t be mistaken for a real API; they’re simply an implementation detail of an
application that is split across two run-time environments. At the same time, they provide a valid
seam to test the pieces individually. When testing the JavaScript part, the server side can be stubbed
and mocked at the network level by a tool such as Mountebank. Mock Service Worker offers an
alternative approach of intercepting requests in the browser. This simplifies manual tests as well.
Like Mountebank, Mock Service Worker is run outside the browser as a Node.js process for testing
network interactions. In addition to REST interactions, it mocks GraphQL APIs — a bonus because
GraphQL can be complex to mock manually at the network level.

76. NgRx
Trial
State management in React applications has been a recurring topic in the Radar, and we’ve recently
clarified our position on Redux, a popular framework in this space. NgRx is, in essence, Redux for
Angular. It’s a framework for building reactive applications with Angular, providing ways to manage
state and to isolate side effects. Our teams report that picking up NgRx was straightforward, not the
least because it is built with RxJS, and they highlight a trade-off similar to the one we know from
Redux: adding reactive state management comes with added complexity that only pays off in larger
applications. The developer experience is enhanced by schematics, a scaffolding library and a set of
tools that enable visual tracking of state and time-travel debugging.

77. pydantic
Trial
Originally type annotations were added to Python to support static analysis. However, considering
how widely type annotations, and annotations in general, are used in other programming languages,
it was only a matter of time before developers would begin to use Python’s type annotations for other
purposes. pydantic falls into this category. It allows you to use type annotations for data validation
and settings management at run time. When data arrives as, say, a JSON document and needs
to be parsed into a complex Python structure, pydantic ensures that the incoming data matches
the expected types or reports an error if it doesn’t. Although you can use pydantic directly, many
developers have used it as part of FastAPI, one of the most popular Python web frameworks. In fact,
using pydantic in FastAPI is considered so indispensable that a recently proposed change to Python,
aimed at reducing the cost of loading annotated code into memory, was reconsidered because it
would have broken the use of type annotations at run time.

78. Quarkus
Trial
We assessed Quarkus two years ago, and now our teams have more experience with it. Quarkus
is a Kubernetes-native Java stack tailored for OpenJDK HotSpot and GraalVM. Over the past two
years, Quarkus has wired those best-of-breed libraries in the Java world and streamlined the code
configuration, giving our teams a pretty good developer experience. Quarkus has a very fast boot

Languages and Frameworks

https://thoughtworks.com/radar/tools/mountebank
https://mswjs.io/
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://ngrx.io/
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://rxjs.dev/
https://pydantic-docs.helpmanual.io/
https://thoughtworks.com/radar/languages-and-frameworks/fastapi
https://mail.python.org/archives/list/python-dev@python.org/thread/CLVXXPQ2T2LQ5MP2Y53VVQFCXYWQJHKZ/
https://quarkus.io/
https://thoughtworks.com/radar/platforms/graalvm

36

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

time (tens of milliseconds) and a low RSS memory footprint; this is because of its container-first
building approach: it uses ahead-of-time compilation techniques to do dependency injection at
compile time and thus avoids the run-time costs of reflection. Our team has also had to endure the
trade-offs: it takes nearly 10 minutes for Quarkus to build on our pipeline; some features that rely on
annotations and reflection (such as ORM and serializer) are also limited. Part of these trade-offs are
the result of using GraalVM. So if your application is not running for FaaS, using Quarkus with HotSpot
is also a good choice.

79. React Native Reanimated 2.0
Trial
If we want animations in React Native applications, React Native Reanimated 2.0 is the way to go.
We previously had Reanimated 1.x, but it had issues related to the complexity of the Reanimated
declarative language and also had some additional performance costs related to initialization and
communication between the React Native JavaScript thread and the UI thread. Reanimated 2.0 is
an attempt at reimagining how to run animations in the UI thread; it allows us to code the animations
in JavaScript and run them on the UI thread using a new API called animation worklets. It does this
by spawning a secondary JavaScript context on the UI thread that then is able to run JavaScript
functions. We’re using it in our React Native projects which need animations and like it a lot.

80. React Query
Trial
React Query is often described as the missing data-fetching library for React. Fetching, caching,
synchronizing and updating server state is a common requirement in many React applications, and
although the requirements are well-understood, getting the implementation right is notoriously
difficult. React Query provides a straightforward solution using hooks. As an application developer
you simply pass a function that resolves your data and leave everything else to the framework. We
like that it works out-of-the-box but still offers a lot of configuration when needed. The developer
tools, unfortunately not yet available for React Native, do help with understanding of how the
framework works, which benefits developers new to it. In our experience, version 3 of the framework
brought the stability needed to be used in production with our clients.

81. Tailwind CSS
Trial
Our developers have continued to be productive with Tailwind CSS and are impressed with its ability
to scale with large teams and codebases. Tailwind CSS offers an alternative approach to CSS tools
and frameworks that reduces complexity through lower-level utility CSS classes. The Tailwind CSS
classes can easily be customized to suit any customer’s visual identity. We’ve also found that it pairs
particularly well with Headless UI. Tailwind CSS allows you to avoid writing any classes or CSS on
your own which leads to a more maintainable codebase in the long term. It seems that Tailwind CSS
offers the right balance between reusability and customization to create visual components.

82. TensorFlow Lite
Trial
Since we first mentioned TensorFlow Lite in the Radar in 2018, we’ve used it in several products
and are happy to report that it works as advertised. The standard use case is to integrate pretrained
models into mobile apps, but TensorFlow Lite also supports on-device learning which opens

Languages and Frameworks

https://quarkus.io/vision/container-first
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://docs.swmansion.com/react-native-reanimated/
https://docs.swmansion.com/react-native-reanimated/docs/2.2.0/worklets/
https://react-query.tanstack.com/
https://tailwindcss.com/
https://thoughtworks.com/radar/languages-and-frameworks/headless-ui
https://www.tensorflow.org/lite/

37

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

further areas of application. Numerous examples on the website showcase many common areas
of application, such as image classification and object detection, but also hint at new ways of
interaction using, for example, pose estimation and gesture recognition.

83. Three.js
Trial
We first mentioned Three.js in the Radar in Assess back in 2017. Since then, this 3D rendering library
for the web has evolved and improved rapidly. The standard WebGL APIs have improved, and Three.
js has added support for WebXR, turning it into a viable tool for creating immersive experiences. At
the same time, browser support for 3D rendering and WebXR device APIs has improved, making
the web an increasingly attractive platform for 3D content. Although there are other 3D rendering
libraries, our teams have come to prefer Three.js, especially when paired with React Three Fiber to
abstract away some of the low-level details. We’ve found that developers still need to be conscious
of performance issues and will sometimes need to restructure data to optimize rendering speed.

84. ViewInspector
Trial
When creating a user interface with SwiftUI, the idea is to build a view model that can be mapped
easily to the elements of the user interface. In such cases, most of the testing can be done on the
model, using the standard unit testing frameworks which makes these tests straightforward to write
and fast to run. To test the bindings between the model and the views, developers usually reach for
XCUITest, a test automation framework that launches the full application and remote controls the
interface. It works, tests are reasonably stable, but they take a long time to run.

For a faster approach to writing unit tests for SwiftUI, try ViewInspector, an open-source framework
that uses Swift’s public reflection API to access the underlying views created by SwiftUI. With
ViewInspector, a test simply instantiates a SwiftUI view, locates the interface elements that need to
be tested and then makes assertions against them. Basic interactions such as taps can be tested, too.
Like many UI testing frameworks, it provides an API to locate interface elements, either by specifying
a path through the view hierarchy or by using a set of finder methods. These tests are usually simpler
than XCUITests, and they run much faster. As a word of caution, though, given the ease with which
tests can be written using ViewInspector, you might be tempted to over-test the interface. Testing
simple one-to-one mappings is just double-entry bookkeeping. And even though ViewInspector
makes it easier to test the SwiftUI code, remember to keep most of the logic in the model.

85. Vowpal Wabbit
Trial
Vowpal Wabbit is a general-purpose machine-learning library. Even though it was originally created
at Yahoo! Research over a decade ago, we still want to mention it to highlight that it continues to
be the place where many of the newest machine-learning techniques get added first. If you’re
interested in machine learning, you may want to keep an eye on the innovations in Vowpal Wabbit.
Note also that Microsoft has shown a deeper interest in Vowpal Wabbit in recent years, employing a
main contributor and integrating it into their Azure offerings, for example in their machine-learning
designer and in Personalizer.

Languages and Frameworks

https://threejs.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-three-fiber
https://thoughtworks.com/radar/languages-and-frameworks/swiftui
https://developer.apple.com/documentation/xctest/user_interface_tests
https://github.com/nalexn/ViewInspector
https://vowpalwabbit.org/
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-vowpal-wabbit-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-vowpal-wabbit-model
https://azure.microsoft.com/en-us/services/cognitive-services/personalizer/

38

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

86. Zap
Trial
Zap is a super performant structured logging library for GoLang which is faster than the standard Log
implementation and other logging libraries. Zap has both a “pretty” logger, providing a structured and
printf-style interface, as well as an (even) faster implementation with just the structured interface.
Our teams have used it extensively at scale and are happy to recommend it as their go-to solution.

87. Headless UI
Assess
Headless UI is an unstyled component library for either React.js or Vue.js from the same people
that created Tailwind CSS. Our developers like that they don’t have to customize or work around the
default styles that other component libraries come with. The components’ rich functionality and full
accessibility, combined with the frictionless styling, allows developers to focus more productively on
the business problem and user experience. Unsurprisingly, Headless UI also pairs well with Tailwind
CSS classes.

88. InsightFace
Assess
InsightFace is an open source 2D and 3D deep face analysis toolbox, mainly based on PyTorch and
MXNet. InsightFace uses some of the most recent and accurate methods for face detection, face
recognition and face alignment. We’re particularly interested in it, because it has one of the best
implementations for ArcFace, a cutting-edge machine-learning model that detects the similarities of
two images. InsightFace with ArcFace received a 99.83% accuracy score on the Labeled Faces in the
Wild (LFW) data set. We’re experimenting with it in the context of facial deduplication and have seen
promising results.

89. Kats
Assess
Kats is a lightweight framework for performing time series analyses, recently released by Facebook
Research. Time series analysis is an important area in data science; it encompasses the problem
domains of forecasting, detection (including the detection of seasonalities, outliers and change
points), feature extraction and multivariate analysis. Typically we tend to have different libraries
for different techniques in a time series analysis. Kats though aims to be a one-stop shop for time
series analyses and provides a set of algorithms and models for all the time series analysis problem
domains. Previously we mentioned Prophet, also by Facebook Research, which is one of the models
Kats implements for forecasting. We’re looking forward to trying Kats in problems involving time
series analyses.

90. ksqlDB
Assess
If you’re using Apache Kafka and building stream-processing applications, ksqlDB is a great
framework for writing simple applications using SQL-like statements. ksqlDB is not a traditional SQL
database. However, it allows you to use lightweight SQL-like statements to build new Kafka streams
or tables on top of the existing Kafka topics. The queries can pull data, similar to reading from a

Languages and Frameworks

https://github.com/uber-go/zap
https://headlessui.dev/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/tailwind-css
https://github.com/deepinsight/insightface
https://thoughtworks.com/radar/languages-and-frameworks/pytorch
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
https://github.com/facebookresearch/Kats
https://thoughtworks.com/radar/platforms/prophet
https://thoughtworks.com/radar/tools/apache-kafka
https://ksqldb.io/
https://docs.ksqldb.io/en/latest/concepts/streams/
https://docs.ksqldb.io/en/latest/concepts/tables/

39

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

traditional database, or push results to the application when incremental changes occur. You can
choose to run it as a standalone server natively as part of your existing Apache Kafka installation
or as a fully managed service on Confluent Cloud. We’re using ksqlDB in simple data-processing
use cases. In more complex use cases, where an application requires programming code beyond
algebraic SQL queries, we continue to use data-processing frameworks such as Apache Spark or
Apache Flink on top of Kafka. We recommend experimenting with ksqlDB in scenarios where the
simplicity of the application allows it.

91. Polars
Assess
Polars is an in-memory data frame library implemented in Rust. Unlike other data frames (such as
Pandas), Polars is multithreaded and safe for parallel operations. The in-memory data is organized in
the Apache Arrow format for efficient analytic operations and to enable interoperability with other
tools. If you’re familiar with Pandas, you can quickly get started with Polars’ Python bindings. We
believe Polars, with Rust implementation and Python bindings, is a performant in-memory data frame
to assess for your analytical needs.

92. PyTorch Geometric
Assess
PyTorch Geometric is a geometric deep learning extension library for PyTorch. Geometric deep
learning aims to build neural networks that can learn from non-Euclidean data like graphs. Graph
network-based machine-learning approaches have been of increasing interest in social network
modeling and in biomedical fields, specifically in drug discovery. PyTorch Geometric provides
an easy-to-use library to design complicated graph network problems like protein structure
representation. It has GPU and CPU support and includes a good collection of graph-based
machine-learning algorithms based on recent research.

93. Qiankun
Assess
Micro frontends have continued to gain in popularity since they were first introduced. However, it’s
easy to fall into micro frontend anarchy if teams fail to maintain consistency across an application,
from styling technique to state management. Qiankun, which means heaven and earth in Chinese, is
a JavaScript library built to provide an out-of-the-box solution for this. Qiankun is based on single-
spa, so it allows different frameworks to coexist in a single application. It also provides style isolation
and JavaScript sandbox to ensure the style or state of microapplications do not interfere with each
other. Qiankun has received some attention in the community; our teams are also assessing it, hoping
that it can support more friendly debugging.

94. React Three Fiber
Assess
With the rising interest in — and viability of — 3D and extended reality (XR) applications in web
browsers, our teams have been experimenting with React Three Fiber for developing 3D experiences
on the web. React Three Fiber is a library that takes the React.js component and state model and
translates it to 3D objects rendered with the Three.js library. This approach opens up 3D web
programming to the wider group of developers already familiar with React.js and the rich ecosystem

Languages and Frameworks

https://ksqldb.io/quickstart.html#quickstart-content
https://thoughtworks.com/radar/platforms/apache-spark
https://thoughtworks.com/radar/platforms/apache-flink
https://github.com/pola-rs/polars
https://thoughtworks.com/radar/languages-and-frameworks/rust
https://arrow.apache.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://thoughtworks.com/radar/languages-and-frameworks/pytorch
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/techniques/micro-frontend-anarchy
https://github.com/umijs/qiankun
https://thoughtworks.com/radar/languages-and-frameworks/single-spa
https://thoughtworks.com/radar/languages-and-frameworks/single-spa
https://github.com/pmndrs/react-three-fiber
https://thoughtworks.com/radar/languages-and-frameworks/three-js

40

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

of tools and libraries surrounding it. However, when developing applications with React Three Fiber,
our teams often have to manipulate the 3D scene imperatively. This doesn’t mix well with the reactive
component paradigm provided by React. There is no escaping the need to understand the basic 3D
rendering mechanisms. The jury is still out on whether React Three Fiber offers enough abstraction
to warrant learning its idiosyncrasies or if it’s better just to work with Three.js directly.

95. Tauri
Assess
Tauri is an Electron alternative for building desktop applications using a combination of Rust tools
and HTML, CSS, and JavaScript rendered in System’s WebView. Unlike Electron which bundles
Chromium, the applications built with Tauri leverage the underlying WebView, that is, WebKit on
macOS, WebView2 on Windows and WebKitGTK on Linux. This approach has interesting trade-
offs — on one hand you get small and fast application binaries; on the other hand, you need to verify
compatibility quirks across WebViews of different systems.

96. Transloco
Assess
Transloco is a library for Angular to build multilingual applications. It can be used in templates and
offers a function to cover more complex use cases. Because the translations are loaded on-demand
at run time, Transloco makes it easy to implement language switching in the web browser. It also
covers localization of numbers, dates and more using template pipes.

Languages and Frameworks

https://github.com/tauri-apps/tauri
https://www.electronjs.org/
https://thoughtworks.com/radar/languages-and-frameworks/rust
https://ngneat.github.io/transloco/

Want to stay up to date with all
Radar-related news and insights?
Follow us on your favorite social channel
or become a subscriber.

Thoughtworks is a global technology consultancy
that integrates strategy, design and engineering
to drive digital innovation. We are 10,000+ people
strong across 48 offices in 17 countries. Over
the last 25+ years, we’ve delivered extraordinary
impact together with our clients by helping
them solve complex business problems with
technology as the differentiator.

subscribe now

https://thght.works/3077IBf
https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/3AmhqfA

