
TECHNOLOGY
RADAR
An opinionated guide
to technology frontiers

Volume 23

thoughtworks.com/radar
#TWTechRadar

https://thght.works/3iE75CK
https://thght.works/3loXhhw

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 2

The Technology Advisory Board (TAB) is a group of 21 senior technologists
at ThoughtWorks. The TAB meets twice a year face-to-face and biweekly by
phone. Its primary role is to be an advisory group for ThoughtWorks CTO,
Rebecca Parsons.

The TAB acts as a broad body that can look at topics that affect technology
and technologists at ThoughtWorks. With the ongoing global pandemic, we
once again created this volume of the Technology Radar via a virtual event.

Contributors
The Technology Radar is prepared by the
ThoughtWorks Technology Advisory Board

Cassie
Shum

Erik
Dörnenburg

Evan
Bottcher

Rebecca
Parsons (CTO)

Fausto
de la Torre

Camilla
Crispim

Ni
Wang

Martin Fowler
(Chief Scientist)

Hao
Xu

Lakshminarasimhan
Sudarshan

Perla
Villarreal

Rachel
Laycock

Bharani
Subramaniam

Ian
Cartwright

Birgitta
Böckeler

Scott
Shaw

James
Lewis

Mike
Mason

Shangqi
Liu

Neal
Ford

Brandon
Byars

Zhamak
Dehghani

https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/rebecca-parsons
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://www.thoughtworks.com/profiles/camilla-crispim
https://www.thoughtworks.com/profiles/ni-wang
https://www.thoughtworks.com/profiles/martin-fowler
https://www.thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://www.thoughtworks.com/profiles/perla-villarreal
https://www.thoughtworks.com/profiles/rachel-laycock
https://www.thoughtworks.com/profiles/bharani-subramaniam
https://www.thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/birgitta-bockeler
https://www.thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/james-lewis
https://www.thoughtworks.com/profiles/mike-mason
https://www.thoughtworks.com/profiles/liu-shangqi
https://www.thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/zhamak-dehghani

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 3

About
the Radar
ThoughtWorkers are passionate about
technology. We build it, research it, test it, open
source it, write about it and constantly aim to
improve it — for everyone. Our mission is to
champion software excellence and revolutionize
IT. We create and share the ThoughtWorks
Technology Radar in support of that mission.
The ThoughtWorks Technology Advisory
Board, a group of senior technology leaders at
ThoughtWorks, creates the Radar. They meet
regularly to discuss the global technology
strategy for ThoughtWorks and the technology
trends that significantly impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions in a
format that provides value to a wide range of
stakeholders, from developers to CTOs. The
content is intended as a concise summary.

We encourage you to explore these technologies.
The Radar is graphical in nature, grouping items
into techniques, tools, platforms and languages
& frameworks. When Radar items could appear
in multiple quadrants, we chose the one that
seemed most appropriate. We further group
these items in four rings to reflect our current
position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq.

https://thght.works/2GFsJcu

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 4

Hold HoldAssess AssessTrial TrialAdopt Adopt

Our Radar is forward looking. To make
room for new items, we fade items that
haven’t moved recently, which isn’t a
reflection on their value but rather on
our limited Radar real estate.

Hold
Proceed with caution.

Assess
Worth exploring with the goal of
understanding how it will affect your enterprise.

Trial
Worth pursuing. It’s important to understand how
to build up this capability. Enterprises can try this
technology on a project that can handle the risk.

Adopt
We feel strongly that the industry should
be adopting these items. We use them
when appropriate in our projects.

New

Moved in/out

No changeRadar at
a glance
The Radar is all about tracking interesting
things, which we refer to as blips. We organize
the blips in the Radar using two categorizing
elements: quadrants and rings. The quadrants
represent different kinds of blips. The rings
indicate what stage in an adoption lifecycle we
think they should be in.

A blip is a technology or technique that
plays a role in software development. Blips
are things that are “in motion” — that is we
find their position in the Radar is changing
— usually indicating that we’re finding
increasing confidence in them as they move
through the rings.

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 5

Themes for this edition
GraphQL Grandiosity

We see a swell in adoption of GraphQL
on many teams, along with a thriving
support ecosystem. It solves some
common problems that are manifest
in modern distributed architectures
such as microservices: when developers
break things into small pieces, they
must often re-aggregate information to
solve business requirements. GraphQL
offers convenient capabilities to solve
this increasingly common problem. Like
all powerful abstractions, it offers trade-
offs and requires careful consideration
by teams to avoid long-term negative
effects. For example, we’ve seen teams
provide too much detail about the
underlying implementation details via an
aggregation tool, leading to unnecessary
brittleness in architecture. Another short-
term convenience turned long-term
headache comes when teams try to use
an aggregation tool to create a canonical,
universal, centralized data model. We
encourage teams to use GraphQL and the
burgeoning tools around it; but be cautious
of narrowly focused technology generalized
to solve too many problems.

The Struggle with the
Browser Continues

The web browser was originally designed
for document browsing, but now it
primarily hosts applications, and the

abstraction mismatch continues to
challenge developers. To overcome
the many headaches inherent in this
mismatch, developers keep rethinking and
rechallenging established approaches for
browser testing, state management and
building fast and rich browser applications
in general. We see several of these trends
in the Radar. First, since we moved Redux
to Adopt in 2017 as the default way to
manage state in React applications, we
now see developers either look elsewhere
(Recoil) or delay the decision for a state
management library. Second, Svelte has
been gaining more interest, and it is
challenging one of the established concepts
applied by popular application frameworks
such as React and Vue.js: the virtual DOM.
Third, we keep seeing new tools to deal
with testing in the browser: Playwright
is yet another attempt at improving UI
testing, and Mock Service Worker is a novel
approach to decouple tests from their
back-end interactions. Fourth, we continue
to see the challenge of balancing developer
productivity with performance, with
browser-tailored polyfills aiming to move
the scale in that trade-off.

Visualize All the Things

This Radar features several blips across
the technology landscape with one thing
in common: visualization. You’ll find
blips on infrastructure, data science,
cloud resources and a host of other
innovative visualization tools, including

some very effective ways to view difficult
abstractions. You’ll also find discussions
of interactive data tools visualization
and dashboarding tools, such as Dash,
Bokeh and Streamlit, as well as a host of
infrastructure visualization tools, including
Kiali for service mesh visualization in
microservices architectures. As developer
ecosystems become more complex, a
picture often goes a long way toward
taming the inevitable cognitive overload.

Adolescence of
Infrastructure as Code

Managing infrastructure as code has
become more common as organizations
see the benefits of automating
infrastructure, consequently creating an
innovation-adoption feedback loop for the
creators of tools and frameworks. Tools
such as CDK and Pulumi among others
offer capabilities far beyond the first
generation, improving so much that we
believe infrastructure as code has reached
its adolescence, with both positive and
negative connotations. We were pleasantly
surprised at the number of blips in all
quadrants reflecting positively on the
increasing maturity of the ecosystem.
However, we also discussed the challenges
around the lack of mature patterns and the
struggles many companies face as they’re
trying to find the best use of this capability
— all of which are indicators of continuing
growth toward maturity. We’re hopeful that
the infrastructure community will continue

to learn lessons from software design,
especially in terms of creating a loosely
coupled deployable infrastructure.

Democratizing Programming

Several of our discussions revolve around
tools and techniques that promote the
democratization of programming: allowing
nonprogrammers the ability to perform
tasks that previously only programmers
could do. For example, solutions such
as IFTTT and Zapier have for long been
popular in this space. We’ve observed an
increasing use of tools such as Amazon
Honeycode, a low-code environment for
creating simple business applications.
Although tools such as these provide fit-
to-purpose programming environments,
challenges arise when moving them to
production-scale environments. Developers
and spreadsheet wizards have long
managed to find a compromise between
domain-specific and traditional coding
environments. The advent of more modern
tools renews that discussion across wider
domains, with many of the same positive
and negative trade-offs.

https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://thoughtworks.com/radar/techniques/apollo-federation
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://thoughtworks.com/radar/languages-and-frameworks/recoil
https://thoughtworks.com/radar/languages-and-frameworks/svelte
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/tools/playwright
https://thoughtworks.com/radar/languages-and-frameworks/mock-service-worker
https://thoughtworks.com/radar/techniques/browser-tailored-polyfills
https://thoughtworks.com/radar/tools/dash
https://thoughtworks.com/radar/tools/bokeh
https://thoughtworks.com/radar/languages-and-frameworks/streamlit
https://thoughtworks.com/radar/tools/kiali
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/pulumi
https://thoughtworks.com/radar/techniques/bounded-low-code-platforms
https://thoughtworks.com/radar/techniques/bounded-low-code-platforms
https://ifttt.com/
https://zapier.com/
https://www.honeycode.aws/
https://www.honeycode.aws/
https://thoughtworks.com/radar/techniques/productionizing-notebooks
https://thoughtworks.com/radar/techniques/productionizing-notebooks

Hold HoldAssess AssessTrial TrialAdopt Adopt

5

16

24

26

2

12

59

13

8

14

31

33

34

35

36

37
39

40

22

23

15

17

18
19

20

25

21

10

11
49

60
61

62
63 64

65 66

67

68

69 70

71

72

73
74

75

50
51

55

56

58

52

22

78

85 86

87 88

89
90 91

92
93

94

95

96
97

98

99

83

34

27

28

29
30

8477

76

79

82

80

81

1

6

7

9

3

4

32

3841

44
45

46

43
42

47

48
53

54

57

Techniques
Adopt
1.	 Dependency drift fitness function
2.	 Run cost as architecture fitness function
3.	 Security policy as code
4.	 Tailored service templates

Trial
5.	 Continuous delivery for machine learning (CD4ML)
6.	 Data mesh
7.	 Declarative data pipeline definition
8.	 Diagrams as code
9.	 Distroless Docker images
10.	 Event interception
11.	 Parallel run with reconciliation
12.	 Use “remote native” processes and approaches
13.	 Zero trust architecture

Assess
14.	 Bounded low-code platforms
15.	 Browser-tailored polyfills
16.	 Decentralized identity
17.	 Kube-managed cloud services
18.	 Open Application Model (OAM)
19.	 Secure enclaves
20.	 Switchback experimentation
21.	 Verifiable credentials

Hold
22.	 Apollo Federation
23.	 ESBs in API Gateway’s clothing
24.	 Log aggregation for business analytics
25.	 Micro frontend anarchy
26.	 Productionizing notebooks

Platforms
Adopt

Trial
27.	 Azure DevOps
28.	 Debezium
29.	 Honeycomb
30.	 JupyterLab

Assess
31.	 Amundsen
32.	 AWS Cloud Development Kit
33.	 Backstage
34.	 Dremio
35.	 DuckDB
36.	 K3s
37.	 Materialize
38.	 Pulumi
39.	 Tekton
40.	 Trust over IP stack

Hold
41.	 Node overload

Tools
Adopt
42.	 Airflow
43.	 Bitrise
44.	 Dependabot
45.	 Helm
46.	 Trivy

Trial
47.	 Bokeh
48.	 Concourse
49.	 Dash
50.	 jscodeshift
51.	 Kustomize
52.	 MLflow
53.	 Pitest
54.	 Sentry
55.	 ShellCheck
56.	 Stryker
57.	 Terragrunt
58.	 tfsec
59.	 Yarn

Assess
60.	 CML
61.	 Eleventy
62.	 Flagger
63.	 gossm
64.	 Great Expectations
65.	 k6
66.	 Katran
67.	 Kiali
68.	 LGTM
69.	 Litmus
70.	 Opacus
71.	 OSS Index
72.	 Playwright
73.	 pnpm
74.	 Sensei
75.	 Zola

Hold

Languages &
Frameworks
Adopt
76.	 Arrow
77.	 jest-when

Trial
78.	 Fastify
79.	 Immer
80.	 Redux
81.	 Rust
82.	 single-spa
83.	 Strikt
84.	 XState

Assess
85.	 Babylon.js
86.	 Blazor
87.	 Flutter Driver
88.	 HashiCorp Sentinel
89.	 Hermes
90.	 io-ts
91.	 Kedro
92.	 LitElement
93.	 Mock Service Worker
94.	 Recoil
95.	 Snorkel
96.	 Streamlit
97.	 Svelte
98.	 SWR
99.	 Testing Library

Hold

The Radar

New Moved in/out No change

Techniques
TECHNOLOGY RADAR

© ThoughtWorks, Inc. All Rights Reserved.

8 | TECHNOLOGY RADAR

Dependency drift fitness
function
Adopt

Fitness functions introduced by
evolutionary architecture, borrowed from
evolutionary computing, are executable
functions that inform us if our applications
and architecture are objectively moving
away from their desired characteristics.
They’re essentially tests that can be
incorporated into our release pipelines.
One of the major characteristics of
an application is the freshness of its
dependencies to other libraries, APIs
or environmental components that a
dependency drift fitness function tracks
to flag the out-of-date dependencies that
require updating. With the growing and
maturing number of tools that detect
dependency drifts, such as Dependabot
or Snyk, we can easily incorporate
dependency drift fitness functions into
our software release process to take
timely action in keeping our application
dependencies up to date.

Run cost as architecture fitness
function
Adopt

Automating the estimation, tracking and
projection of cloud infrastructure’s run
cost is necessary for today’s organizations.
The cloud providers’ savvy pricing models,
combined with the proliferation of pricing
parameters and the dynamic nature of

Adopt
1.	 Dependency drift fitness

function
2.	 Run cost as architecture fitness

function
3.	 Security policy as code
4.	 Tailored service templates

Trial
5.	 Continuous delivery for

machine learning (CD4ML)
6.	 Data mesh
7.	 Declarative data pipeline

definition
8.	 Diagrams as code
9.	 Distroless Docker images
10.	Event interception
11.	Parallel run with reconciliation
12.	Use “remote native” processes

and approaches
13.	Zero trust architecture

Assess
14.	Bounded low-code platforms
15.	Browser-tailored polyfills
16.	Decentralized identity
17.	Kube-managed cloud services
18.	Open Application Model (OAM)
19.	Secure enclaves
20.	Switchback experimentation
21.	Verifiable credentials

Hold
22.	Apollo Federation
23.	ESBs in API Gateway’s clothing
24.	Log aggregation for business

analytics
25.	Micro frontend anarchy
26.	Productionizing notebooks

Techniques

today’s architecture, can lead to surprisingly
expensive run costs. For example, the price
of serverless based on API calls, event
streaming solutions based on traffic or data
processing clusters based on running jobs,
all have a dynamic nature that changes
over time as the architecture evolves.
When our teams manage infrastructure
on the cloud, implementing run cost as
architecture fitness function is one of their
early activities. This means that our teams
can observe the cost of running services
against the value delivered; when they

see deviations from what was expected
or acceptable, they’ll discuss whether
it’s time to evolve the architecture. The
observation and calculation of the run cost
is implemented as an automated function.

Security policy as code
Adopt

As the technology landscape is becoming
more complex, concerns such as security
need more automation and engineering

Hold HoldAssess AssessTrial TrialAdopt Adopt

5

16

24

26

2

12

59

13

8

14

31

33

34

35

36

37
39

40

22

23

15

17

18
19

20

25

21

10

11
49

60
61

62
63 64

65 66

67

68

69 70

71

72

73
74

75

50
51

55

56

58

52

22

78

85 86

87 88

89
90 91

92
93

94

95

96
97

98

99

83

34

27

28

29
30

8477

76

79

82

80

81

1

6

7

9

3

4

32

3841

44
45

46

43
42

47

48
53

54

57

https://thoughtworks.com/radar/techniques/evolutionary-architecture
https://en.wikipedia.org/wiki/Evolutionary_computation#:%7E:text=In%20computer%20science%2C%20evolutionary%20computation,soft%20computing%20studying%20these%20algorithms.
https://thoughtworks.com/radar/tools/dependabot
https://thoughtworks.com/radar/tools/snyk
https://thoughtworks.com/radar/techniques/serverless-architecture

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 9

manage big analytical data. The paradigm
is founded on four principles: (1) domain-
oriented decentralization of data ownership
and architecture; (2) domain-oriented
data served as a product; (3) self-serve
data infrastructure as a platform to enable
autonomous, domain-oriented data teams;
and (4) federated governance to enable
ecosystems and interoperability. Although the
principles are intuitive and attempt to address
many of the known challenges of previous
centralized analytical data management,
they transcend the available analytical data
technologies. After building data mesh for
multiple clients on top of the existing tooling,
we learned two things: (a) there is a large
gap in open-source or commercial tooling
to accelerate implementation of data mesh
(for example, implementation of a universal
access model to time-based polyglot data
which we currently custom build for our
clients) and (b) despite the gap, it’s feasible
to use the existing technologies as the basic
building blocks.

Naturally, technology fit is a major
component of implementing your
organization’s data strategy based on
data mesh. Success, however, demands
an organizational restructure to separate
the data platform team, create the role of
data product owner for each domain and
introduce the incentive structures necessary
for domains to own and share their
analytical data as products.

Declarative data pipeline
definition
Trial

Many data pipelines are defined in a large,
more or less imperative script written in
Python or Scala. The script contains the
logic of the individual steps as well as the
code chaining the steps together. When

practices. When building systems, we need
to take into consideration security policies,
which are rules and procedures to protect
our systems from threats and disruption.
For example, access control policies define
and enforce who can access which services
and resources under what circumstances;
by contrast, network security policies
can dynamically limit the traffic rate to a
particular service.

Several of our teams have had a great
experience treating security policy as code.
When we say as code, we not only mean to
write these security policies in a file but also
to apply practices such as keeping the code
under version control, introducing automatic
validation in the pipeline, automatically
deploying them in the environments and
observing and monitoring their performance.
Based on our experience and the maturity
of the existing tools — including Open
Policy Agent and platforms such as Istio
which provide flexible policy definition and
enforcement mechanisms that support the
practice of security policy as code — we
highly recommend using this technique in
your environment.

Tailored service templates
Adopt

Since we last mentioned tailored service
templates, we’ve seen a broader adoption
of the pattern to help pave the road for
organizations moving to microservices.
With constant advances in observability
tooling, container orchestration and
service mesh sidecars, a template provides
sensible defaults to bootstrap a new
service, removing a great deal of setup
needed to make the service work well with
the surrounding infrastructure. We’ve had
success applying product management
principles to tailored service templates,

treating internal developers as customers
and making it easier for them to push
code to production and operate it with
appropriate observability. This has the
added benefit of acting as a lightweight
governance mechanism to centralize default
technical decisions.

Continuous delivery for machine
learning (CD4ML)
Trial

About a decade ago we introduced
continuous delivery (CD), our default way to
deliver software solutions. Today’s solutions
increasingly include machine-learning
models and we find them no exception in
adopting continuous delivery practices. We
call this continuous delivery for machine
learning (CD4ML). Although the principles of
CD remain the same, the practices and tools
to implement the end-to-end process of
training, testing, deploying and monitoring
models require some modifications. For
example: version control must not only
include code but also the data, the models
and its parameters; the testing pyramid
extends to include model bias, fairness and
data and feature validation; the deployment
process must consider how to promote and
evaluate the performance of new models
against current champion models. While the
industry is celebrating the new buzzword
of MLOps, we feel CD4ML is our holistic
approach to implement an end-to-end
process to reliably release and continuously
improve machine-learning models, from
idea to production.

Data mesh
Trial

Data mesh marks a welcome architectural
and organizational paradigm shift in how we

Techniques

Data mesh marks
a paradigm shift in
how we manage big
analytical data that
attempts to address
many of the known
challenges of previous
centralized analytical
data management.
There is, however, a large
gap in open-source or
commercial tooling to
support data mesh.

(Data mesh)

https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/platforms/istio
https://thoughtworks.com/radar/techniques/applying-product-management-to-internal-platforms
https://thoughtworks.com/radar/techniques/continuous-delivery-cd
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/data-monolith-to-mesh.html

© ThoughtWorks, Inc. All Rights Reserved.

10 | TECHNOLOGY RADAR

faced with a similar situation in Selenium
tests, developers discovered the Page
Object pattern, and later many behavior-
driven development (BDD) frameworks
implemented a split between step
definitions and their composition. Some
teams are now experimenting with bringing
the same thinking to data engineering. A
separate declarative data pipeline definition,
maybe written in YAML, contains only the
declaration and sequence of steps. It states
input and output data sets but refers to
scripts if and when more complex logic
is needed. A La Mode is a relatively new
tool that takes a DSL approach to defining
pipelines, but airflow-declarative, a tool
that turns directed acyclic graphs defined in
YAML into Airflow task schedules, seems to
have the most momentum in this space.

Diagrams as code
Trial

We’re seeing more and more tools that
enable you to create software architecture
and other diagrams as code. There are
benefits to using these tools over the
heavier alternatives, including easy version
control and the ability to generate the DSLs
from many sources. Tools in this space that
we like include Diagrams, Structurizr DSL,
AsciiDoctor Diagram and stables such as
WebSequenceDiagrams, PlantUML and the
venerable Graphviz. It’s also fairly simple to
generate your own SVG these days, so don’t
rule out quickly writing your own tool either.
One of our authors wrote a small Ruby
script to quickly create SVGs, for example.

Distroless Docker images
Trial

When building Docker images for our
applications, we’re often concerned with

two things: the security and the size
of the image. Traditionally, we’ve used
container security scanning tools to
detect and patch common vulnerabilities
and exposures and small distributions
such as Alpine Linux to address the
image size and distribution performance.
We’ve now gained more experience
with distroless Docker images and are
ready to recommend this approach as
another important security precaution
for containerized applications. Distroless
Docker images reduce the footprint
and dependencies by doing away with a
full operating system distribution. This
technique reduces security scan noise
and the application attack surface. There
are fewer vulnerabilities that need to be
patched and as a bonus, these smaller
images are more efficient. Google has
published a set of distroless container
images for different languages. You can
create distroless application images using
the Google build tool Bazel or simply
use multistage Dockerfiles. Note that
distroless containers by default don’t
have a shell for debugging. However,
you can easily find debug versions of
distroless containers online, including a
BusyBox shell. Distroless Docker images
is a technique pioneered by Google and,
in our experience, is still largely confined
to Google-generated images. We’re
hoping that the technique catches on
beyond this ecosystem.

Event interception
Trial

As many more companies migrate away
from their legacy systems, we feel it’s
worth highlighting an alternative to change
data capture (CDC) as a mechanism for
getting data from these systems. Martin
Fowler described event interception back

in 2004. In modern terms it involves forking
requests on ingress to a system so that it’s
possible to gradually build a replacement.
Often this is done by copying events or
messages but forking HTTP requests is
equally valid. Examples include forking
events from point-of-sale systems before
they’re written to a mainframe and forking
payment transactions before they’re
written to a core banking system. Both
lead to the gradual replacement of parts
of the legacy systems. We feel that as a
technique, obtaining state changes from
the source, rather than trying to recreate
them postprocessing using CDC, has been
overlooked which is why we’re highlighting
it in this issue of the Radar.

Parallel run with reconciliation
Trial

Replacing legacy code at scale is always
a difficult endeavor and one that often
benefits from executing a parallel run with
reconciliation. In practice, the technique
relies on executing the same production
flow through both the old and new code,
returning the response from the legacy
code but comparing the results to gain
confidence in the new code. Despite being
an old technique, we’ve seen more robust
implementations in recent years building
on continuous delivery practices such as
canary releases and feature toggles and
extending them by adding an extra layer
of experimentation and data analysis to
compare live results. We’ve even used the
approach to compare cross-functional
results such as response time. Although
we’ve used the technique multiple times
with bespoke tooling, we certainly owe a
nod to GitHub’s Scientist tool, which they
used to modernize a critical piece of their
application and which has now been ported
to multiple languages.

Techniques

We’re seeing a
proliferation of tools
that enable you to create
software architecture
and other diagrams as
code. Benefits include
easy version control and
the ability to generate the
DSLs from many sources.

(Diagrams as code)

Event interception is a
worthwhile alternative
to change data capture
when migrating away
from legacy systems.
Obtaining state changes
from the source, rather
than trying to recreate
them postprocessing
using CDC, has been
overlooked.

(Event interception)

https://github.com/binaryaffairs/a-la-mode
https://github.com/rambler-digital-solutions/airflow-declarative
https://thoughtworks.com/radar/tools/airflow
https://diagrams.mingrammer.com/
https://structurizr.com/dsl
https://asciidoctor.org/docs/asciidoctor-diagram/
https://www.websequencediagrams.com/
https://thoughtworks.com/radar/tools/plantuml
https://graphviz.org/
https://thoughtworks.com/radar/languages-and-frameworks/ruby
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/techniques/container-security-scanning
https://cve.mitre.org/
https://cve.mitre.org/
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://bazel.build/
https://busybox.net/downloads/BusyBox.html
https://www.martinfowler.com/bliki/EventInterception.html
https://github.com/github/scientist

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 11

Use “remote native” processes
and approaches
Trial

As the pandemic stretches on it seems that
highly distributed teams will be the “new
normal,” at least for the time being. Over
the past six months we’ve learnt a lot about
effective remote working. On the positive
side, good visual work-management and
collaboration tools have made it easier than
ever to collaborate remotely with colleagues.
Developers, for example, can count on Visual
Studio Live Share and GitHub Codespaces to
facilitate teamwork and increase productivity.
The biggest downside to remote work
might be burnout: far too many people
are scheduled for back-to-back video calls
all day long, and this has begun to take its
toll. While online visual tools make it easier
to collaborate, it’s also possible to build
complex giant diagrams that end up being
very hard to use, and the security aspects of
tool proliferation also need to be carefully
managed. Our advice is to remember to take
a step back, talk to your teams, evaluate
what’s working and what’s not and change
processes and tools as needed.

Zero trust architecture
Trial

While the fabric of computing and data
continues to shift in enterprises — from
monolithic applications to microservices,
from centralized data lakes to data mesh,
from on-prem hosting to polycloud, with
an increasing proliferation of connected
devices — the approach to securing
enterprise assets for the most part
remains unchanged, with heavy reliance
and trust in the network perimeter:

Organizations continue to make heavy
investments to secure their assets by
hardening the virtual walls of their
enterprises, using private links and firewall
configurations and replacing static and
cumbersome security processes that no
longer serve the reality of today. This
continuing trend compelled us to highlight
zero trust architecture (ZTA) again.

ZTA is a paradigm shift in security
architecture and strategy. It’s based on
the assumption that a network perimeter
is no longer representative of a secure
boundary and no implicit trust should be
granted to users or services based solely
on their physical or network location. The
number of resources, tools and platforms
available to implement aspects of ZTA
keeps growing and includes: enforcing
policies as code based on the least
privilege and as granular as possible
principles and continuous monitoring and
automated mitigation of threats; using
service mesh to enforce security control
application-to-service and service-to-
service; implementing binary attestation
to verify the origin of the binaries; and
including secure enclaves in addition to
traditional encryption to enforce the three
pillars of data security: in transit, at rest
and in memory. For introductions to the
topic, consult the NIST ZTA publication and
Google’s white paper on BeyondProd.

Bounded low-code platforms
Assess

One of the most nuanced decisions facing
companies at the moment is the adoption
of low-code or no-code platforms, that
is, platforms that solve very specific

problems in very limited domains. Many
vendors are pushing aggressively into this
space. The problems we see with these
platforms typically relate to an inability
to apply good engineering practices such
as versioning. Testing too is typically
really hard. However, we noticed some
interesting new entrants to the market
— including Amazon Honeycode, which
makes it easy to create simple task or
event management apps, and Parabola
for IFTTT-like cloud workflows — which
is why we’re including bounded low-code
platforms in this volume. Nevertheless,
we remain deeply skeptical about their
wider applicability since these tools,
like Japanese Knotweed, have a knack
of escaping their bounds and tangling
everything together. That’s why we still
strongly advise caution in their adoption.

Browser-tailored polyfills
Assess

Polyfills are extremely useful to help the web
evolve, providing substitute implementations
of modern features for browsers that
don’t implement them (yet). Too often,
though, web applications ship polyfills
to browsers that don’t need them, which
causes unnecessary download and parsing
overhead. The situation is becoming more
pronounced now as only a few rendering
engines remain and the bulk of the polyfills
target only one of them: the Trident renderer
in IE11. Further, market share of IE11 is
dwindling with support ending in less than
a year. We therefore suggest that you make
use of browser-tailored polyfills, shipping
only necessary polyfills to a given browser.
This technique can even be implemented as
a service with Polyfill.io.

Techniques

Low-code or no-code
platforms can solve
very specific problems
in very limited domains.
Nevertheless, we remain
skeptical about their
wider applicability.

(Bounded low-code platforms)

https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://visualstudio.microsoft.com/services/github-codespaces/
https://thoughtworks.com/radar/techniques/microservices
https://thoughtworks.com/radar/techniques/data-mesh
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/service-mesh
https://thoughtworks.com/radar/techniques/binary-attestation
https://thoughtworks.com/radar/techniques/secure-enclaves
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://cloud.google.com/security/beyondprod
https://www.honeycode.aws/
https://parabola.io/
https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666
https://polyfill.io/v3/

© ThoughtWorks, Inc. All Rights Reserved.

12 | TECHNOLOGY RADAR

Decentralized identity
Assess

In 2016, Christopher Allen, a key contributor
to SSL/TLS, inspired us with an introduction
of 10 principles underpinning a new
form of digital identity and a path to get
there, the path to self-sovereign identity.
Self-sovereign identity, also known as
decentralized identity, is a “lifetime portable
identity for any person, organization,
or thing that does not depend on any
centralized authority and can never be
taken away,” according to the Trust over
IP standard. Adopting and implementing
decentralized identity is gaining momentum
and becoming attainable. We see its
adoption in privacy-respecting customer
health applications, government healthcare
infrastructure and corporate legal identity.
If you want to rapidly get started with
decentralized identity, you can assess
Sovrin Network, Hyperledger Aries and Indy
OSS, as well as decentralized identifiers
and verifiable credentials standards. We’re
watching this space closely as we help our
clients with their strategic positioning in the
new era of digital trust.

Kube-managed cloud services
Assess

Cloud providers have slowly started
supporting Kubernetes-style APIs, via
custom resource definitions (CRDs), for
managing their cloud services. In most
cases these cloud services are a core part
of the infrastructure, and we’ve seen teams
use tools such as Terraform or Pulumi
to provision them. With these new CRDs
(ACK for AWS, Azure Service Operator for

Azure and Config Connectors for GCP)
you can use Kubernetes to provision
and manage these cloud services. One
advantage of these Kube-managed cloud
services is that you can leverage the same
Kubernetes control plane to enforce the
declarative state of both your application
and infrastructure. The downside is that
it tightly couples your Kubernetes cluster
with infrastructure, so we’re carefully
assessing it and you should too.

Open Application Model (OAM)
Assess

We’ve talked a lot about the benefits of
creating platform engineering product
teams in support of your other product
teams, but actually doing it is hard. It
seems that the industry is still searching
for the right abstraction in the world of
infrastructure as code. Although tools
such as Terraform and Helm are steps
in the right direction, the focus is still
on managing infrastructure as opposed
to application development. There
are also shifts toward the concept of
infrastructure as software with new tools
such as Pulumi and CDK being released.
The Open Application Model (OAM) is an
attempt to bring some standardization
to this space. Using the abstractions of
components, application configurations,
scopes and traits, developers can describe
their applications in a platform-agnostic
way, while platform implementers define
their platform in terms of workload, trait
and scope. Whether the OAM will be
widely adopted remains to be seen, but
we recommend keeping an eye on this
interesting and needed idea.

Secure enclaves
Assess

Secure enclaves, also identified as trusted
execution environments (TEE), refer to a
technique that isolates an environment —
processor, memory and storage — with a
higher level of security and only provides
a limited exchange of information with its
surrounding untrusted execution context.
For example, a secure enclave at the
hardware and OS levels can create and
store private keys and perform operations
with them such as encrypt data or verify
signatures without the private keys leaving
the secure enclave or being loaded in the
untrusted application memory. Secure
enclave provides a limited set of instructions
to perform trusted operations, isolated from
an untrusted application context.

The technique has long been supported by
many hardware and OS providers (including
Apple), and developers have used it in IoT and
edge applications. Only recently, however, has
it gained attention in enterprise and cloud-
based applications. Cloud providers have
started to introduce confidential computing
features such as hardware-based secure
enclaves: Azure confidential computing
infrastructure promises TEE-enabled VMs and
access through the Open Enclave SDK open-
source library to perform trusted operations.
Similarly, GCP Confidential VMs and Compute
Engine, still in beta, allow using VMs with
data encryption in memory, and AWS Nitro
Enclaves is following them with its upcoming
preview release. With the introduction
of cloud-based secure enclaves and
confidential computing, we can add a third
pillar to data protection: in rest, in transit
and now in memory.

Techniques

Most digital credentials
today are simple data
records from information
systems that are easy to
modify and forge and
often expose unnecessary
information. In recent
years, we’ve seen the
growing maturity of
verifiable credentials solve
this issue.

(Verifiable credentials)

https://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://thoughtworks.com/radar/platforms/trust-over-ip-stack
https://thoughtworks.com/radar/platforms/trust-over-ip-stack
https://www.civic.com/healthkey/
https://www.civic.com/healthkey/
https://www.truu.id/
https://www.truu.id/
https://id-bulletin.com/2020/06/04/news-gleif-and-evernym-demo-organization-wallets-to-deliver-trust-and-transparency-in-digital-business/
https://sovrin.org/
https://github.com/hyperledger/aries
https://github.com/hyperledger/indy-node
https://www.w3.org/TR/did-core/
https://thoughtworks.com/radar/techniques/verifiable-credentials
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/platforms/pulumi
https://github.com/aws/aws-controllers-k8s
https://thoughtworks.com/radar/platforms/aws
https://github.com/Azure/azure-service-operator
https://thoughtworks.com/radar/platforms/azure
https://cloud.google.com/config-connector/docs/overview
https://thoughtworks.com/radar/platforms/google-cloud-platform
https://thoughtworks.com/radar/techniques/platform-engineering-product-teams
https://thoughtworks.com/radar/techniques/platform-engineering-product-teams
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/tools/helm
https://thoughtworks.com/radar/platforms/pulumi
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://oam.dev/
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://support.apple.com/guide/security/secure-enclave-overview-sec59b0b31ff/web
https://confidentialcomputing.io/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://github.com/openenclave/openenclave
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 13

Even though we’re still in the very early
days of secure enclaves for enterprise, we
encourage you to consider this technique,
while staying informed about known
vulnerabilities that can compromise
the secure enclaves of the underlying
hardware providers.

Switchback experimentation
Assess

Controlled experiments using A/B testing
is a great way to inform decisions around
product development. But it doesn’t work
well when we can’t establish independence
between the two groups involved in the
A/B test — i.e., adding someone to the “A”
group impacts the “B” group and vice versa.
One technique to address this problem
space is Switchback experimentation.
The core concept here is we switch back
and forth between the “A” and “B” modes
of the experiment in a certain region at
alternating time periods instead of both
running during the same time period. We
then compare the customer experience and
other key metrics between the two time
buckets. We’ve tried this to good effect in
some of our projects — it’s a good tool to
have in our experiments toolbelt.

Verifiable credentials
Assess

Credentials are everywhere in our lives
and include passports, driver’s licenses
and academic certificates. However, most
digital credentials today are simple data
records from information systems that
are easy to modify and forge and often

expose unnecessary information. In
recent years, we’ve seen the continuous
maturity of Verifiable Credentials solve
this issue. The W3C standard defines it
in a way that is cryptographically secure,
privacy respecting and machine verifiable.
The model puts credential holders at the
center, which is similar to our experience
when using physical credentials: users can
put their verifiable credentials in their own
digital wallets and show them to anyone
at any time without the permission of
the credentials’ issuer. This decentralized
approach also enables users to better
manage their own information and
selectively disclose certain information and
greatly improves data privacy protection.
For example, powered by zero-knowledge
proof technology, you can construct a
verifiable credential to prove that you are
an adult without revealing your birthday.
The community has developed many
use cases around verifiable credentials.
We’ve implemented our own COVID
health certification with reference to
the COVID-19 Credentials Initiative (CCI).
Although verifiable credentials don’t rely
on blockchain technology or decentralized
identity, this technique often works with
DID in practice and uses blockchain as a
verifiable data registry. Many decentralized
identity frameworks are also embedded
with verifiable credentials.

Apollo Federation
Hold

When we first covered GraphQL in the
Radar, we cautioned that its misuse
can lead to antipatterns which, in the
long run, has more disadvantages than

benefits. Nevertheless, we’ve seen an
increasing interest in GraphQL among our
teams because of its ability to aggregate
information from different resources. This
time we want to caution you about using
Apollo Federation and its strong support
for a single unified data graph for your
company. Even though at first glance
the idea of having ubiquitous concepts
across the organization is tempting,
we have to take into account previous
similar attempts in the industry — such
as MDM and canonical data model among
others — that have exposed the pitfalls
of this approach. The challenges can be
significant, especially when the domain
we find ourselves in is complex enough to
create a unique unified model.

ESBs in API Gateway’s clothing
Hold

We’ve long warned against centralized
enterprise services buses and defined
“smart endpoints, dumb pipes” as
one of the core characteristics of a
microservices architecture. Unfortunately,
we’re observing a pattern of traditional
ESBs rebranding themselves, creating
ESBs in API gateway’s clothing that
naturally encourage overambitious API
gateways. Don’t let the marketing fool
you: regardless of what you call it, putting
business logic (including orchestration
and transformation) in a centralized tool
creates architectural coupling, decreases
transparency, and increases vendor lock-in
with no clear upside. API gateways can still
act as a useful abstraction for crosscutting
concerns, but we believe the smarts should
live in the APIs themselves.

Techniques

Regardless of what you
call it, putting business
logic in a centralized tool
creates architectural
coupling, decreases
transparency and
increases vendor lock-in
with no clear upside.

(ESBs in API Gateway’s
clothing)

https://en.wikipedia.org/wiki/Foreshadow
https://medium.com/@DoorDash/switchback-tests-and-randomized-experimentation-under-network-effects-at-doordash-f1d938ab7c2a
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-use-cases/
https://www.covidcreds.com/
https://thoughtworks.com/radar/techniques/decentralized-identity
https://thoughtworks.com/radar/techniques/decentralized-identity
https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://www.apollographql.com/docs/apollo-server/federation/introduction/
https://thoughtworks.com/radar/techniques/master-data-management
https://thoughtworks.com/radar/tools/esb
https://thoughtworks.com/radar/tools/esb
https://martinfowler.com/articles/microservices.html#SmartEndpointsAndDumbPipes
https://thoughtworks.com/radar/platforms/overambitious-api-gateways
https://thoughtworks.com/radar/platforms/overambitious-api-gateways

© ThoughtWorks, Inc. All Rights Reserved.

14 | TECHNOLOGY RADAR

Log aggregation for business
analytics
Hold

Several years ago, a new generation of log
aggregation platforms emerged that were
capable of storing and searching over vast
amounts of log data to uncover trends
and insights in operational data. Splunk
was the most prominent but by no means
the only example of these tools. Because
these platforms provide broad operational
and security visibility across the entire
estate of applications, administrators
and developers have grown increasingly
dependent on them. This enthusiasm
spread as stakeholders discovered that
they could use log aggregation for business
analytics. However, business needs can
quickly outstrip the flexibility and usability
of these tools. Logs intended for technical
observability are often inadequate to infer
deep customer understanding. We prefer
either to use tools and metrics designed for
customer analytics or to take a more event-
driven approach to observability where
both business and operational events are
collected and stored in a way they can be
replayed and processed by more purpose-
built tools.

Micro frontend anarchy
Hold

Since we originally introduced the term
in 2016, micro frontends have grown
in popularity and achieved mainstream
acceptance. But like any new technique

with an easy-to-remember name, it has
occasionally been misused and abused.
Particularly concerning is the tendency to
use this architecture as an excuse to mix
a range of competing technologies, tools
or frameworks in a single page, leading
to micro frontend anarchy. A particularly
egregious form of this syndrome is using
multiple frontend frameworks — for
example, React.js and Angular — in the
same “single-page” application. Although
this might be technically possible, it is
far from advisable when not part of a
deliberate transition strategy. Other
properties that should be consistent from
team to team include the styling technique
(e.g., CSS-in-JS or CSS modules) and the
means by which the individual components
are integrated (e.g., iFrames or web
components). Furthermore, organizations
should decide whether to standardize
on consistent approaches or to leave
it up to their teams to decide on state
management, data fetching, build tooling,
analytics and a host of other choices in a
micro frontend application.

Productionizing notebooks
Hold

Over the last few decades computational
notebooks, first introduced by Wolfram
Mathematica, have evolved to support
scientific research, exploration and
educational workflows. Naturally, in
support of data science workflows and
with the likes of Jupyter notebooks
and Databricks notebooks, they’ve

become a great companion by providing
a simple and intuitive interactive
computation environment for combining
code to analyze data with rich text
and visualization to tell a data story.
Notebooks were designed to provide an
ultimate medium for modern scientific
communication and innovation. In recent
years, however, we’ve seen a trend
for notebooks to be the medium for
running the type of production-quality
code typically used to drive enterprise
operations. We see notebook platform
providers advertising the use of their
exploratory notebooks in production.
This is a case of good intentions —
democratizing programming for data
scientists — implemented poorly and at
the cost of scalability, maintainability,
resiliency and all the other qualities
that a long-lived production code needs
to support. We don’t recommend
productionizing notebooks and instead
encourage empowering data scientists
to build production-ready code with the
right programming frameworks, thus
simplifying the continuous delivery tooling
and abstracting complexity away through
end-to-end ML platforms.

Techniques

We see a concerning
tendency to use micro
frontends as an excuse to
mix a range of competing
technologies, tools or
frameworks in a single
page. While this might be
technically possible it is
far from advisable.

(Micro frontend anarchy)

https://thoughtworks.com/radar/tools/splunk
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://thoughtworks.com/radar/languages-and-frameworks/css-in-js
https://thoughtworks.com/radar/languages-and-frameworks/css-modules
https://thoughtworks.com/radar/platforms/web-components-standard
https://thoughtworks.com/radar/platforms/web-components-standard
https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Wolfram_Mathematica
https://en.wikipedia.org/wiki/Wolfram_Mathematica
https://jupyter.org/
https://docs.databricks.com/notebooks/index.html
https://databricks.com/blog/2017/10/30/continuous-integration-continuous-delivery-databricks.html
https://databricks.com/blog/2017/10/30/continuous-integration-continuous-delivery-databricks.html
https://www.thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml

Platforms
TECHNOLOGY RADAR

© ThoughtWorks, Inc. All Rights Reserved.

16 | TECHNOLOGY RADAR

Azure DevOps
Trial

Azure DevOps services contain a set of
managed services, including hosted Git
repos, CI/CD pipelines, automated testing
tooling, backlog management tooling and
artifact repository. We’ve seen our teams
getting more experience in using this
platform with good results, which means
Azure DevOps is maturing. We particularly
like its flexibility; it allows you to use the
services you want even if they’re from
different providers. For instance, you could
use an external Git repository while still
using the Azure DevOps pipeline services.
Our teams are especially excited about
Azure DevOps Pipelines. Nevertheless, all the
services offer a good developer experience
that helps our teams deliver value.

Debezium
Trial

Debezium is a change data capture
(CDC) platform that can stream database
changes onto Kafka topics. CDC is a
popular technique with multiple use
cases, including replicating data to other
databases, feeding analytics systems,
extracting microservices from monoliths
and invalidating caches. Debezium reacts
to changes in the database’s log files
and has CDC connectors for multiple
databases, including Postgres, MySQL,
Oracle and MongoDB. We’re using
Debezium in many projects, and it has
worked very well for us.

Honeycomb
Trial

Honeycomb is an observability service
that ingests rich data from production
systems and makes it manageable through
dynamic sampling. Developers can log
large amounts of rich events and later
decide how to slice and correlate them.
This interactive approach is useful when
working with today’s large distributed

Platforms Adopt

Trial
27.	Azure DevOps
28.	Debezium
29.	Honeycomb
30.	JupyterLab

Assess
31.	Amundsen
32.	AWS Cloud Development Kit
33.	Backstage
34.	Dremio
35.	DuckDB
36.	K3s
37.	Materialize
38.	Pulumi
39.	Tekton
40.	Trust over IP stack

Hold
41.	Node overload

systems, because we’ve passed the point
where we can reasonably anticipate
which questions we might want to ask
of production systems. The Honeycomb
team is actively developing for a number
of languages and frameworks with plugins
now available for Go, Node, Java and Rails
among others; other new features are
being added at a rapid pace. The pricing
model has also been simplified to make it
more attractive. Our teams love it.

Hold HoldAssess AssessTrial TrialAdopt Adopt

5

16

24

26

2

12

59

13

8

14

31

33

34

35

36

37
39

40

22

23

15

17

18
19

20

25

21

10

11
49

60
61

62
63 64

65 66

67

68

69 70

71

72

73
74

75

50
51

55

56

58

52

22

78

85 86

87 88

89
90 91

92
93

94

95

96
97

98

99

83

34

27

28

29
30

8477

76

79

82

80

81

1

6

7

9

3

4

32

3841

44
45

46

43
42

47

48
53

54

57

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://debezium.io/
https://en.wikipedia.org/wiki/Change_data_capture
https://en.wikipedia.org/wiki/Change_data_capture
https://thoughtworks.com/radar/tools/apache-kafka
https://www.honeycomb.io/
https://thoughtworks.com/radar/languages-and-frameworks/go-language
https://thoughtworks.com/radar/platforms/node-js

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 17

JupyterLab
Trial

Since introducing JupyterLab in the Assess
ring in our last issue, it has become the
preferred web-based user interface for
Project Jupyter for many of our data
practitioners. JupyterLab use is rapidly
overtaking Jupyter Notebooks, which
it will eventually replace. If you’re still
using Jupyter Notebooks, you should give
JupyterLab a try. Its interactive environment
is an evolution of Jupyter Notebook: it
extends the original capabilities with drag-
and-drop cells and tab autocompletion
among other new features.

Amundsen
Assess

Data scientists spend a large part of their
time on data discovery, which means
tooling to help in this space is bound to
generate some excitement. Although the
Apache Atlas project has become the de
facto tool for metadata management, data
discovery is still not easily accomplished.
Enter Amundsen, which can be deployed in
concert with Apache Atlas to provide a much
nicer search interface for data discovery.

AWS Cloud Development Kit
Assess

For many of our teams, Terraform has
become the default choice for defining
cloud infrastructure. However, some of

our teams have been experimenting with
AWS Cloud Development Kit (AWS CDK),
and they like what they’ve seen so far.
In particular, they like the use of first-
class programming languages instead of
configuration files which allows them to
use existing tools, test approaches and
skills. Like similar tools, care is still needed
to ensure deployments remain easy to
understand and maintain. It currently
supports TypeScript, JavaScript, Python,
Java and C# and .NET. We’ll continue to
watch AWS CDK, especially since the AWS
and HashiCorp teams recently launched
a preview for Cloud Development Kit
for Terraform to generate Terraform
configurations and enable provisioning
with the Terraform platform.

Backstage
Assess

Organizations are looking to support and
streamline development environments
through developer portals or platforms.
As the number of tools and technologies
increases, some form of standardization
is becoming increasingly important for
consistency so that developers are able
to focus on innovation and product
development instead of getting bogged
down with reinventing the wheel. A
centralized developer portal can offer
easy discoverability of services and best
practices. Backstage is an open-source
platform for creating developer portals
by Spotify. It is based upon software
templates, unifying infrastructure tooling

and consistent and centralized technical
documentation. Its plugin architecture
allows for extensibility and adaptability into
an organization’s infrastructure ecosystem.

Dremio
Assess

Dremio is a cloud data lake engine that
powers interactive queries against cloud
data lake storage. With Dremio, you don’t
have to manage data pipelines in order to
extract and transform data into a separate
data warehouse for predictive performance.
Dremio creates virtual data sets from data
ingested into a data lake and provides
a uniform view to consumers. Presto
popularized the technique of separating
storage from the compute layer, and Dremio
takes it further by improving performance
and optimizing cost of operation.

DuckDB
Assess

DuckDB is an embedded, columnar
database for data science and analytical
workloads. Analysts spend significant time
cleaning and visualizing data locally before
scaling it to servers. Although databases
have been around for decades, most of
them are designed for client-server use
cases and therefore not suitable for local
interactive queries. To work around this
limitation analysts usually end up using
in-memory data-processing tools such as
Pandas or data.table. Although these tools

Platforms

JupyterLab’s interactive
environment is an
evolution of Jupyter
Notebook that extends
the original capabilities
with drag-and-drop cells
and tab autocompletion
among other new
features.

(JupyterLab)

Backstage from Spotify is
an open-source platform
for creating developer
portals, which can help
standardize the number
of tools and technologies
your teams are using and
prevent your software
ecosystem becoming
fragmented and complex.

(Backstage)

https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html
https://thoughtworks.com/radar/tools/jupyter
https://www.thoughtworks.com/radar/platforms/apache-atlas
https://github.com/amundsen-io/amundsen
https://thoughtworks.com/radar/tools/terraform
https://docs.aws.amazon.com/cdk/latest/guide/home.html
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://aws.amazon.com/blogs/developer/introducing-the-cloud-development-kit-for-terraform-preview/
https://aws.amazon.com/blogs/developer/introducing-the-cloud-development-kit-for-terraform-preview/
https://backstage.io/
https://www.dremio.com/
https://thoughtworks.com/radar/platforms/presto
https://duckdb.org/
https://pandas.pydata.org/
https://github.com/Rdatatable/data.table

© ThoughtWorks, Inc. All Rights Reserved.

18 | TECHNOLOGY RADAR

are effective, they do limit the scope of
analysis to the volume of data that can fit
in memory. We feel DuckDB neatly fills this
gap in tooling with an embedded columnar
engine that is optimized for analytics on
local, larger-than-memory data sets.

K3s
Assess

K3s is a lightweight Kubernetes
distribution built for IoT and edge
computing. It’s packaged as a single binary
and has minimal to no OS dependencies,
making it really easy to operate and use.
It uses sqlite3 as the default storage
backend instead of etcd. It has a reduced
memory footprint because it runs all
relevant components in a single process. It
also achieves a smaller binary by stripping
out third-party storage drivers and cloud
providers that are not relevant for the
K3s use cases. For environments with
constrained resources, K3s is a pretty
good choice and worth considering.

Materialize
Assess

Materialize is a streaming database
that enables you to do incremental
computation without complicated data
pipelines. Just describe your computations
via standard SQL views and connect
Materialize to the data stream. The

underlying differential data flow engine
performs incremental computation to
provide consistent and correct output
with minimal latency. Unlike traditional
databases, there are no restrictions in
defining these materialized views and the
computations are executed in real time.

Pulumi
Assess

We’ve seen interest in Pulumi slowly
but steadily rising. Pulumi fills a gaping
hole in the infrastructure coding world
where Terraform maintains a firm hold.
While Terraform is a tried-and-true
standby, its declarative nature suffers
from inadequate abstraction facilities and
limited testability. Terraform is adequate
when the infrastructure is entirely static,
but dynamic infrastructure definitions
call for a real programming language.
Pulumi distinguishes itself by allowing
configurations to be written in TypeScript/
JavaScript, Python and Go — no markup
language or templating required. Pulumi is
tightly focused on cloud-native architectures
— including containers, serverless functions
and data services — and provides good
support for Kubernetes. Recently, AWS
CDK has mounted a challenge, but Pulumi
remains the only cloud-neutral tool in
this area. We’re anticipating wider Pulumi
adoption in the future and looking forward
to a viable tool and knowledge ecosystem
emerging to support it.

Tekton
Assess

Tekton is a young Kubernetes-native
platform for managing continuous
integration and delivery (CI/CD) pipelines.
It not only installs and runs on Kubernetes
but also defines its CI/CD pipelines as
Kubernetes custom resources. This means
the pipelines can now be controlled by
native Kubernetes clients (CLI or APIs)
and can take advantage of underlying
resource management features such as
rollbacks. The pipeline declaration format is
flexible and allows defining workflows with
conditions, parallel execution paths and
handling final tasks to clean up among other
features. As a result, Tekton can support
complex and hybrid deployment workflows
with rollbacks, canary release and more.
Tekton is open source and also offered as
a managed service by GCP. Although the
documentation has room for improvement
and the community is growing, we’ve been
using Tekton successfully for production
workloads on AWS.

Trust over IP stack
Assess

Continuous challenges with how individuals
and organizations establish trust digitally,
over the internet, is giving rise to a new
approach on how to prove identity, how
to share and verify attributes needed
to establish trust and how to securely

Platforms

K3s is a lightweight
Kubernetes distribution
built for IoT and edge
computing that strips out
third-party storage drivers
and cloud providers that
aren’t relevant for these
use cases.

(K3s)

Materialize is a streaming
database that enables
you to do incremental
computation without
complicated data
pipelines.

(Materialize)

https://k3s.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://docs.python.org/3/library/sqlite3.html
https://etcd.io/
https://materialize.io/
https://github.com/TimelyDataflow/differential-dataflow
https://pulumi.io/
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://thoughtworks.com/radar/languages-and-frameworks/go-language
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://tekton.dev/
https://thoughtworks.com/radar/platforms/kubernetes
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://cloud.google.com/tekton
https://thoughtworks.com/radar/platforms/aws

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 19

transact. Our Radar features some of
the foundational technologies such as
decentralized identity and verifiable
credentials that enable this new era of
digital trust.

However, such a global scale change won’t
be possible without a standardization of
a technical governance stack that enables
interoperability. The new Trust over IP
Foundation, part of the Linux Foundation,
has set out to do just that. Taking its
inspiration from how TCP/IP standardization
as the narrow waist of the internet has
enabled interoperability across billions of
devices, the group is defining a four-layer
technical and governance Trust over IP
stack. The stack includes public utilities such
as decentralized identifiers, decentralized
identity comms to standardized protocols
for agents such as digital wallets to

communicate, data exchange protocols
such as flows to issue and verify verifiable
credentials, as well as the application
ecosystems such as education, finance,
healthcare, etc. If you’re revisiting your
identity systems and how you establish trust
with your ecosystem, we suggest looking
into ToIP stack and its supporting tooling,
Hyperledger Aries.

Node overload
Hold

Technologies, especially wildly popular
ones, have a tendency to be overused.
What we’re seeing at the moment is
Node overload, a tendency to use Node.js
indiscriminately or for the wrong reasons.
Among these, two stand out in our opinion.
Firstly, we frequently hear that Node.js

should be used so that all programming
can be done in one programming
language. Our view remains that polyglot
programming is a better approach, and
this still goes both ways. Secondly, we
often hear teams cite performance as a
reason to choose Node.js. Although there
are myriads of more or less sensible
benchmarks, this perception is rooted in
history. When Node.js became popular, it
was the first major framework to embrace
a nonblocking programming model which
made it very efficient for IO-heavy tasks.
(We mentioned this in our write-up of
Node.js in 2012.) Due to its single-threaded
nature, Node.js was never a good choice
for compute-heavy workloads, though, and
now that capable nonblocking frameworks
also exist on other platforms — some with
elegant, modern APIs — performance is no
longer a reason to choose Node.js.

Platforms

This four-layer technical
and governance stack
aims to establish a
baseline for a highly
interoperable form of
decentralized identity
management.

(Trust over IP stack)

Node.js is wildly popular.
But that doesn’t make it
suitable for everything
— it’s a poor choice, for
instance, for compute-
heavy workloads. We
caution against the
tendency to use Node.js
indiscriminately or for the
wrong reasons.

(Node overload)

https://thoughtworks.com/radar/techniques/decentralized-identity
https://thoughtworks.com/radar/techniques/verifiable-credentials
https://thoughtworks.com/radar/techniques/verifiable-credentials
https://trustoverip.org/
https://trustoverip.org/
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0289-toip-stack/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0289-toip-stack/README.md
https://www.hyperledger.org/projects/aries
https://thoughtworks.com/radar/techniques/polyglot-programming
https://thoughtworks.com/radar/techniques/polyglot-programming
https://thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language

Tools
TECHNOLOGY RADAR

© ThoughtWorks, Inc. All Rights Reserved.

21 | TECHNOLOGY RADAR

Tools Adopt
42.	Airflow
43.	Bitrise
44.	Dependabot
45.	Helm
46.	Trivy

Trial
47.	Bokeh
48.	Concourse
49.	Dash
50.	jscodeshift
51.	Kustomize
52.	MLflow
53.	Pitest
54.	Sentry
55.	ShellCheck
56.	Stryker
57.	Terragrunt
58.	tfsec
59.	Yarn

Assess
60.	CML
61.	Eleventy
62.	Flagger
63.	gossm
64.	Great Expectations
65.	k6
66.	Katran
67.	Kiali
68.	LGTM
69.	Litmus
70.	Opacus
71.	OSS Index
72.	Playwright
73.	pnpm
74.	Sensei
75.	Zola

Hold

Airflow
Adopt

Airflow remains our most widely used and
favorite open-source workflow management
tool for data-processing pipelines as
directed acyclic graphs (DAGs). This is a
growing space with open-source tools such
as Luigi and Argo and vendor-specific tools
such as Azure Data Factory or AWS Data
Pipeline. However, Airflow differentiates
itself with its programmatic definition
of workflows over limited low-code
configuration files, support for automated
testing, open-source and multiplatform
installation, rich set of integration points to
the data ecosystem and large community
support. In decentralized data architectures
such as data mesh, however, Airflow
currently falls short as a centralized
workflow orchestration.

Bitrise
Adopt

Bitrise, a domain-specific CD tool for mobile
applications, continues to be a useful part
of the mobile workflow, and teams really
should be using it. Bitrise can build, test
and deploy mobile applications all the
way from developer laptop to app store
publishing. It’s easy to set up and provides
a comprehensive set of prebuilt steps for
most mobile development needs.

Dependabot
Adopt

Among the available tools for keeping
dependencies up to date, Dependabot
is a solid default choice in our opinion.
Dependabot’s integration with GitHub is
smooth and automatically sends you pull
requests to update your dependencies to

their latest versions. It can be enabled at
the organization level, so it’s very easy for
teams to receive these pull requests. If
you’re not using GitHub, you can still use
the Dependabot libraries within your build
pipeline. If you’re interested in an alternative
tool, also consider Renovate, which supports
a wider range of services, including GitLab,
Bitbucket and Azure DevOps.

Hold HoldAssess AssessTrial TrialAdopt Adopt

5

16

24

26

2

12

59

13

8

14

31

33

34

35

36

37
39

40

22

23

15

17

18
19

20

25

21

10

11
49

60
61

62
63 64

65 66

67

68

69 70

71

72

73
74

75

50
51

55

56

58

52

22

78

85 86

87 88

89
90 91

92
93

94

95

96
97

98

99

83

34

27

28

29
30

8477

76

79

82

80

81

1

6

7

9

3

4

32

3841

44
45

46

43
42

47

48
53

54

57

https://airflow.apache.org/
https://github.com/spotify/luigi
https://github.com/argoproj/argo
https://azure.microsoft.com/en-us/services/data-factory/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://thoughtworks.com/radar/techniques/data-mesh
https://www.bitrise.io/
http://dependabot.com/
https://thoughtworks.com/radar/tools/github
https://github.com/renovatebot/renovate
https://thoughtworks.com/radar/tools/gitlab
https://thoughtworks.com/radar/platforms/azure-devops

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 22

to reuse code for exploratory work in web
applications. Bokeh is particularly good for
this. The library is mature and full-featured.
What we like about Bokeh: it’s great at keeping
to its concern as a presentation layer tool
and not trying to take on concerns such as
data aggregation (see ggplot) or web app
development (such as Shiny or Dash). This
makes it a joy to use when separation of
concerns is important to you. Bokeh does
provide web UI widgets and can run in
server mode, but you can take or leave these
features as you see fit. Bokeh is flexible,
and it doesn’t make too many assumptions
about how you’ll use it nor does it have many
dependencies (such as pandas or notebooks).

Concourse
Trial

Implementing sustainable continuous delivery
pipelines that can build and deploy production
software across multiple environments
requires a tool that treats build pipelines
and artifacts as first-class citizens. When we
first started assessing Concourse, we liked
its simple and flexible model, the principle
of container-based builds and the fact that it
forces you to define pipelines as code. Since
then, the usability has improved, and the
simple model has stood the test of time. Many
of our teams and clients have successfully
been using Concourse for large pipeline setups
over longer periods of time. We also often
leverage Concourse’s flexibility to run workers
anywhere, for example, when hardware
integration tests require a local setup.

Dash
Trial

This edition of the Radar introduces several
new tools for creating web applications that
help end users visualize and interact with
data. These are more than simple visualization

libraries such as D3. Instead, they reduce the
effort necessary to build standalone analytic
applications for manipulating existing data
sets. Dash from Plotly is gaining popularity
among data scientists for creating richly
functional analytics applications in Python.
Dash augments Python data libraries much
like Shiny sits on top of R. These applications
are sometimes referred to as dashboards,
but the range of possible functionality is really
much greater than the term implies. Dash
is particularly suited to building scalable,
production-ready applications, unlike
Streamlit, another tool in this class. Consider
using Dash when you need to present more
sophisticated analyses to business users than
a low- or no-code solution such as Tableau
can provide.

jscodeshift
Trial

Maintaining large-scale JavaScript codebases
is never easy, but it’s especially challenging
when migrating breaking changes. IDEs with
refactoring capabilities may help in simple
scenarios. However, when your codebase
is a widely dependent library, every time
you make a breaking change you have to
go through a series of client codebases to
make the appropriate updates — which
requires human oversight and needs to
be done manually. jscodeshift, a toolkit
to refactor JavaScript and TypeScript,
helps relieve this pain. It can parse your
code to abstract syntax trees (AST) and
provides an API to manipulate the tree
with various transformations (e.g., adding,
renaming and deleting properties from
existing components) and then exports the
tree as final source code. jscodeshift also
comes with a simple unit testing utility,
which can apply test-driven development
for writing migration codemods. We’ve
found jscodeshift to be quite helpful when
maintaining design systems.

Helm
Adopt

Helm is a package manager for Kubernetes. It
comes with a repository of curated Kubernetes
applications that are maintained in the official
Charts repository. Since we last talked about
Helm, Helm 3 has been released, and the most
significant change is the removal of Tiller, the
server-side component of Helm 2. The benefit
of a design without Tiller is that you can only
make changes to the Kubernetes cluster from
the client side, that is, you can only modify
the cluster according to the permissions you
have as a user of the Helm command. We’ve
used Helm in a number of client projects and
its dependency management, templating and
hook mechanism has greatly simplified the
application lifecycle management in Kubernetes.

Trivy
Adopt

Build pipelines that create and deploy
containers should include container security
scanning. Our teams particularly like Trivy,
a vulnerability scanner for containers.
We’ve tried Clair and Anchore Engine
among other good tools in this field. Unlike
Clair, Trivy doesn’t only check containers
but also dependencies in the codebase.
Also, because Trivy ships as a stand-alone
binary, it’s easier to set up and run the scan
locally. Other benefits of Trivy are that it’s
open-source software and that it supports
distroless containers.

Bokeh
Trial

Bokeh is one of the principal libraries in
Python for creating scientific plots and data
visualizations that render in the browser via
JavaScript. Such tools, compared to desktop
tools that create static images, make it easy

Tools

Trivy is a vulnerability
scanner for containers
that ships as a stand-
alone binary, making it
easy to set up and run the
scan locally.

(Trivy)

jscodeshift helps ease
the pain of maintaining
large-scale JavaScript
codebases. We’ve found
it particularly useful
when maintaining design
systems.

(jscodeshift)

http://ggplot.yhathq.com/
https://shiny.rstudio.com/
https://thoughtworks.com/radar/tools/dash
https://pandas.pydata.org/
https://concourse-ci.org/
https://thoughtworks.com/radar/techniques/pipelines-as-code
https://thoughtworks.com/radar/tools/d3
https://plotly.com/dash/
https://shiny.rstudio.com/
https://thoughtworks.com/radar/languages-and-frameworks/streamlit
https://github.com/facebook/jscodeshift
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/techniques/design-systems
http://helm.sh/
https://thoughtworks.com/radar/platforms/kubernetes
https://github.com/helm/charts
https://thoughtworks.com/radar/techniques/container-security-scanning
https://thoughtworks.com/radar/techniques/container-security-scanning
https://github.com/aquasecurity/trivy
https://github.com/quay/clair
https://github.com/anchore/anchore-engine
https://thoughtworks.com/radar/techniques/distroless-docker-images
https://bokeh.org/

© ThoughtWorks, Inc. All Rights Reserved.

23 | TECHNOLOGY RADAR

Kustomize
Trial

Kustomize is a tool to manage and
customize Kubernetes manifest files. It
allows you to select and patch your base
Kubernetes resources before applying
them to different environments and is
now natively supported by kubectl. We
like it because it helps keep your code
DRY and in contrast to Helm (which is
trying to do many things — package
management, version management and
so on), we find Kustomize follows the
Unix philosophy: do one thing well and
expect the output of every program to be
input to another.

MLflow
Trial

MLflow is an open-source tool for
machine-learning experiment tracking
and lifecycle management. The workflow
to develop and continuously evolve
a machine-learning model includes a
series of experiments (a collection of
runs), tracking the performance of these
experiments (a collection of metrics) and
tracking and tweaking models (projects).
MLflow facilitates this workflow nicely by
supporting existing open standards and
integrates well with many other tools in
the ecosystem. MLflow as a managed
service by Databricks on the cloud,
available in AWS and Azure, is rapidly
maturing and we’ve used it successfully
in our projects. We find MLflow a great
tool for model management and tracking,
supporting both UI-based and API-based
interaction models. Our only growing
concern is that MLflow is attempting to
deliver too many conflating concerns as
a single platform, such as model serving
and scoring.

Pitest
Trial

Traditional testing approaches focus on
evaluating if our production code is doing
what it’s supposed to do. However, we could
make mistakes in the testing code introducing
incomplete or useless assertions that create
a false sense of confidence. This is where
mutation testing comes in; it assesses the
quality of the tests themselves, finding corner
cases that are hard to realize. Our teams
have used Pitest for a while now, and we
recommend its use in Java projects to measure
the health of the test suite. In short, mutation
testing introduces changes in the production
code and executes the same tests a second
time; if the tests are still green it means that the
tests are not good and need to improve. When
you’re using programming languages other
than Java Stryker is a good choice in this space.

Sentry
Trial

Sentry is a cross-platform application
monitoring tool with a focus on error reporting.
Tools like Sentry distinguish themselves from
traditional logging solutions such as the ELK
Stack in their focus on discovering, investigating
and fixing errors. Sentry has been around
for a while and supports several languages
and frameworks. We’ve used Sentry in many
projects, and it has been really useful in
tracking errors, finding out if a commit actually
fixed an issue and alerting us if an issue
resurfaces due to a regression.

ShellCheck
Trial

Even though tooling has vastly improved
in the infrastructure space, writing a shell
script may make sense in some cases.

Of course, the syntax of shell scripts can
only be described as arcane, and as we’ve
less practice writing shell scripts these
days, we’ve come to like ShellCheck, a
linter for shell scripts. ShellCheck can be
used from the command line, as part of
a build or, even better, as an extension
in many popular IDEs. The wiki contains
a detailed description of several hundred
issues that ShellCheck can detect, and
most tools and IDEs provide a way to
conveniently access the respective wiki
page when an issue is found.

Stryker
Trial

Stryker is a relatively new entry in the
mutation testing space. Similar to Pitest,
Stryker lets you evaluate the quality of your
tests. We’ve been using it quite successfully
in JavaScript projects, but it also supports
C# and Scala projects. Stryker is very user
friendly and highly customizable, and we’ve
been able to increase code coverage as
well as confidence in the applications we’re
delivering for our clients.

Terragrunt
Trial

We’ve used Terraform extensively to create
and manage cloud infrastructure. In our
experience with larger setups, where code
is divided into modules that are included in
different ways, teams eventually hit a wall
of unavoidable repetition caused by a lack
of flexibility. We’ve addressed this by using
Terragrunt, a thin wrapper for Terraform
that implements the practices advocated
by Yevgeniy Brikman’s Terraform: Up and
Running. We’ve found Terragrunt helpful
because it encourages versioned modules
and reusability for different environments.

Tools

Kustomize is a tool to
manage and customize
Kubernetes manifest files
that enables you to select
and patch your base
Kubernetes resources
before applying them to
different environments.

(Kustomize)

Sentry is a cross-platform
application monitoring
tool with a focus on error
reporting. It has helped
our teams track errors,
establish if a commit
actually fixed an issue
and alerted us if an
issue resurfaces due to a
regression.

(Sentry)

https://kustomize.io/
https://kubernetes.io/docs/reference/kubectl/overview/
https://wiki.c2.com/?DontRepeatYourself
https://thoughtworks.com/radar/tools/helm
https://mlflow.org/
https://thoughtworks.com/radar/tools/experiment-tracking-tools-for-machine-learning
https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure
http://pitest.org/
https://thoughtworks.com/radar/tools/stryker
https://sentry.io/
https://www.elastic.co/elk-stack
https://www.elastic.co/elk-stack
https://www.shellcheck.net/
https://stryker-mutator.io/
https://thoughtworks.com/radar/tools/pitest
https://thoughtworks.com/radar/tools/terraform
https://github.com/gruntwork-io/terragrunt
https://www.oreilly.com/library/view/terraform-up-and/9781491977071/
https://www.oreilly.com/library/view/terraform-up-and/9781491977071/

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 24

Lifecycle hooks are another useful feature
providing additional flexibility. In terms
of packaging, Terragrunt has the same
limitations as Terraform: there is no proper
way to define packages or dependencies
between packages. As a workaround, you
can use modules and specify a version
associated with a Git tag.

tfsec
Trial

Security is everyone’s concern, and
capturing risks early is always better
than facing problems later on. In the
infrastructure as code space — where
Terraform has been an obvious choice to
manage cloud environments — we now
also have tfsec, a static analysis tool that
scans Terraform templates to find potential
security issues. Our teams have been
using tfsec quite successfully. The tool is
easy to set up and use, which makes it a
great choice for any development team
determined to mitigate security risks to
prevent breaches before they happen. Its
preset rules for different cloud providers,
including AWS and Azure, compliment the
benefits that tfsec brings to the teams that
use Terraform.

Yarn
Trial

Yarn continues to be the package manager
of choice for many teams. We’re excited
about Yarn 2, a major new release with a
long list of changes and improvements.
In addition to usability tweaks and
improvements in the area of workspaces,
Yarn 2 introduces the concept of zero-
installs, which allows developers to run a
project directly after cloning it. However,

Yarn 2 includes some breaking changes
which makes the upgrade nontrivial. It also
defaults to plug’n’play (PnP) environments
and at the same time doesn’t support React
Native in PnP environments. Teams can, of
course, opt out of PnP or stay on Yarn 1.
They should be aware, though, that Yarn 1 is
now in maintenance mode.

CML
Assess

We’ve included continuous delivery for
machine learning as a technique in previous
Radars, and in this edition we want to
highlight a promising new tool called
Continuous Machine Learning (or CML) from
the people who made DVC. CML aims to
bring the best engineering practices of CI
and CD to AI and ML teams and can help to
organize your MLOps infrastructure on top
of a traditional software engineering stack,
instead of creating separate AI platforms.
We like that they’ve prioritized support for
DVC and see this as a good sign for this
burgeoning new tool.

Eleventy
Assess

We’ve long liked the idea of using static
site generators to avoid complexity and
improve performance, whenever the use
case allows it. Although Eleventy has been
around for a few years, it’s recently caught
our attention as it’s matured and previous
favorites such as Gatsby.js displayed some
scalability problems. Eleventy is quick to
learn and easy to build sites with. We also
like the ease with which you can create
semantic (and therefore more accessible)
markup with its templating and its simple
and robust support for pagination.

Flagger
Assess

Service meshes and API gateways provide
a convenient way to route traffic to a
variety of microservices, all of which
implement the same API interface.
Flagger uses this feature to dynamically
adjust the portion of traffic that is routed
to a new version of a service. This is a
common technique for canary releases
or blue/green deployment. Flagger works
in conjunction with a variety of popular
proxies (including Envoy and Kong) to
progressively ramp up requests to a service
and report metrics on the load in order to
provide fast feedback on a new release.
We like that Flagger simplifies this valuable
practice so that it can be more widely
adopted. Although Flagger is sponsored
by Weaveworks, it stands on its own with
no obligation to use it in conjunction with
Weaveworks’ other tooling.

gossm
Assess

When connecting to server instances on
AWS, it is recommended to go through
a bastion host instead of a direct
connection. However, provisioning a
bastion host just for that purpose can be
frustrating, which is why AWS Systems
Manager’s Session Manager provides
tunneling to more comfortably connect
to your servers. gossm is an open-source
CLI tool that makes the use of the Session
Manager even more convenient. gossm
lets you leverage the security provided by
Session Manager and IAM policies from
your terminal using tools such as ssh and
scp. It also has some capabilities that
the AWS CLI is missing, including server
discovery and SSH integration.

Tools

Flagger is a useful tool
for adjusting the portion
of traffic that is routed
to a new version of a
service — which is handy
when working with service
meshes and API gateways.

(Flagger)

https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/terraform
https://github.com/liamg/tfsec
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure
https://yarnpkg.com/
https://yarnpkg.com/advanced/migration
https://classic.yarnpkg.com/en/docs/pnp/
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://cml.dev/
https://thoughtworks.com/radar/tools/dvc
https://thoughtworks.com/radar/techniques/static-site-generators
https://thoughtworks.com/radar/techniques/static-site-generators
https://www.11ty.dev/
https://thoughtworks.com/radar/languages-and-frameworks/gatsby-js
https://thoughtworks.com/radar/techniques/service-mesh
https://flagger.app/
https://thoughtworks.com/radar/techniques/1-canary
https://thoughtworks.com/radar/tools/kong-api-gateway
https://thoughtworks.com/radar/platforms/aws
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://github.com/gjbae1212/gossm

© ThoughtWorks, Inc. All Rights Reserved.

25 | TECHNOLOGY RADAR

Great Expectations
Assess

With the rise of CD4ML, operational
aspects of data engineering and data
science have received more attention.
Automated data governance is one aspect
of this development. Great Expectations
is a framework that enables you to craft
built-in controls that flag anomalies or
quality issues in data pipelines. Just as
unit tests run in a build pipeline, Great
Expectations makes assertions during
execution of a data pipeline. This is useful
not only for implementing a sort of Andon
for data pipelines but also for ensuring that
model-based algorithms remain within the
operating range determined by their training
data. Automated controls like these can help
distribute and democratize data access and
custodianship. Great Expectations also ships
with a profiler tool to help understand the
qualities of a particular data set and to set
appropriate limits.

k6
Assess

We’re quite excited by k6, a relatively new
tool in the performance testing ecosystem
with a heavy focus on developer experience.
The k6 command line runner executes
scripts written in JavaScript and allows you
to configure the execution time and the
number of virtual users. The CLI has several
advanced features that let you see the
current statistics before the test has finished
executing, scale the number of virtual users
beyond what was originally defined and
even pause and resume a running test.
The command line output provides a set
of customizable metrics with transformers
that let you visualize the results in Datadog
and other observability tools. Adding
checks to your scripts is an easy way to

integrate performance testing into your CI/
CD pipeline. For accelerated performance
testing, check out the commercial version,
k6 Cloud, which provides cloud scaling and
additional visualizations.

Katran
Assess

Katran is a high-performance layer 4 load
balancer. It’s not for everyone, but if you
need redundancy for layer 7 load balancers
(such as HAProxy or NGINX) or need to scale
load balancers to two or more servers, then
we recommend assessing Katran. We see
Katran as a flexible and efficient choice over
techniques such as round-robin DNS over L7
load balancers or the IPVS Kernel model that
network engineers usually adopt to solve
similar challenges.

Kiali
Assess

Given the increased use of service mesh
to deploy collections of containerized
microservices, we can expect to see tools
emerge that automate and simplify the
administrative tasks associated with this
architectural style. Kiali is one such tool.
Kiali provides a graphical user interface to
observe and control networks of services
deployed with Istio. We’ve found Kiali useful
for visualizing the topology of services in
a network and understanding the traffic
routed between them. For example, when
used in conjunction with Flagger, Kiali can
display requests that have been routed to
a canary service release. We particularly
like Kiali’s ability to artificially inject network
faults into a service mesh to test resilience
in the face of network interruptions.
This practice is all too often ignored due
to the complexity of configuring and

running failure tests in a complex mesh of
microservices.

LGTM
Assess

Writing secure code is as important as
ever, but it’s only one of the many things
developers have to prioritize. LGTM provides
both a safety net and a means to benefit
from a knowledge base of secure coding
practices. It is a static code analysis tool
with a focus on security that is backed by
a (partially open-source) catalog of secure
coding rules. The rules are implemented as
queries over your codebase in the CodeQL
query language. It can be used to integrate
white-box security checks into your CD
pipelines for Java, Go, JavaScript, Python, C#
and C/C++. LGTM and CodeQL are part of
the Github Security Lab.

Litmus
Assess

Litmus is a chaos engineering tool with
a low barrier to entry. It allows you to
inject various error scenarios into your
Kubernetes cluster with minimal effort.
We’re particularly excited by the range
of capabilities Litmus offers beyond your
random pod kill, including simulating
network, CPU, memory and I/O issues.
Litmus also supports tailored experiments
to simulate errors for Kafka and Cassandra
among other common services.

Opacus
Assess

The concept of differential privacy first
appeared in the Radar in 2016. Although
the problem of breaking privacy through

Tools

The Great Expectations
framework provides
automated data
governance that enables
you to craft built-
in controls that flag
anomalies or quality
issues in data pipelines.

(Great Expectations)

This is a static code
analysis tool with a focus
on security that is backed
by a catalog of secure
coding rules.

(LGTM)

https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://docs.greatexpectations.io/en/latest/
https://en.wikipedia.org/wiki/Andon_(manufacturing)
https://k6.io/
https://k6.io/blog/how-to-control-a-live-k6-test
https://www.datadoghq.com/
https://k6.io/docs/using-k6/checks
https://k6.io/cloud
https://github.com/facebookincubator/katran
http://www.haproxy.org/
https://www.nginx.com/
https://thoughtworks.com/radar/techniques/service-mesh
https://kiali.io/
https://thoughtworks.com/radar/platforms/istio
https://thoughtworks.com/radar/tools/flagger
http://lgtm.com/
https://help.semmle.com/QL/learn-ql/index.html
https://securitylab.github.com/
https://litmuschaos.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/techniques/differential-privacy

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 26

systematic model inference queries was
recognized at the time, it was largely a
theoretical issue since remedies were few.
The industry has lacked tools to prevent this
from happening. Opacus is a new Python
library that can be used in conjunction
with PyTorch to help thwart one type of
differential privacy attack. Although this is
a promising development, finding the right
model and data set to which it applies has
been a challenge. The library is still quite
new so we’re looking forward to seeing how
it’ll be accepted going forward.

OSS Index
Assess

It’s important for a development team to
identify whether the dependencies of their
application have known vulnerabilities. OSS
Index could be used to achieve this goal.
OSS Index is a free catalog of open-source
components and scanning tools designed
to help developers identify vulnerabilities,
understand risk and keep their software
safe. Our teams are already integrating this
index into pipelines via different languages,
including AuditJS and Gradle plugin. The
speed is fast, vulnerabilities are identified
accurately and few false positives occur.

Playwright
Assess

Web UI testing continues to be an
active space. Some of the folks who
built Puppeteer have since moved on
to Microsoft and are now applying their

learnings to Playwright, which allows you
to write tests for Chromium and Firefox as
well as WebKit, all through the same API.
Playwright has gained some attention for its
support of all the major browser engines,
which it currently achieves by including
patched versions of Firefox and Webkit. It
remains to be seen how quickly other tools
can catch up, with more and more support
for the Chrome DevTools Protocol as a
common API for automating browsers.

pnpm
Assess

pnpm is an up-and-coming package
manager for Node.js that we’re looking
at closely because of its higher speed
and greater efficiency compared to other
package managers. Dependencies are
saved in a single place on the disk and are
linked into the respective node_modules
directories. pnpm also supports incremental
optimization on file level, provides a
solid API foundation to allow extension/
customization and supports store server
mode, which speeds up dependency
download even more. If your organization
has a large number of projects with the
same dependencies, you may want to take a
closer look at pnpm.

Sensei
Assess

Sensei from Secure Code Warrior is a Java
IDE plugin that makes it easy to create and
distribute secure code quality guidelines.

At ThoughtWorks we often advocate for
“tools over rules,” that is, make it easy to do
the right thing over applying checklist-like
governance rules and procedures, and this
tool fits this philosophy. Developers create
recipes that can be easily shared with team
members. These can be simple or complex
and are implemented as queries targeting
the Java AST. Examples include warnings
for SQL injection, cryptographic weakness
and many others. Another feature we like:
Since it executes on code changes in the IDE,
Sensei provides faster feedback than the
more traditional static analysis tools.

Zola
Assess

Zola is a static site generator written in Rust.
As such it comes as a single executable
with no dependencies, is very fast and
supports all the usual things you’d expect
such as Sass, content in markdown and hot
reloading. We’ve had success building static
sites with Zola and appreciate how intuitive
it is to use.

Tools

Sensei makes it easy to
create and distribute
secure code quality
guidelines.

(Sensei)

https://github.com/pytorch/opacus
https://thoughtworks.com/radar/languages-and-frameworks/pytorch
https://ossindex.sonatype.org/
https://ossindex.sonatype.org/
https://github.com/sonatype-nexus-community/auditjs
https://github.com/sonatype-nexus-community/scan-gradle-plugin
https://thoughtworks.com/radar/languages-and-frameworks/puppeteer
https://playwright.dev/
https://chromedevtools.github.io/devtools-protocol/
https://pnpm.js.org/
https://thoughtworks.com/radar/platforms/node-js
https://securecodewarrior.com/sensei
https://www.getzola.org/
https://thoughtworks.com/radar/languages-and-frameworks/rust

Languages &
Frameworks

TECHNOLOGY RADAR

© ThoughtWorks, Inc. All Rights Reserved.

28 | TECHNOLOGY RADAR

Adopt
76.	Arrow
77.	jest-when

Trial
78.	Fastify
79.	Immer
80.	Redux
81.	Rust
82.	single-spa
83.	Strikt
84.	XState

Assess
85.	Babylon.js
86.	Blazor
87.	Flutter Driver
88.	HashiCorp Sentinel
89.	Hermes
90.	io-ts
91.	Kedro
92.	LitElement
93.	Mock Service Worker
94.	Recoil
95.	Snorkel
96.	Streamlit
97.	Svelte
98.	SWR
99.	Testing Library

Hold

Arrow
Adopt

Arrow is promoted as the functional
companion for Kotlin’s standard library.
Indeed, the package of ready-to-use
higher-level abstractions delivered by
Arrow has proven so useful that our teams
now consider Arrow a sensible default
when working with Kotlin. Recently, in
preparation for the 1.0 release, the Arrow
team introduced several changes, including
the addition of new modules but also some
deprecations and removals.

jest-when
Adopt

jest-when is a lightweight JavaScript library
that complements Jest by matching mock
function call arguments. Jest is a great tool
for testing the stack; jest-when allows you
to expect specific arguments for mock
functions which enables you to write more
robust unit tests of modules with many
dependencies. It’s easy to use and provides
great support for multiple matchers, which
is why our teams have made jest-when their
default choice for mocking in this space.

Fastify
Trial

In the case where implementation in
Node.js is necessary, we see that Fastify is
an option that our teams are very happy

Languages &
Frameworks

Hold HoldAssess AssessTrial TrialAdopt Adopt

5

16

24

26

2

12

59

13

8

14

31

33

34

35

36

37
39

40

22

23

15

17

18
19

20

25

21

10

11
49

60
61

62
63 64

65 66

67

68

69 70

71

72

73
74

75

50
51

55

56

58

52

22

78

85 86

87 88

89
90 91

92
93

94

95

96
97

98

99

83

34

27

28

29
30

8477

76

79

82

80

81

1

6

7

9

3

4

32

3841

44
45

46

43
42

47

48
53

54

57

with. This web framework offers ease in
handling request-response validations,
support for TypeScript and a plugin
ecosystem giving our teams an easier
experience developing software. Although
it’s a good option in the Node.js ecosystem,
we stand by our previous advice: don’t fall
into Node overload scenarios.

Immer
Trial

With the increasing complexity of single-
page JavaScript applications, managing
state predictably is becoming more
and more important. Immutability can

help to ensure our applications behave
consistently but unfortunately JavaScript
doesn’t offer built-in deeply immutable
data structures (see the ES Record and
Tuple proposal). Immer — German for
always — is a tiny package that lets you
work with immutable state in a more
convenient way. It’s based on the copy-
on-write mechanism, has a minimal API
and operates on normal JavaScript objects
and arrays. This means that data access is
seamless and no large refactoring efforts
are needed when introducing immutability
to an existing codebase. Many of our teams
now use it in their JavaScript codebases
and prefer it to Immutable.js, which is why
we’re moving it to Trial.

https://arrow-kt.io/
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://www.npmjs.com/package/jest-when
https://thoughtworks.com/radar/languages-and-frameworks/jest
https://thoughtworks.com/radar/platforms/node-js
https://www.fastify.io/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/platforms/node-overload
https://github.com/tc39/proposal-record-tuple
https://github.com/tc39/proposal-record-tuple
https://github.com/mweststrate/immer
https://thoughtworks.com/radar/languages-and-frameworks/immutable-js

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 29

the use of micro frontends as an excuse to
mix and match multiple frameworks, single-
spa supports just that. We understand
that there are legitimate scenarios such as
upgrading to a new revision of a framework
across multiple micro frontends where
integration across multiple frameworks
is necessary. single-spa has been a go-to
framework for micro frontend integration
for our teams, and they’re finding it to work
well with SystemJS and managing different
versions of a single dependency.

Strikt
Trial

The Kotlin ecosystem keeps growing and
more libraries are taking advantage of Kotlin
language features to replace their Java
alternatives. Strikt is an assertion library that
allows you to write test assertions in a very
fluent style. It uses Kotlin features such as
blocks and lambdas to help make your tests
less verbose while maintaining readability.
Strikt also supports building custom
assertions, which can make your tests more
domain specific.

XState
Trial

We’ve featured several state management
libraries in the Radar before, but XState
takes a slightly different approach.
It’s a simple JavaScript and TypeScript
framework for creating finite state
machines and visualizing them as state
charts. It integrates with the more popular
reactive JavaScript frameworks (Vue.js,
Ember.js, React.js and RxJS) and is based on
the W3C standard for finite state machines.
Another notable feature is the serialization
of machine definitions. One thing that
we’ve found helpful when creating
finite state machines in other contexts
(particularly when writing game logic) is the

ability to visualize states and their possible
transitions; we like that it’s really easy to do
this with XState’s visualizer.

Babylon.js
Assess

When we wrote about VR beyond gaming
a few years ago we made no prediction on
how quickly and to what extent VR solutions
would be found in fields other than video
gaming. In hindsight, we’ve certainly
seen interest and adoption grow but the
uptake has been slower than some of us
anticipated. One reason could be tooling.
Unity and Unreal are two very mature
and capable engines for developing VR
applications. We also highlighted Godot.
However, these engines are quite unlike
what most web and enterprise teams are
familiar with. As we continued exploring, we
realized that web-based VR solutions have
come a long way and we’ve had positive
experience with Babylon.js. Written in
TypeScript and rendering its applications in
the browser, Babylon.js provides a familiar
experience for many development teams.
Additionally, Babylon.js is open-source
software, mature and well-funded, which
makes it even more attractive.

Blazor
Assess

Although JavaScript and its ecosystem is
dominant in the web UI development space,
new opportunities are opening up with
the emergence of WebAssembly. We see
Blazor as an interesting option for building
interactive web UIs using C#. We especially
like this open-source framework because
it allows running C# code in the browser
on top of WebAssembly, leveraging the
.NET Standard runtime and ecosystem as
well as custom libraries developed in this
programming language. Additionally, it can

Redux
Trial

We’ve decided to move Redux back into
the Trial ring to show that we no longer
consider it the default approach for state
management in React applications. Our
experience shows that Redux is still a
valuable framework in many cases but
compared to other approaches, it also
leads to more verbose and harder-to-
follow code. Throwing Redux Sagas into the
mix usually compounds this issue. As an
alternative, you can often use the features
in recent versions of React to manage state
effectively without an additional framework.
However, we want to highlight that when
you reach the point at which your simple
state management solution starts to become
complex, it might be worth reaching for
Redux after all or perhaps even Facebook’s
recently published Recoil.

Rust
Trial

The Rust programming language continues
to grow in popularity and has been voted
Stack Overflow’s “most loved” language
by developers five years in a row. We
like it too. It’s a fast, safe and expressive
language that is increasing in utility as its
ecosystem grows. For example, Rust is
starting to be used for data science and
machine learning and can give a significant
performance boost. Also, Materialize is a
streaming-oriented, low-latency database
written in Rust.

single-spa
Trial

single-spa is a JavaScript framework for
bringing together multiple micro frontends
in a single front-end application. Although
we advise against micro frontend anarchy,

Languages &
Frameworks

We no longer consider
Redux to be the default
approach for state
management in React
applications. It is still a
valuable framework but it
can lead to more verbose
and harder-to-follow code
than alternatives.

(Redux)

XState is a simple
JavaScript and TypeScript
framework for creating
finite state machines and
visualizing them as state
charts.

(XState)

https://github.com/systemjs/systemjs
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://strikt.io/
https://xstate.js.org/docs/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://rxjs.dev/
https://xstate.js.org/viz/
https://thoughtworks.com/radar/techniques/vr-beyond-gaming
https://unity.com/
https://www.unrealengine.com/
https://thoughtworks.com/radar/platforms/godot
https://www.babylonjs.com/
https://thoughtworks.com/radar/languages-and-frameworks/webassembly
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
http://redux.js.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://redux-saga.js.org/
https://thoughtworks.com/radar/languages-and-frameworks/recoil
http://www.rust-lang.org/
https://www.lpalmieri.com/posts/2019-12-01-taking-ml-to-production-with-rust-a-25x-speedup/
https://www.lpalmieri.com/posts/2019-12-01-taking-ml-to-production-with-rust-a-25x-speedup/
https://thoughtworks.com/radar/platforms/materialize
https://single-spa.js.org/
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/techniques/micro-frontend-anarchy

© ThoughtWorks, Inc. All Rights Reserved.

30 | TECHNOLOGY RADAR

interoperate bidirectionally with JavaScript
code in the browser if needed.

Flutter Driver
Assess

Flutter Driver is an integration testing library
for Flutter applications. With Flutter Driver
you can instrument and drive the test suite
on either real devices or emulators. Our
teams continue to write unit and widget
tests to ensure most of the business
functionality in Flutter apps is implemented.
However, for testing the actual user
interaction, we’re assessing Flutter Driver,
and you should too.

HashiCorp Sentinel
Assess

Although we’re big advocates of defining
security policy as code, the tooling in this
space has been fairly limited. If you’re using
HashiCorp products (such as Terraform
or Vault) and don’t mind paying for the
enterprise versions, you have the option
of using HashiCorp Sentinel. Sentinel is, in
effect, a complete programming language
for defining and implementing context-
based policy decisions. For example, in
Terraform it can be used to test for policy
violations before applying infrastructure
changes. In Vault, Sentinel can be used
to define fine-grained access control
on the APIs. This approach has all the
benefits of encapsulation, maintainability,
readability and extensibility that high-level
programming languages offer, creating
an attractive alternative to traditional,
declarative security policy. Sentinel is in the
same class of tools as Open Policy Agent but
is proprietary, closed-source and only works
with HashiCorp products.

Hermes
Assess

Hermes is a JavaScript engine optimized
for fast start-up of React Native
applications on Android. JavaScript
engines such as V8 have just-in-time (JIT)
compilers that profile the code at run
time to produce optimized instructions.
Hermes, however, takes a different
approach by compiling the JavaScript code
ahead of time (AOT) into an optimized
bytecode. As a result you get a smaller APK
image size, lean memory consumption
and faster startup time. We’re carefully
assessing Hermes in a few React Native
apps and recommend you do the same.

io-ts
Assess

We’ve been really enjoying using
TypeScript for a while now and love the
safety that the strong typing provides.
However, getting data into the bounds of
the type system, from say a call to a back-
end service, can lead to run-time errors.
One library that helps solve this problem
is io-ts. It bridges the gap between
compile-time type-checking and run-time
consumption of external data by providing
encode and decode functions. It can also
be used as a custom type guard. According
to our teams, it’s an elegant solution to a
rascal of a problem.

Kedro
Assess

In the past we’ve talked about the improving
tooling for applying good engineering
practices in data science projects. Kedro is
another good addition in this space. It’s a

development workflow framework for data
science projects that brings a standardized
approach to building production-ready data
and machine-learning pipelines. We like the
focus on software engineering practices and
good design with its emphasis on test-driven
development, modularity, versioning and
good hygiene practices such as keeping
credentials out of the codebase.

LitElement
Assess

Steady progress has been made since we
first wrote about web components in 2014.
LitElement, part of the Polymer Project, is
a simple library that you can use to create
lightweight web components. It’s really just
a base class that removes the need for a lot
of the common boilerplate making writing
web components a lot easier. We’ve had
early success using it on projects and are
excited to see the technology maturing.

Mock Service Worker
Assess

Web applications, especially those written
for internal use in enterprises, are usually
written in two parts. The user interface
and some business logic run in the web
browser while business logic, authorization
and persistence run on a server. These two
halves normally communicate via JSON
over HTTP. The endpoints shouldn’t be
mistaken for a real API; they’re simply an
implementation detail of an application that
is split across two run-time environments.
At the same time, they provide a valid seam
to test the pieces individually. When testing
the JavaScript part, the server side can be
stubbed and mocked at the network level by
a tool such as Mountebank. An alternative

Languages &
Frameworks

Sentinel is a complete
programming language for
defining and implementing
context-based policy
decisions.

(HashiCorp Sentinel)

Kedro is a development
workflow framework for
data science projects that
brings a standardized
approach to building
production-ready data
and machine-learning
pipelines.

(Kedro)

https://api.flutter.dev/flutter/flutter_driver/flutter_driver-library.html
https://flutter.dev/
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/tools/hashicorp-vault
https://www.hashicorp.com/sentinel
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://hermesengine.dev/
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://v8.dev/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://gcanti.github.io/io-ts/
https://thoughtworks.com/radar/tools/experiment-tracking-tools-for-machine-learning
https://thoughtworks.com/radar/tools/dvc
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://github.com/quantumblacklabs/kedro
https://thoughtworks.com/radar/platforms/web-components-standard
https://lit-element.polymer-project.org/
https://www.polymer-project.org/
https://thoughtworks.com/radar/tools/mountebank

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 31

approach is to intercept the requests in the
browser. We like the approach taken by
Mock Service Worker because with service
workers it uses an abstraction familiar
to developers. This approach results in a
simpler setup and faster test execution.
However, because these tests don’t test the
actual network layer, you want to implement
some end-to-end tests as part of a healthy
test pyramid.

Recoil
Assess

More and more teams using React are
reevaluating their options for state
management, something we also mention
in our reassessment of Redux. Now,
Facebook — the creators of React — have
published Recoil, a new framework for
managing state, which came out of an
internal application that had to deal with
large amounts of data. Even though we
currently do not have much practical
experience with Recoil, we see its
potential and promise. The API is simple
and easy to learn; it feels like idiomatic
React. Unlike other approaches, Recoil
provides an efficient and flexible way to
have state shared across an application:
it supports dynamically created state by
derived data and queries as well as app-
wide state observation without impairing
code splitting.

Snorkel
Assess

Modern ML models are very complex and
require massive amounts of labeled training
data sets to learn from. Snorkel started at
the Stanford AI lab with the realization that
manually labeling data is very expensive
and often not feasible. Snorkel allows us to

label training data programmatically via the
creation of labeling functions. Snorkel employs
supervised learning techniques to assess the
accuracies and correlations of these labeling
functions, and then reweighs and combines
their output labels, leading to high-quality
training labels. The creators of Snorkel have
since come out with a commercial platform
called Snorkel Flow. While Snorkel itself is no
longer actively developed, it’s still significant
for its ideas on the use of weakly supervised
methods to label data.

Streamlit
Assess

Streamlit is an open-source application
framework in Python used by data scientists
for building good-looking data visualization
applications. Streamlit stands out from
competitors such as Dash with its focus on
rapid prototyping and support for a wide
range of visualization libraries, including
Plotly and Bokeh. For data scientists
who need quick showcases during the
experimentation cycle, Streamlit is a solid
choice. We’re using it in a few projects and
like how we can put together interactive
visualizations with very little effort.

Svelte
Assess

We continue to see new front-end JavaScript
frameworks, and Svelte stands out as a
promising new component framework.
Unlike other frameworks that leverage the
virtual DOM, Svelte compiles your code
into vanilla framework-less JavaScript code
that surgically updates the DOM directly.
However, it’s only a component framework;
if you’re planning to build feature-rich
applications, consider assessing Sapper
together with Svelte.

Languages &
Frameworks

Created at Stanford
University, Snorkel enables
us to programmatically
label the massive data
sets that are used to
train machine learning
algorithms.

(Snorkel)

SWR
Assess

SWR is a React Hooks library for fetching
remote data. It implements the stale-
while-revalidate HTTP caching strategy.
SWR first returns data from cache (stale),
then sends the fetch request (revalidate)
and finally refreshes the values with the
up-to-date response. Components receive
a stream of data, first stale and then
fresh, constantly and automatically. Our
developers have had a good experience
using SWR, dramatically improving the user
experience with always having data on the
screen. However, we caution teams to only
use SWR caching strategy when appropriate
for an application to return stale data. Note
that HTTP requires that caches respond to a
request with the most up-to-date response
held that is appropriate to the request, and
only in carefully considered circumstances is a
stale response allowed to be returned.

Testing Library
Assess

Testing Library is a family of packages
for testing applications in numerous
frameworks such as React, Vue, React Native
and Angular among others. This set of
libraries helps you test UI components in a
user-centric way by encouraging you to test
user behavior rather than implementation
details, such as the presence of elements
in the UI at a certain moment in time. One
of the benefits of this mindset is more
reliable tests, and this is what we call out as
its main differentiator. We recommend you
assess this family of libraries when testing
your web applications in any framework.
Although our direct experience is limited to
React Testing Library and Angular Testing
Library, we’ve been impressed with what
we’ve seen.

https://mswjs.io/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://recoiljs.org/
https://www.snorkel.org/
https://www.snorkel.ai/
https://www.streamlit.io/
https://plotly.com/
https://thoughtworks.com/radar/tools/bokeh
https://svelte.dev/
https://sapper.svelte.dev/
https://github.com/vercel/swr
https://thoughtworks.com/radar/languages-and-frameworks/react-hooks
https://tools.ietf.org/html/rfc5861
https://tools.ietf.org/html/rfc5861
https://tools.ietf.org/html/rfc2616
https://testing-library.com/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://thoughtworks.com/radar/languages-and-frameworks/react-testing-library

We are a software consultancy and
community of passionate purpose-led
individuals, 7,000+ people strong across
43 offices in 14 countries. Over our 25+
year history, we have helped our clients
solve complex business problems
where technology is the differentiator.
When the only constant is change, we
prepare you for the unpredictable.

Want to stay up-to-date with all
Radar-related news and insights?
Follow us on your favorite social channel or

become a subscriber.

subscribe now

https://thght.works/3loXhhw
https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/3lyHSf1

thoughtworks.com/radar
#TWTechRadar

https://thght.works/3iE75CK
https://thght.works/3iE75CK
https://thght.works/3loXhhw

