
TECHNOLOGY
RADAR VOL.17

Insights into the
technology and trends

shaping the future

thoughtworks.com/radar
#TWTechRadar

https://www.thoughtworks.com/radar
https://www.thoughtworks.com/

CONTRIBUTORS
The Technology Radar is prepared by the
ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO) | Martin Fowler (Chief Scientist) | Bharani Subramaniam | Camilla Crispim | Erik Doernenburg

Evan Bottcher | Fausto de la Torre | Hao Xu | Ian Cartwright | James Lewis

 Jonny LeRoy | Ketan Padegaonkar | Lakshminarasimhan Sudarshan | Marco Valtas | Mike Mason

Neal Ford | Rachel Laycock | Scott Shaw | Shangqi Liu | Zhamak Dehghani

https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/camilla-crispim
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/neal-ford
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/liu-shangqi
https://thoughtworks.com/profiles/jonny-leroy
https://thoughtworks.com/profiles/scott-shaw
https://thoughtworks.com/profiles/evan-bottcher
https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/ian-cartwright
https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/camilla-crispim
https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/evan-bottcher
https://thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/xu-hao
https://thoughtworks.com/profiles/ian-cartwright
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/jonny-leroy
http://thoughtworks.com/profiles/ketan-padegaonkar
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/neal-ford
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/liu-shangqi
https://thoughtworks.com/profiles/zhamak-dehghani
https://thoughtworks.com/profiles/zhamak-dehghani
https://thoughtworks.com/profiles/ketan-padegaonkar
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 3

WHAT’S NEW?
Highlighted themes in this edition:

OPEN SOURCE ON THE RISE
IN CHINA
The tide is rising. Because of changes in both attitude and
policy, large Chinese companies such as Alibaba and Baidu
are rapidly releasing open source frameworks, tools and
platforms. The growth of their software ecosystems is
accelerating fast as they expand economically.

Given the number of software projects in the booming
and massive Chinese markets, the number and quality
of open source projects appearing on GitHub and
other open source sites is expected to rise. Why would
Chinese companies open source so many assets? As is
the case with hot software markets such as Silicon Valley,
competition for developers is tight and offering higher
compensation only goes so far.

The prospect of working on cutting-edge open source
projects with other smart developers is a universal
incentive. We expect major open source innovations to
continue the trend of README files written in Chinese first
and English second.

KUBERNETES, THE CHOICE FOR
CONTAINER ORCHESTRATOR
A large number of Radar entries revolved around
Kubernetes and its increasingly dominant presence on
many projects. It seems that the software development
ecosystem is settling on Kubernetes and related tools
to solve the common problems related to deployment,
scaling and operating containers.

Radar entries such as GKE, Kops, and Sonobuoy introduce
managed platform services and tooling that improve the
overall experience of adopting and running Kubernetes.
Indeed, its capability to simply run multiple containers as
one unit of scheduling enables service mesh and sidecar
for endpoint security.

Kubernetes has become the default operating system for
containers: many cloud providers have taken advantage
of its open and modular architecture to adopt and run
Kubernetes, while tools leverage its open APIs to access
abstractions such as workloads, clusters, configuration,
and storage.

We see more products utilizing Kubernetes as an
ecosystem, making it the next level of abstraction after
microservices and containers. This is further evidence
that developers can successfully leverage modern
architectural styles despite the inherent complexities of
distributed systems.

CLOUD AS THE NEW NORMAL
The other pervasive topic of conversation, while pulling
together this edition, had a distinctly “cloudy” nature. As
cloud providers become more capable and reach parity
of features, the public cloud model is becoming the new
default for many organizations.

Instead of asking, “Why in the cloud?”, many companies
now ask, “Why not in the cloud?” when embarking on new
projects. Certainly, some types of software still demand
on-premises systems, but as prices drop and capabilities
expand, cloud-native development becomes increasingly
viable.

Even though basic feature parity is a given among the
major cloud solution providers, they each also provide
unique offerings to differentiate themselves for specific
types of solutions. Thus, we see companies taking
advantage of several different providers via Polycloud,
choosing the specialized capabilities of those platforms
that best suit their customers’ needs.

TRUST IN BLOCKCHAIN MORE
EVENLY DISTRIBUTED
Despite the chaos surrounding cryptocurrencies in the
markets, many of our clients are finding ways to leverage
blockchain solutions for distributed ledgers and smart
contracts. Several Radar entries show maturity in the use
of blockchain-related technologies, providing increasingly
interesting ways to implement smart contracts, with a
variety of techniques and programming languages.

Blockchains solve the age-old problem of distributed
trust and shared, indelible ledgers. Today, companies
are increasing their users’ confidence in the underlying
mechanics of blockchain implementations. Many industries
have distinct distributed trust problems; we expect
blockchain solutions to continue to find ways to solve them.

http://thoughtworks.com/radar#china-oss
http://thoughtworks.com/radar#china-oss
https://github.com/alibaba
http://www.techrepublic.com/article/why-china-is-the-next-proving-ground-for-open-source-software/
http://thoughtworks.com/radar#kubernetes
http://thoughtworks.com/radar#kubernetes
https://thoughtworks.com/radar/platforms/gke
https://thoughtworks.com/radar/tools/kops
https://thoughtworks.com/radar/tools/sonobuoy
https://thoughtworks.com/radar/techniques/service-mesh
https://thoughtworks.com/radar/techniques/sidecars-for-endpoint-security
https://thoughtworks.com/radar/techniques/sidecars-for-endpoint-security
http://thoughtworks.com/radar#cloud
https://thoughtworks.com/radar/techniques/polycloud
http://thoughtworks.com/radar#blockchain
http://thoughtworks.com/radar#blockchain

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 4

ABOUT THE RADAR
ThoughtWorkers are passionate about technology. We
build it, research it, test it, open source it, write about
it, and constantly aim to improve it — for everyone.
Our mission is to champion software excellence and
revolutionize IT. We create and share the ThoughtWorks
Technology Radar in support of that mission. The
ThoughtWorks Technology Advisory Board, a group of
senior technology leaders in ThoughtWorks, creates
the Radar. They meet regularly to discuss the global
technology strategy for ThoughtWorks and the
technology trends that significantly impact our industry.

The Radar captures the output of the Technology
Advisory Board’s discussions in a format that provides

RADAR AT A GLANCE

Items that are new or have had significant
changes since the last Radar are
represented as triangles, while items that
have not changed are represented as circles

Our Radar is forward looking. To make room for new items, we fade items
that haven’t moved recently, which isn’t a reflection on their value but rather
our limited Radar real estate.

NEW OR CHANGED

NO CHANGE

HOLD
Proceed with caution.

4ASSESS
Worth exploring with the
goal of understanding
how it will affect your
enterprise.

3

TRIAL
Worth pursuing. It is
important to understand how
to build up this capability.
Enterprises should try this
technology on a project that
can handle the risk.

2ADOPT
We feel strongly that
the industry should be
adopting these items.
We use them when
appropriate on our
projects.

1

value to a wide range of stakeholders, from developers
to CTOs. The content is intended as a concise summary.

We encourage you to explore these technologies for
more detail. The Radar is graphical in nature, grouping
items into techniques, tools, platforms, and languages &
frameworks. When Radar items could appear in multiple
quadrants, we chose the one that seemed most
appropriate. We further group these items in four rings
to reflect our current position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

96 108

421 3

http://thoughtworks.com/radar/faq

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

New or changed
No change

THE RADAR
TECHNIQUES
ADOPT
1.	 Lightweight Architecture Decision Records

TRIAL
2.	 Applying product management to internal platforms NEW
3.	 Architectural fitness function NEW
4.	 Autonomous bubble pattern NEW
5.	 Chaos Engineering NEW
6.	 Decoupling secret management from source code
7.	 DesignOps NEW
8.	 Legacy in a box
9.	 Micro frontends
10.	 Pipelines for infrastructure as code NEW
11.	 Serverless architecture
12.	 TDD’ing containers NEW

ASSESS
13.	 Algorithmic IT operations NEW
14.	 Ethereum for decentralized applications NEW
15.	 Event streaming as the source of truth NEW
16.	 Platform engineering product teams
17.	 Polycloud NEW
18.	 Service mesh NEW
19.	 Sidecars for endpoint security NEW
20.	 The three Rs of security NEW

HOLD
21.	 A single CI instance for all teams
22.	 CI theatre
23.	 Enterprise-wide integration test environments
24.	 Recreating ESB antipatterns with Kafka NEW
25.	 Spec-based codegen

PLATFORMS
ADOPT
26.	 Kubernetes

TRIAL
27.	 .NET Core
28.	 AWS Device Farm
29.	 Flood IO NEW
30.	 Google Cloud Platform NEW
31.	 Keycloak
32.	 OpenTracing
33.	 Unity beyond gaming
34.	 WeChat NEW

ASSESS
35.	 Azure Service Fabric NEW
36.	 Cloud Spanner NEW
37.	 Corda NEW
38.	 Cosmos DB NEW
39.	 DialogFlow
40.	 GKE NEW
41.	 Hyperledger
42.	 Kafka Streams
43.	 Language Server Protocol NEW
44.	 LoRaWAN NEW
45.	 MapD NEW
46.	 Mosquitto
47.	 Netlify NEW
48.	 PlatformIO
49.	 TensorFlow Serving NEW
50.	 Voice platforms
51.	 Windows Containers NEW

HOLD
52.	 Overambitious API gateways

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 6

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

New or changed
No change

TOOLS
ADOPT
53.	 fastlane

TRIAL
54.	 Buildkite NEW
55.	 CircleCI NEW
56.	 gopass NEW
57.	 Headless Chrome for front-end test NEW
58.	 jsoniter NEW	
59.	 Prometheus
60.	 Scikit-learn
61.	 Serverless Framework

ASSESS
62.	 Apex NEW
63.	 assertj-swagger NEW
64.	 Cypress NEW
65.	 Flow NEW
66.	 InSpec
67.	 Jupyter NEW
68.	 Kong API Gateway NEW
69.	 kops NEW
70.	 Lighthouse NEW
71.	 Rendertron NEW
72.	 Sonobuoy NEW
73.	 spaCy
74.	 Spinnaker
75.	 Spring Cloud Contract NEW
76.	 Yarn

HOLD

LANGUAGES & FRAMEWORKS
ADOPT
77.	 Python 3

TRIAL
78.	 Angular
79.	 AssertJ NEW
80.	 Avro
81.	 CSS Grid Layout NEW
82.	 CSS Modules NEW
83.	 Jest NEW
84.	 Kotlin
85.	 Spring Cloud

ASSESS
86.	 Android Architecture Components NEW
87.	 ARKit/ARCore NEW
88.	 Atlas and BeeHive NEW
89.	 Caffe
90.	 Clara rules NEW
91.	 CSS-in-JS NEW
92.	 Digdag NEW
93.	 Druid NEW
94.	 ECharts NEW
95.	 Gobot NEW
96.	 Instana
97.	 Keras
98.	 LeakCanary NEW
99.	 PostCSS
100.	 PyTorch NEW
101.	 single-spa NEW
102.	 Solidity NEW
103.	 TensorFlow Mobile NEW
104.	 Truffle NEW
105.	 Weex NEW

HOLD

THE RADAR

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 7

Much documentation can be replaced with highly
readable code and tests. In a world of evolutionary
architecture, however, it’s important to record
certain design decisions for the benefit of future
team members as well as for external oversight.
LIGHTWEIGHT ARCHITECTURE DECISION RECORDS
is a technique for capturing important architectural
decisions along with their context and consequences.
We recommend storing these details in source control,
instead of a wiki or website, as then they can provide
a record that remains in sync with the code itself. For
most projects, we see no reason why you wouldn’t want
to use this technique.

We’ve seen a steep increase in interest in the topic of
digital platforms over the past 12 months. Companies
looking to roll out new digital solutions quickly and
efficiently are building internal platforms, which offer
teams self-service access to the business APIs, tools,
knowledge and support necessary to build and operate
their own solutions. We find that these platforms are
most effective when they’re given the same respect as
an external product offering. APPLYING PRODUCT

MANAGEMENT TO INTERNAL PLATFORMS means
establishing empathy with internal consumers (read:
developers) and collaborating with them on the design.
Platform product managers establish roadmaps and
ensure the platform delivers value to the business and
enhances the developer experience. Some owners even
create a brand identity for the internal platform and use
that to market the benefits to their colleagues. Platform
product managers look after the quality of the platform,
gather usage metrics, and continuously improve it over
time. Treating the platform as a product helps to create
a thriving ecosystem and avoids the pitfall of building
yet another stagnant, underutilized service-oriented
architecture.

Borrowed from evolutionary computing, a
fitness function is used to summarize how
close a given design solution is to achieving
the set aims.
(Architectural fitness function)

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

TECHNIQUES
ADOPT
1.	 Lightweight Architecture Decision Records

TRIAL
2.	 Applying product management to internal platforms NEW
3.	 Architectural fitness function NEW
4.	 Autonomous bubble pattern NEW
5.	 Chaos Engineering NEW
6.	 Decoupling secret management from source code
7.	 DesignOps NEW
8.	 Legacy in a box
9.	 Micro frontends
10.	 Pipelines for infrastructure as code NEW
11.	 Serverless architecture
12.	 TDD’ing containers NEW

ASSESS
13.	 Algorithmic IT operations NEW
14.	 Ethereum for decentralized applications NEW
15.	 Event streaming as the source of truth NEW
16.	 Platform engineering product teams
17.	 Polycloud NEW
18.	 Service mesh NEW
19.	 Sidecars for endpoint security NEW
20.	 The three Rs of security NEW

HOLD
21.	 A single CI instance for all teams
22.	 CI theatre
23.	 Enterprise-wide integration test environments
24.	 Recreating ESB antipatterns with Kafka NEW
25.	 Spec-based codegen

https://thoughtworks.com/radar/techniques/evolutionary-architecture
https://thoughtworks.com/radar/techniques/evolutionary-architecture
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
http://github.com/npryce/adr-tools

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 8

Borrowed from evolutionary computing, a fitness
function is used to summarize how close a given design
solution is to achieving the set aims. When defining an
evolutionary algorithm, the designer seeks a ‘better’
algorithm; the fitness function defines what ‘better’
means in this context. An ARCHITECTURAL FITNESS
FUNCTION, as defined in Building Evolutionary
Architectures, provides an objective integrity
assessment of some architectural characteristics, which
may encompass existing verification criteria, such as
unit testing, metrics, monitors, and so on. We believe
architects can communicate, validate and preserve
architectural characteristics in an automated, continual
manner, which is the key to building evolutionary
architectures.

CI and CD tools can be used to test server
configuration, server image building,
environment provisioning, and integration of
environments.
(Pipelines for infrastructure as code)

Many organizations we work with are trying hard to
use modern engineering approaches to build new
capabilities and features, while also having to coexist
with a long tail of legacy systems. An old strategy
that, based on our experience, has turned out to be
increasingly helpful in these scenarios is Eric Evans’s
AUTONOMOUS BUBBLE PATTERN. This approach
involves creating a fresh context for new application
development that is shielded from the entanglements
of the legacy world. This is a step beyond just using
an anticorruption layer. It gives the new bubble
context full control over its backing data, which is then
asynchronously kept up-to-date with the legacy systems.
It requires some work to protect the boundaries of
the bubble and keep both worlds consistent, but the
resulting autonomy and reduction in development
friction is a first bold step toward a modernized future
architecture.

In previous editions of the Radar, we’ve talked about
using Chaos Monkey from Netflix to test how a running
system is able to cope with outages in production
by randomly disabling instances and measuring the
results. CHAOS ENGINEERING is the nascent term
for the wider application of this technique. By running
experiments on distributed systems in production,
we’re able to build confidence that those systems work

as expected under turbulent conditions. A good place
to start understanding this technique is the Principles of
Chaos Engineering website.

Inspired by the DevOps movement, DESIGNOPS is a
cultural shift and a set of practices that allows people
across an organization to continuously redesign
products without compromising quality, service
coherency or team autonomy. DesignOps advocates
for the creation and evolution of a design infrastructure
that minimizes the effort necessary to create new
UI concepts and variations, and to establish a rapid
and reliable feedback loop with end users. With tools
such as Storybook promoting close collaboration, the
need for upfront analysis and specification handoffs
is reduced to the absolute minimum. With DesignOps,
design is shifting from being a specific practice to being
a part of everyone’s job.

We’ve seen significant benefits from introducing
microservices architectures, which have allowed
teams to scale the delivery of independently deployed
and maintained services. Unfortunately, we’ve also
seen many teams create front-end monoliths — a
single, large and sprawling browser application — on
top of their back-end services. Our preferred (and
proven) approach is to split the browser-based code
into MICRO FRONTENDS. In this approach, the web
application is broken down into its features, and each
feature is owned, frontend to backend, by a different
team. This ensures that every feature is developed,
tested and deployed independently from other
features. Multiple techniques exist to recombine
the features — sometimes as pages, sometimes as
components — into a cohesive user experience.

The use of continuous delivery pipelines to orchestrate
the release process for software has become
a mainstream concept. However, automatically
testing changes to infrastructure code isn’t as
widely understood. Continuous integration (CI) and
continuous delivery (CD) tools can be used to test
server configuration (e.g., Chef cookbooks, Puppet
modules, Ansible playbooks), server image building
(e.g., Packer), environment provisioning (e.g., Terraform,
CloudFormation) and integration of environments. The
use of PIPELINES FOR INFRASTRUCTURE AS CODE
enables errors to be found before changes are applied
to operational environments — including environments
used for development and testing. They also offer a way
to ensure that infrastructure tooling is run consistently,

http://www.thoughtworks.com/books/building-evolutionary-architectures
http://www.thoughtworks.com/books/building-evolutionary-architectures
http://dddcommunity.org/strategic-design/
http://wiki.c2.com/?AnticorruptionLayer
https:/thoughtworks.com/radar/tools/chaos-monkey
http://principlesofchaos.org/
http://principlesofchaos.org/
http://airbnb.design/designops-airbnb/
http://github.com/storybooks/storybook
https:/thoughtworks.com/radar/techniques/microservices

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 9

from CI/CD agents, as opposed to being run from
individual workstations. Some challenges remain,
however, such as the longer feedback loops associated
with standing up containers and virtual machines. Still,
we’ve found this to be a valuable technique.

The use of SERVERLESS ARCHITECTURE has very
quickly become an accepted approach for organizations
deploying cloud applications, with a plethora of choices
available for deployment. Even traditionally conservative
organizations are making partial use of some
serverless technologies. Most of the discussion goes
to Functions as a Service (e.g., AWS Lambda, Google
Cloud Functions, Azure Functions) while the appropriate
patterns for use are still emerging. Deploying serverless
functions undeniably removes the nontrivial effort that
traditionally goes into server and OS configuration and
orchestration. Serverless functions, however, are not
a fit for every requirement. At this stage, you must be
prepared to fall back to deploying containers or even
server instances for specific requirements. Meanwhile,
the other components of a serverless architecture,
such as Backend as a Service, have become almost a
default choice.

Many development teams have adopted test-driven
development practices for writing application code
because of their benefits. Others have turned to
containers to package and deploy their software, and
it’s accepted practice to use automated scripts to build
the containers. What we’ve seen few teams do so far
is combine the two trends and drive the writing of the
container scripts using tests. With frameworks such as
Serverspec and Goss, you can express the intended
functionality for either isolated or orchestrated
containers, with short feedback loops. This means
that it’s possible to use the same principles we’ve
championed for code by TDD’ING CONTAINERS. Our
initial experience doing so has been very positive.

The amount of data collected by IT operations has
been increasing for years. For example, the trend
toward microservices means that more applications
are generating their own operational data, and tools
such as Splunk, Prometheus, or the ELK stack make
it easier to store and process data later on, to gain
operational insights. When combined with increasingly
democratized machine learning tools, it’s inevitable
that operators will start to incorporate statistical
models and trained classification algorithms into
their toolsets. Although these algorithms have been

available for years, and various attempts have been
made to automate service management, we’re only just
starting to understand how machines and humans can
collaborate to identify outages earlier or pinpoint the
source of failures. Although there is a risk of overhyping
ALGORITHMIC IT OPERATIONS, steady improvement
in machine learning algorithms will inevitably change the
role of humans in operating tomorrow’s data centers.

Blockchains have been widely hyped as the panacea
for all things fintech, from banking to digital currency
to supply chain transparency. We’ve previously
featured Ethereum because of its feature set, which
includes smart contracts. Now, we’re seeing more
development using ETHEREUM FOR DECENTRALIZED
APPLICATIONS in other areas. Although this is still
a very young technology, we’re encouraged to see it
being used to build decentralized applications beyond
cryptocurrency and banking.

Blockchains have been widely hyped as
the panacea for everything from banking,
to digital currency, to supply chain
transparency.
(Ethereum for decentralized applications)

As event streaming platforms, such as Apache Kafka,
rise in popularity, many consider them as an advanced
form of message queuing, used solely to transmit
events. Even when used in this way, event streaming
has its benefits over traditional message queuing.
However, we’re more interested in how people use
EVENT STREAMING AS THE SOURCE OF TRUTH with
platforms (Kafka in particular) as the primary store
for data as immutable events. A service with an Event
Sourcing design, for example, can use Kafka as its event
store; those events are then available for other services
to consume. This technique has the potential to reduce
duplicating efforts between local persistence and
integration.

The major cloud providers (Amazon, Microsoft and
Google) are locked in an aggressive race to maintain
parity on core capabilities while their products are
differentiated only marginally. This is causing a few
organizations to adopt a POLYCLOUD strategy —
rather than going ‘all-in’ with one provider, they are
passing different types of workloads to different
providers in a best-of-breed approach. This may

http://www.martinfowler.com/articles/serverless.html
https:/thoughtworks.com/radar/platforms/aws-lambda
http://cloud.google.com/functions/
http://cloud.google.com/functions/
http://azure.microsoft.com/en-us/services/functions/
http://serverspec.org/
http://github.com/aelsabbahy/goss
https:/thoughtworks.com/radar/tools/prometheus
https://thoughtworks.com/radar/platforms/ethereum
http://www.stateofthedapps.com/
https:/thoughtworks.com/radar/tools/apache-kafka
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 10

involve, for example, putting standard services on
AWS, but using Google for machine learning, Azure for
.NET applications that use SQLServer, or potentially
using the Ethereum Consortium Blockchain solution.
This is different than a cloud-agnostic strategy of
aiming for portability across providers, which is costly
and forces lowest-common-denominator thinking.
Polycloud instead focuses on using the best that each
cloud offers.

A service mesh offers consistent discovery,
security, tracing, monitoring and failure
handling without the need for a shared asset
such as an API gateway or ESB.
(Service mesh)

As large organizations transition to more autonomous
teams owning and operating their own microservices,
how can they ensure the necessary consistency and
compatibility between those services without relying on
a centralized hosting infrastructure? To work together
efficiently, even autonomous microservices need to
align with some organizational standards. A SERVICE
MESH offers consistent discovery, security, tracing,
monitoring and failure handling without the need
for a shared asset such as an API gateway or ESB. A
typical implementation involves lightweight reverse-
proxy processes deployed alongside each service
process, perhaps in a separate container. These proxies
communicate with service registries, identity providers,
log aggregators, and so on. Service interoperability
and observability are gained through a shared
implementation of this proxy but not a shared runtime
instance. We’ve advocated for a decentralized approach
to microservice management for some time and are
happy to see this consistent pattern emerge. Open
source projects such as linkerd and Istio will continue
to mature and make service meshes even easier to
implement.

Microservices architecture, with a large number of
services exposing their assets and capabilities through
APIs and an increased attack surface, demand a zero
trust security architecture — ‘never trust, always verify’.
However, enforcing security controls for communication
between services is often neglected, due to increased
service code complexity and lack of libraries and
language support in a polyglot environment. To
get around this complexity, some teams delegate

security to an out-of-process sidecar — a process or
a container that is deployed and scheduled with each
service sharing the same execution context, host and
identity. Sidecars implement security capabilities, such
as transparent encryption of the communication and
TLS (Transport Layer Security) termination, as well as
authentication and authorization of the calling service
or the end user. We recommend you look into using
Istio, linkerd or Envoy before implementing your own
SIDECARS FOR ENDPOINT SECURITY.

Traditional approaches to enterprise security often
emphasize locking things down and slowing the pace
of change. However, we know that the more time an
attacker has to compromise a system, the greater the
potential damage. The three Rs of enterprise security
— rotate, repair and repave — take advantage of
infrastructure automation and continuous delivery
to eliminate opportunities for attack. Rotating
credentials, applying patches as soon as they’re
available and rebuilding systems from a known,
secure state — all within a matter of minutes or hours
— makes it harder for attackers to succeed. THE
THREE Rs OF SECURITY technique is made feasible
with the advent of modern cloud-native architectures.
When applications are deployed as containers, and
built and tested via a completely automated pipeline,
a security patch is just another small release that can
be sent through the pipeline with one click. Of course,
in keeping with best distributed systems practices,
developers need to design their applications to be
resilient to unexpected server outages. This is similar
to the impact of implementing Chaos Monkey within
your environment.

Kafka is becoming very popular as a messaging solution,
and along with it, Kafka Streams is at the forefront
of the wave of interest in streaming architectures.
Unfortunately, as they start to embed Kafka at the heart
of their data and application platforms, we’re seeing
some organizations RECREATING ESB ANTIPATTERNS
WITH KAFKA by centralizing the Kafka ecosystem
components — such as connectors and stream
processors — instead of allowing these components
to live with product or service teams. This reminds us
of seriously problematic ESB antipatterns, where more
and more logic, orchestration and transformation
were thrust into a centrally managed ESB, creating a
significant dependency on a centralized team. We’re
calling this out to dissuade further implementations of
this flawed pattern.

http://linkerd.io/
http://istio.io/
http://istio.io/
http://linkerd.io/
http://github.com/envoyproxy/envoy
http://builttoadapt.io/the-three-r-s-of-enterprise-security-rotate-repave-and-repair-f64f6d6ba29d
https://thoughtworks.com/radar/tools/chaos-monkey
https://thoughtworks.com/radar/platforms/kafka-streams

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 11

Since we last mentioned KUBERNETES in the Radar, it
has become the default solution for most of our clients
when deploying containers into a cluster of machines.
The alternatives didn’t capture as much mindshare,
and in some cases our clients are even changing their
‘engine’ to Kubernetes. Kubernetes has become the
container orchestration platform of choice for major
public cloud platforms, including Microsoft’s Azure
Container Service and Google Cloud (see the GKE blip).
And there are many useful products enriching the fast-
growing Kubernetes ecosystem. Platforms that try to
hide Kubernetes under an abstraction layer, however,
have yet to prove themselves.

We’re seeing increased adoption of .NET CORE, the
open source cross-platform software framework. .NET
Core enables the development and deployment of .NET
applications on Windows, macOS and Linux. With the
release of .NET Standard 2.0 increasing the number
of standard APIs across .NET platforms, the migration

path to .NET Core has become clearer. Issues related
to library support on .NET Core are becoming less
problematic, and first-class cross-platform tooling is
now available, allowing for productive development on
non-Windows platforms. Blessed Docker images are
provided to make it easy to integrate .NET Core services
into a containerized environment. Positive directions in
the community and feedback from our projects indicate
that .NET Core is ready for widespread use.

Load testing became easier with the maturity of tools
such as Gatling and Locust. At the same time, elastic
cloud infrastructures make it possible to simulate a
large number of client instances. We’re delighted to
see Flood and other cloud platforms go further by
leveraging these technologies. FLOOD IO is an SaaS
load-testing service that helps to distribute and execute
testing scripts across hundreds of servers in the cloud.
Our teams find it simple to migrate performance testing
to Flood by reusing existing Gatling scripts.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

PLATFORMS
ADOPT
26.	 Kubernetes

TRIAL
27.	 .NET Core
28.	 AWS Device Farm
29.	 Flood IO NEW
30.	 Google Cloud Platform NEW
31.	 Keycloak
32.	 OpenTracing
33.	 Unity beyond gaming
34.	 WeChat NEW

ASSESS
35.	 Azure Service Fabric NEW
36.	 Cloud Spanner NEW
37.	 Corda NEW
38.	 Cosmos DB NEW
39.	 DialogFlow
40.	 GKE NEW
41.	 Hyperledger
42.	 Kafka Streams
43.	 Language Server Protocol NEW
44.	 LoRaWAN NEW
45.	 MapD NEW
46.	 Mosquitto
47.	 Netlify NEW
48.	 PlatformIO
49.	 TensorFlow Serving NEW
50.	 Voice platforms
51.	 Windows Containers NEW

HOLD
52.	 Overambitious API gateways

https://thoughtworks.com/radar/platforms/gke
http://www.microsoft.com/net/core
http://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-standard-2-0/
http://www.jetbrains.com/rider/
https://thoughtworks.com/radar/tools/gatling
https://thoughtworks.com/radar/tools/locust
http://flood.io/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 12

As GOOGLE CLOUD PLATFORM (GCP) has expanded
in terms of available geographic regions and maturity of
services, customers globally can now seriously consider
it for their cloud strategy. In some areas, GCP has
reached feature parity with its main competitor, Amazon
Web Services, while in other areas it has differentiated
itself — notably with accessible machine learning
platforms, data engineering tools, and a workable
Kubernetes as a service solution (GKE). In practice,
our teams have nothing but praise for the developer
experience working with the GCP tools and APIs.

Google Cloud Platform (GCP) has expanded
in terms of available geographic regions and
maturity of services and it’s now a serious
consideration in cloud strategy globally.
(Google Cloud Platform)

In a microservice, or any other distributed architecture,
one of the most common needs is to secure
the services or APIs through authentication and
authorization features. This is where KEYCLOAK comes
in. Keycloak is an open source identity and access
management solution that makes it easy to secure
applications or microservices with little to no code.
It supports single sign-on, social login and standard
protocols such as OpenID Connect, OAuth 2.0 and
SAML out of the box. Our teams have been using
this tool and plan to keep using it for the foreseeable
future. But it requires a little work to set up. Because
configuration happens both at initialization and at
runtime through APIs, it’s necessary to write scripts to
ensure deployments are repeatable.

In previous Radars, we mentioned that Unity has
become the platform of choice for VR and AR
application development because it provides the
abstractions and tooling of a mature platform, while
being more accessible than its main alternative, the
Unreal Engine. With the recent introductions of ARKit
for iOS and ARCore for Android, the two main mobile
platforms now have powerful native SDKs for building
augmented reality applications. Yet, we feel that many
teams, especially those without deep experience in
building games, will benefit from using an abstraction
such as Unity, which is why we’re calling out UNITY
BEYOND GAMING. This allows developers unfamiliar
with the technology to focus on one SDK. It also offers

a solution for the huge number of devices, especially
on the Android side, that are not supported by the
native SDKs.

WECHAT, often seen as a WhatsApp equivalent, is
becoming the de facto business platform in China.
Many people may not know but WeChat is also one of
the most popular online payment platforms. With the
app’s built-in CMS and membership management, small
businesses are now conducting their commerce entirely
on WeChat. Through the Service Account feature, large
organizations can interface their internal system to
their employees. Given that more than 70 percent of
Chinese people are using WeChat, it’s an important
consideration for businesses that want to expand into
the China market.

AZURE SERVICE FABRIC is a distributed systems
platform built for microservices and containers.
It’s comparable to container orchestrators such as
Kubernetes, but also works with plain old services. It
can be used in a bewildering array of ways, starting
from simple services in your language of choice to
Docker containers or services built using an SDK. Since
its release a couple of years ago, it has steadily added
more features, including Linux container support.
Kubernetes has been the poster child of container
orchestration tools, but Service Fabric is the default
choice for .NET applications. We’re using it in a few
projects at ThoughtWorks and we like what we’ve seen
so far.

CLOUD SPANNER is a fully managed relational
database service offering high availability and strong
consistency without compromising latency. Google has
been working on a globally distributed database called
Spanner for quite some time. It has recently released
the service to the outside world as Cloud Spanner.
You can scale your database instance from one to
thousands of nodes across the globe without worrying
about data consistency. By levering TrueTime, a highly
available and distributed clock, Cloud Spanner provides
strong consistency for reads and snapshots. You can
use standard SQL to read data from Cloud Spanner,
but for write operations you have to use their RPC
API. Although not all services would require a global-
scale distributed database, the general availability of
Cloud Spanner is a big shift in the way we think about
databases. And its design is influencing open source
products such as CockroachDB.

http://cloud.google.com/free/ce1/
https://thoughtworks.com/radar/platforms/gke
https://www.thoughtworks.com/radar/techniques/microservices
http://www.keycloak.org/
http://openid.net/connect/
http://oauth.net/2/
http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://unity3d.com/
https://thoughtworks.com/radar/platforms/kubernetes
http://cloud.google.com/spanner/
http://cloud.google.com/spanner/docs/true-time-external-consistency
http://github.com/cockroachdb/cockroach

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 13

After thorough exploration, R3, an important player in
the blockchain space, realized that blockchain doesn’t
fit their purpose well, so they created CORDA. Corda
is a distributed ledger technology (DLT) platform
focused on the financial field. R3 have a very clear value
proposition and know that their problem requires a
pragmatic technology approach. This matches our own
experience; current blockchain solutions may not be
the reasonable choice for some business cases, due to
mining costs and operational inefficiency. Although the
development experience we have on Corda thus far
has not been the smoothest, APIs are still unstable after
v1.0 release, we expect to see the DLT space mature
further.

COSMOS DB is Microsoft’s globally distributed,
multimodel database service, which became generally
available earlier this year. While most modern NoSQL
databases offer tunable consistency, Cosmos DB makes
it a first-class citizen and offers five different consistency
models. It’s worth highlighting that it also supports
multiple models — key value, document, column
family and graph — all of which map to its internal
data model, called atom-record-sequence (ARS). One
interesting aspect of Cosmos DB is that it offers service
level agreements (SLAs) on its latency, throughput,
consistency and availability. With its wide range of
applicability, it has set a high standard for other cloud
vendors to match.

In parallel with the recent surge of chatbots and voice
platforms, we’ve seen a proliferation of tools and
platforms that provide a service to extract intent from
text and management of conversational flows that you
can hook into. DIALOGFLOW (formerly API.ai), which
was acquired by Google, is one such ‘natural-language-
understanding as a service’ offering that competes
with wit.ai and Amazon Lex among other players in this
space.

While the software development ecosystem is
converging on Kubernetes as the orchestration
platform for containers, running Kubernetes clusters
remains operationally complex. GKE (Google Container
Engine) is a managed Kubernetes solution for
deploying containerized applications that alleviates
the operational overhead of running and maintaining
Kubernetes clusters. Our teams have had a good
experience using GKE, with the platform doing the
heavy lifting of applying security patches, monitoring
and auto-repairing the nodes, and managing

multicluster and multiregion networking. In our
experience, Google’s API-first approach in exposing
platform capabilities, as well as using industry standards
such as OAuth for service authorization, improve the
developer experience. It’s important to consider that
GKE is under rapid development which, despite the
developers’ best efforts to abstract consumers from
underlying changes, has impacted us temporarily in the
past. We’re expecting continuous improvement around
maturity of Infrastructure as code with Terraform on
GKE and similar tools.

Language servers pull features such
as autocomplete, finding callers and
refactoring into an API that allows any text
editor to work with the language’s abstract
syntax tree.
(Language Server Protocol)

KAFKA STREAMS is a lightweight library for building
streaming applications. It’s been designed with the
goal of simplifying stream processing enough to
make it easily accessible as a mainstream application
programming model for asynchronous services. It can
be a good alternative in scenarios where you want to
apply a stream processing model to your problem,
without embracing the complexity of running a cluster
(usually introduced by full-fledged stream processing
frameworks). New developments include ‘exactly once’
stream processing in a Kafka cluster. This was achieved
by introducing idempotency in Kafka producers and
allowing atomic writes across multiple partitions using
the new Transactions API.

Much of the power of sophisticated IDEs comes from
their ability to parse a program into an abstract syntax
tree (AST) and then use that AST for program analysis
and manipulation. This supports features such as
autocomplete, finding callers and refactoring. Language
servers pull this capability into a process that allows
any text editor to access an API to work with the AST.
Microsoft has led the creation of the LANGUAGE
SERVER PROTOCOL (LSP), harvested from their
OmniSharp and TypeScript Server projects. Any editor
that uses this protocol can work with any language that
has an LSP-compliant server. This means we can keep
using our favorite editors without forgoing the rich
text editing modes of many languages — much to the
delight of our Emacs addicts.

http://www.corda.net/
http://docs.corda.net/releases/release-V1.0/api-index.html#internal-apis-and-stability-guarantees
http://docs.corda.net/releases/release-V1.0/api-index.html#internal-apis-and-stability-guarantees
http://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://thoughtworks.com/radar/platforms/voice-platforms
https://thoughtworks.com/radar/platforms/voice-platforms
http://github.com/dialogflow
https://thoughtworks.com/radar/platforms/wit-ai
http://aws.amazon.com/lex/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/infrastructure-as-code
http://www.terraform.io/docs/providers/google/r/container_cluster.html
http://www.terraform.io/docs/providers/google/r/container_cluster.html
http://github.com/Microsoft/language-server-protocol
http://github.com/Microsoft/language-server-protocol
http://langserver.org/#implementations-client
http://langserver.org/#implementations-server

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 14

LORAWAN is a low-power wide-area network,
designed for low-power consumption and
communication over long distances using low bitrates.
It provides for communication between devices and
gateways, which can then forward the data to, for
example, applications or servers. A typical usage is for
a distributed set of sensors, or for Internet of Things
(IoT) devices, for which long battery life and long-range
communication is a must. LoRaWAN addresses two of
the key problems with attempting to use normal Wi-Fi
for such applications: range and power consumption.
There are several implementations, a notable one
being The Things Network, a free, open source
implementation.

As we move from experimental use to
production, we need a reliable way to host
and deploy machine learning models that
can be accessed remotely and scale with the
number of consumers.
(TensorFlow Serving)

MAPD is an in-memory columnar analytic database
with SQL support that’s built to run on GPU. We
debated whether the database workload is actually
I/O or computationally bound but there are instances
where the parallelism of the GPU, combined with the
large bandwidth of VRAM, can be quite useful. MapD
transparently manages the most frequently used data
in VRAM (such as columns involved in group-by, filters,
calculations and join conditions) and stores the rest
of the data in the main memory. With this memory
management setup, MapD achieves significant query
performance without the need of indexes. Although
there are other GPU database vendors, MapD is
leading this segment with the recent open source
release of its core database and through the GPU
Open Analytics Initiative. If your analytical workload
is computationally heavy, can exploit GPU parallelism
and can fit in the main memory, we recommend
assessing MapD.

We like simple tools that solve one problem really well,
and NETLIFY fits this description nicely. You can create
static website content, check it into GitHub and then
quickly and easily get your site live and available. There
is a CLI available to control the process; content delivery

networks (CDNs) are supported; it can work alongside
tools such as Grunt; and, most importantly, Netlify
supports HTTPS.

Machine-learning models are starting to creep into
everyday business applications. When enough training
data is available, these algorithms can address problems
that might have previously required complex statistical
models or heuristics. As we move from experimental
use to production, we need a reliable way to host and
deploy the models that can be accessed remotely and
scale with the number of consumers. TENSORFLOW
SERVING addresses part of that problem by exposing a
remote gRPC interface to an exported model; this allows
a trained model to be deployed in a variety of ways.
TensorFlow Serving also accepts a stream of models to
incorporate continuous training updates, and its authors
maintain a Dockerfile to ease the deployment process.
Presumably, the choice of gRPC is to be consistent
with the TensorFlow execution model; however, we’re
generally wary of protocols that require code generation
and native bindings.

Microsoft is catching up in the container space with
WINDOWS CONTAINERS. At the time of writing,
Microsoft provides two Windows OS images as Docker
containers, Windows Server 2016 Server Core and
Windows Server 2016 Nano Server. Although there
is room for improvement for Windows Containers,
for instance, decreasing the large image sizes, and
enriching ecosystem support and documentation, our
teams have started using them in scenarios where
other containers have been working successfully, such
as build agents.

We remain concerned about business logic and
process orchestration implemented in middleware,
especially where it requires expert skills and tooling
while creating single points of scaling and control.
Vendors in the highly competitive API gateway market
are continuing this trend by adding features through
which they attempt to differentiate their products. This
results in OVERAMBITIOUS API GATEWAY products
whose functionality — on top of what is essentially a
reverse proxy — encourages designs that continue to
be difficult to test and deploy. API gateways do provide
utility in dealing with some specific concerns — such
as authentication and rate limiting — but any domain
smarts should live in applications or services.

http://www.thethingsnetwork.org/
http://www.mapd.com/
http://gpuopenanalytics.com/
http://gpuopenanalytics.com/
http://www.netlify.com/
http://gruntjs.com/
http://www.tensorflow.org/serving/
http://www.tensorflow.org/serving/
http://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
http://hub.docker.com/r/microsoft/windowsservercore/
http://hub.docker.com/r/microsoft/nanoserver/
https://thoughtworks.com/radar/techniques/docker-for-builds

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 15

Our teams very much like the hosted CI/CD tool
BUILDKITE for its simplicity and quick setup. With
Buildkite, you provide your own machines to execute
builds — on premise or in the cloud — and install a
lightweight agent application to connect the build agent
to the hosted service. In many cases, having this level of
control over the configuration of your build agents is a
plus when compared to using hosted agents.

CIRCLECI is a continuous integration engine offered
as SaaS and on premise. CircleCI has been the go-to
SaaS CI tool for many of our development teams, who
needed a low-friction and easy-to-setup build and
deployment pipeline. CircleCI version 2.0 supports
workflows of build jobs, with fan-in and fan-out flows
and manual gates, as well as mobile development. It
allows developers to run the pipelines locally and easily
integrates with Slack and other notification and alerting
systems. We recommend you take a closer look at the
security practices of CircleCI, just as you would with any
other SaaS product that hosts your company’s assets.

A descendant of pass, gopass adds features
such as support for recipient management
and multiple password stores in a single
tree; an interactive search functionality; time-
based one-time password (TOTP) support;
and storage of binary data.
(gopass)

GOPASS is a password management solution for
teams, built on GPG and Git. It’s a descendant of
pass and adds features such as: support for recipient
management and multiple password stores in a single
tree; an interactive search functionality; time-based
one-time password (TOTP) support; and storage of
binary data. Migration of your pass store is fairly
straightforward, because gopass is largely compatible
with the format pass uses. This also means integration
into provisioning workflows can be achieved with a
single call to a stored secret.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

TOOLS
ADOPT
53.	 fastlane

TRIAL
54.	 Buildkite NEW
55.	 CircleCI NEW
56.	 gopass NEW
57.	 Headless Chrome for front-end test NEW
58.	 jsoniter NEW	
59.	 Prometheus
60.	 Scikit-learn
61.	 Serverless Framework

ASSESS
62.	 Apex NEW
63.	 assertj-swagger NEW
64.	 Cypress NEW
65.	 Flow NEW
66.	 InSpec
67.	 Jupyter NEW
68.	 Kong API Gateway NEW
69.	 kops NEW
70.	 Lighthouse NEW
71.	 Rendertron NEW
72.	 Sonobuoy NEW
73.	 spaCy
74.	 Spinnaker
75.	 Spring Cloud Contract NEW
76.	 Yarn

HOLD

http://buildkite.com/
http://circleci.com/
http://circleci.com/security/
http://www.justwatch.com/gopass/
https://thoughtworks.com/radar/tools/git
http://www.passwordstore.org/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 16

Since mid-2017, Chrome users have had the option of
running the browser in headless mode. This feature
is ideally suited to running front-end browser tests
without the overhead of displaying actions on a screen.
Previously, this was largely the province of PhantomJS
but Headless Chrome is rapidly replacing the JavaScript-
driven WebKit approach. Tests in Headless Chrome
should run much faster, and behave more like a
real browser, but our teams have found that it does
use more memory than PhantomJS. With all these
advantages, HEADLESS CHROME FOR FRONT-END
TEST is likely to become the de facto standard.

If you’re looking for a JSON encoder/decoder with high
performance in Go and Java, check out the open source
JSONITER library. The library is compatible with the
standard JSON encoding package in Go.

We’ve seen continuing improvements in and
an uptick in adoption of Prometheus, the
monitoring and time series database tool
originally developed by Soundcloud.
(Prometheus)

We’ve seen both continuing improvements in and an
uptick in adoption of PROMETHEUS, the monitoring
and time series database tool originally developed by
Soundcloud. Prometheus primarily supports a pull-
based HTTP model but it also supports alerts, making
it an active part of your operational toolset. As of this
writing, Prometheus 2.0 is in prerelease, and continues
to evolve. Prometheus developers have focused their
efforts on core time series databases and the variety of
metrics available. Grafana has become the dashboard
visualization tool of choice for Prometheus users and
support for Grafana ships with the tool. Our teams also
find that Prometheus monitoring nicely complements
the indexing and search capabilities of an Elastic Stack.

APEX is a tool to build, deploy and manage AWS
Lambda functions with ease. With Apex, you can
write functions in languages that are not yet natively
supported in AWS, including Golang, Rust and others.
This is made possible by a Node.js shim, which creates
a child process and processes events through stdin and
stdout. Apex has a lot of nice features that improve the
developer experience, and we particularly like the ability
to test functions locally and perform a dry run of the
changes before they’re applied to AWS resources.

An AssertJ library, ASSERTJ-SWAGGER enables you to
validate an API implementation’s compliance with its
contract specification. Our teams use assertj-swagger to
catch problems when the API endpoint implementation
changes without updating its Swagger specification, or
fails to publish the updated documentation.

Fixing end-to-end test failures in CI can be a painful
experience, especially in headless mode. CYPRESS is a
useful tool that helps developers build end-to-end tests
easily and records all test steps as a video in an MP4
file. Instead of reproducing the issue in headless mode,
developers can watch the testing video in order to fix
it. Cypress is a powerful platform, not only a testing
framework. Currently, we’ve integrated its CLI with
headless CI in our projects.

FLOW is a static type checker for JavaScript that
allows you to add type checking across the codebase
incrementally. Unlike Typescript, which is a different
language, Flow can be added incrementally to an
existing JavaScript codebase supporting the 5th, 6th and
7th editions of ECMAScript. We suggest adding Flow to
your continuous integration pipeline, starting with the
code that concerns you most. Flow adds to the clarity
of the code, increases the reliability of refactoring and
catches type-related bugs early during the build.

Over the last couple of years, we’ve noticed a steady
rise in the popularity of analytics notebooks. These
are Mathematica-inspired applications that combine
text, visualization and code in a living, computational
document. In a previous edition, we mentioned
GorillaREPL, a Clojure variant of these. But increased
interest in machine learning — along with the
emergence of Python as the programming language
of choice for practitioners in this field — has focused
particular attention on Python notebooks, of which
JUPYTER seems to be gaining the most traction among
ThoughtWorks teams.

Kong is an open source API gateway built and
sponsored by Mashape, who also provide an enterprise
offering integrating Kong with their proprietary API
analytics and developer portal tools. They can be
deployed in a variety of configurations, as an edge API
gateway or an internal API proxy. OpenResty, through
its Nginx modules, provides a strong and performant
foundation, with Lua plugins for extensions. Kong can
either use PostgreSQL for single region deployments
or Cassandra for multiregion configurations. Our

http://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
http://jsoniter.com/
http://golang.org/pkg/encoding/json/
http://prometheus.io/
https://thoughtworks.com/radar/tools/grafana
http://github.com/apex/apex
http://github.com/apex/apex#features
https://thoughtworks.com/radar/languages-and-frameworks/assertj
http://github.com/RobWin/assertj-swagger
https://thoughtworks.com/radar/tools/swagger
http://www.cypress.io/
http://flow.org/
https://thoughtworks.com/radar/tools/gorilla-repl
http://jupyter.org/
http://getkong.org/
http://github.com/Kong/kong
http://openresty.org/en/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 17

developers have enjoyed Kong’s high performance,
its API-first approach (which enables automation of
its configuration) and its ease of deployment as a
container. KONG API GATEWAY, unlike overambitious
API gateways, has a smaller set of features but it
implements the essential set of API gateway capabilities
such as traffic control, security, logging, monitoring
and authentication. We’re excited to assess Kong in a
sidecar configuration in the near future.

KOPS is a command line tool for creating and managing
high-availability production Kubernetes clusters. Initially
targeting AWS, it now has experimental support for
other providers. It can get you up and running fast, and
even though a few features (such as rolling upgrades)
have yet to be fully developed, we’ve been impressed by
the community.

LIGHTHOUSE is a tool written by Google to assess
web applications for adherence to Progressive Web
App standards. This year’s Lighthouse 2.0 release adds
performance metrics and accessibility checks to the
basic toolset. This added functionality has now been
incorporated into the standard Chrome developer
tools under the audit tab. Lighthouse 2.0 is yet another
beneficiary of Chrome’s headless mode. This provides
an alternative to Pa11y and similar tools for running
accessibility checks in a continuous integration pipeline,
since the tool can be run from the command line or
standalone as a Node.js application.

A perennial problem for JavaScript-heavy web
applications is how to make the dynamic portion of
those pages available to search engines. Historically,
developers have resorted to a variety of tricks, including
server-side rendering with React, external services
or prerendering content. Now Google Chrome’s new
headless mode adds a new ‘trick’ to the toolbox —
RENDERTRON, a headless Chrome rendering solution.
Rendertron wraps an instance of headless Chrome in a
Docker container, ready to deploy as a standalone HTTP
server. Bots that don’t render JavaScript can be routed

to this server to do the rendering for them. Although
developers can always deploy their own headless
Chrome proxy and associated routing machinery,
Rendertron simplifies the configuration and deployment
process, and provides example middleware code for
detecting and routing bots.

A perennial problem for JavaScript-heavy web
applications is how to make the dynamic
portion of those pages available to search
engines. Bots that don’t render JavaScript can
be routed to a Rendertron server to do the
rendering for them.
(Rendertron)

SONOBUOY is a diagnostic tool for running end-to-
end conformance tests on any Kubernetes cluster
in a nondestructive way. The team at Heptio, which
was founded by two creators of the Kubernetes
projects, built this tool to ensure that the wide array
of Kubernetes distributions and configurations
conform to the best practices, while following the
open source standardization for interoperability of
clusters. We’re experimenting with Sonobuoy to run
as part of our infrastructure as code build pipeline,
as well as continuous monitoring of our Kubernetes
installations, to validate the behavior and health of the
whole cluster.

If you’re implementing Java services using the Spring
framework, you may want to consider SPRING CLOUD
CONTRACT for consumer-driven contract testing. The
current ecosystem of this tool supports verification of
the client calls and the server implementation against
the contract. In comparison to Pact, an open source
consumer-driven contract testing tool set, it lacks the
brokering of the contracts and the support for other
programming languages. However, it integrates well
with the Spring ecosystem, for instance message
routing with Spring Integration.

https://thoughtworks.com/radar/platforms/overambitious-api-gateways
https://thoughtworks.com/radar/platforms/overambitious-api-gateways
http://github.com/kubernetes/kops
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/techniques/progressive-web-applications
https://thoughtworks.com/radar/techniques/progressive-web-applications
https://thoughtworks.com/radar/tools/pa11y
https://thoughtworks.com/radar/languages-and-frameworks/react-js
http://github.com/GoogleChrome/rendertron
http://heptio.com/opensource/#heptio-sonobuoy
https://thoughtworks.com/radar/platforms/kubernetes
http://heptio.com/
https://thoughtworks.com/radar/tools/infrastructure-as-code
http://spring.io/
http://cloud.spring.io/spring-cloud-contract/
http://cloud.spring.io/spring-cloud-contract/
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/tools/pact-pacto
http://projects.spring.io/spring-integration/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 18

In previous Radar editions, we’ve been hesitant to
give ANGULAR a strong recommendation because
it was essentially a new, and on the whole unexciting,
framework, sharing only its name with AngularJS, an
older framework we loved in days past. In the meantime,
Angular, now in version 5, has improved steadily while
providing backward compatibility along the way. Several
of our teams have Angular applications in production and
reportedly, they like what they see. For this reason, we’re
moving Angular into the Trial ring in this Radar, to signify
that some of our teams now consider it a solid choice.
Most of our teams, however, still prefer React, Vue or
Ember over Angular.

ASSERTJ is a Java library that provides a fluent interface
for assertions, which makes it easy to convey intent
within test code. AssertJ gives readable error messages,

soft assertions, and improved collections and exception
support. We’re seeing some teams default to its use
instead of JUnit combined with Hamcrest.

CSS Grid Layout is a two-dimensional
grid-based layout system that provides a
mechanism to divide available space for
layout into columns and rows using a set of
predictable sizing behaviors.
(CSS Grid Layout)

CSS is the preferred choice for laying out web pages,
even when it did not provide much explicit support for
creating layouts. Flexbox helped with simpler, one-
dimensional layouts, but developers usually reached for

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

1

7
9

10 11

12

2

13

14

15

17

18

19

24

20

3

4
5

6

8
16

21

22

23

25

53
60

73

74

7661

66

55
54

62

63
64

65

67
68

69

70
71

72

75

56

57 58

59

28

41

46

48
50

32

26
27

35

36

37

38

39

40

42

43

44

45

47
49

51

52

29

30

31

33

34

77

80

89

96

99

97

78

79

81

82

86

87
90

91
92

93 94
95

98

100

101

102
103

104

105

88

83
84

85

LANGUAGES & FRAMEWORKS
ADOPT
77.	 Python 3

TRIAL
78.	 Angular
79.	 AssertJ NEW
80.	 Avro
81.	 CSS Grid Layout NEW
82.	 CSS Modules NEW
83.	 Jest NEW
84.	 Kotlin
85.	 Spring Cloud

ASSESS
86.	 Android Architecture Components NEW
87.	 ARKit/ARCore NEW
88.	 Atlas and BeeHive NEW
89.	 Caffe
90.	 Clara rules NEW
91.	 CSS-in-JS NEW
92.	 Digdag NEW
93.	 Druid NEW
94.	 ECharts NEW
95.	 Gobot NEW
96.	 Instana
97.	 Keras
98.	 LeakCanary NEW
99.	 PostCSS
100.	 PyTorch NEW
101.	 single-spa NEW
102.	 Solidity NEW
103.	 TensorFlow Mobile NEW
104.	 Truffle NEW
105.	 Weex NEW

HOLD

https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
http://joel-costigliola.github.io/assertj/index.html
http://martinfowler.com/bliki/FluentInterface.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 19

libraries and toolkits for more complex layouts.
CSS GRID LAYOUT is a two-dimensional grid-based
layout system that provides a mechanism to divide
available space for layout into columns and rows using
a set of predictable sizing behaviors. Grid does not
require any libraries and plays well with Flexbox and
other CSS display elements. However, since IE11 is only
partially supported, it ignores users who still depend on
a Microsoft browser on Windows 7.

Most large CSS codebases require complex naming
schemes to help avoid naming conflicts in the global
namespace. CSS MODULES address these problems
by creating a local scope for all class names in a single
CSS file. This file is imported to a JavaScript module,
where CSS classes are referenced as strings. Then, in
the build pipeline (Webpack, Browserify, etc.), the class
names are replaced with generated unique strings. This
is a significant change in responsibilities. Previously, a
human had to manage the global namespace, to avoid
class naming conflicts; now that responsibility rests with
the build tooling. A small downside we’ve encountered
with CSS Modules: functional tests are usually out of the
local scope and can therefore not reference classes by
the name defined in the CSS file. We recommend using
IDs or data attributes instead.

Jest is a ‘zero configuration’ front-end testing
tool with out-of-the-box features such as
mocking and code coverage, targeted at
React and other JavaScript frameworks.
(Jest)

Our teams are delighted with the results of using JEST
for front-end testing. It provides a ‘zero-configuration’
experience and has out-of-the-box features such as
mocking and code coverage. You can apply this testing
framework not only to React applications, but also
to other JavaScript frameworks. One of Jest’s often
hyped features is UI snapshot testing. Snapshot testing
would be a good addition to the upper layer of the test
pyramid, but remember, unit testing is still the solid
foundation.

The announcement of first-class Android support has
given an extra boost to the rapidly progressing KOTLIN
language, and we’re closely following the progress of
Kotlin/Native — the LLVM-backed ability to compile
to native executables. Null safety, data classes and

the ease of creating DSLs are some of the benefits
we’ve enjoyed, along with the Anko library for Android
development. Despite the downsides of slow initial
compilation and reliance on IntelliJ for first-class IDE
support, we recommend giving this fresh and concise
modern language a try.

SPRING CLOUD continues to evolve and add interesting
new features. Support for binding to Kafka Streams, for
example, in the spring-cloud-streams project makes
it relatively easy to build message driven applications
with connectors for Kafka and RabbitMQ. The teams we
have using it appreciate the simplicity it brings to using
sometimes complex infrastructure, such as ZooKeeper,
and support for common problems that we need to
address when building distributed systems, tracing
with the spring-cloud-sleuth for example. The usual
caveats apply but we’re successfully using it on multiple
projects.

Historically, Google’s Android documentation examples
lacked architecture and structure. This changes with the
release of ANDROID ARCHITECTURE COMPONENTS,
a set of opinionated libraries that help developers
create Android applications with better architecture.
They address longstanding pain points of Android
development: handling lifecycles; pagination; SQLite
databases; and data persistence over configuration
changes. The libraries don’t need to be used together
— you can pick the ones you need most and integrate
them into your existing project.

We’ve seen a flurry of activity in mobile augmented
reality much of it fueled by ARKIT AND ARCORE,
the native AR libraries used by Apple and Google,
respectively. These libraries are bringing mobile AR
technologies to the mainstream. However, the challenge
will be for companies to find use cases that go beyond
gimmicky and provide genuine solutions that actually
enhance the user experience.

A multi-app strategy is really controversial, particularly
at a time when fewer and fewer users are downloading
new apps. Instead of introducing a new app and
struggling with the download numbers, multiteams
have to deliver functionality via a single app that is
already widely installed, which creates an architectural
challenge. ATLAS AND BEEHIVE are modularization
solutions for Android and iOS apps, respectively. Atlas
and BeeHive enable multiteams working on physically
isolated modules to reassemble or dynamically load

http://www.w3.org/TR/css-grid-1
http://caniuse.com/#search=css%20grid%20layout
http://github.com/css-modules/css-modules
http://facebook.github.io/jest/
https://showcase.webteam.thoughtworks.com/radar/languages-and-frameworks/react-js
http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html
http://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/
http://github.com/Kotlin/anko
http://projects.spring.io/spring-cloud/
https://thoughtworks.com/radar/platforms/kafka-streams
http://zookeeper.apache.org/
http://cloud.spring.io/spring-cloud-sleuth/
http://developer.apple.com/arkit/
http://developers.google.com/ar/
http://github.com/alibaba/atlas
http://github.com/alibaba/BeeHive

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 20

these modules from a facade app. Both are Alibaba
open source projects, since Alibaba encountered the
same problem of dwindling downloads and single-app
architectural challenges.

Our first rule of thumb in selecting a rules engine is
normally: you don’t need a rules engine. We’ve seen too
many people tying themselves to a hard-to-test black-
box rules engine for spurious reasons, when custom
code would have been a better solution. That said,
we’ve had success using CLARA RULES for scenarios
where a rules engine does make sense. We like that it
uses simple Clojure code to express and evaluate the
rules, which means they are amenable to refactoring,
testing and source control. Rather than chasing the
illusion that business people should directly manipulate
the rules, it drives collaboration between the business
experts and developers.

CSS IN JS is a technique of writing CSS styling in the
JavaScript programming language. This encourages
a common pattern of writing the styling with the
JavaScript component it applies to, co-locating
presentational and logical concerns. The new players
— including JSS, emotion and styled-components —
rely on the tooling to translate the CSS-in-JS code to
separate CSS stylesheets, to make them suitable for
browser consumption. This is the second-generation
approach to writing CSS in JavaScript and unlike the
previous approaches doesn’t rely on in-line styles. That
means it provides the benefit of supporting all CSS
features, sharing of CSS using the npm ecosystem and
utilization of components across multiple platforms.
Our teams have found styled-components working well
with component-based frameworks, such as React,
and unit testing of CSS with jest-styled-components.
This space is new and rapidly changing; the approach
requires some effort for manual debugging of the
generated class names in the browser, and it may not
apply to some projects where the front-end architecture
does not support reusing components and requires
global styling.

DIGDAG is a tool for building, running, scheduling and
monitoring complex data pipelines in the cloud. You
can define these pipelines in YAML, using either the
rich set of out-of-the-box operators or building your
own through the API. Digdag has most of the common
features in a data pipeline solution such as dependency
management, modular workflow to promote reuse,
secured secret management and multilingual support.

The feature we’re most excited about is polycloud
support, which lets you move and join data across
AWS RedShift, S3, and Google BigQuery. As more and
more cloud providers offer competing data-processing
solutions, we think Digdag (and similar tools) will be
useful in leveraging the best option for the task.

DRUID is a JDBC connection pool with rich monitoring
features. It has a built-in SQL parser, which provides
semantic monitoring of the SQL statements executing in
the database. Injections or suspicious SQL statements
will be blocked and logged directly from the JDBC layer.
What’s more, queries can be merged based on their
semantics. This is an Alibaba open source project, and
reflects the lessons Alibaba learnt from operating their
own database systems.

Android Architecture Components are a set
of opinionated libraries that help developers
create Android applications with better
architecture.
(Android Architecture Components)

ECHARTS is a lightweight charting library with rich
support for different types of charts and interactions.
Since ECharts is entirely based on the Canvas API, it
has incredible performance even when dealing with
over 100k data points, and it’s also been optimized
for mobile usage. Together with its sibling project,
ECharts-X, it can support 3D plotting. ECharts is a Baidu
open source project.

The ability to compile the Go programming language
to bare metal targets has raised interest among
developers in using the language for embedded
systems. GOBOT is a framework for robotics, physical
computing, and the Internet of Things, written in the
Go programming language and supporting a variety of
platforms. We’ve used the framework for experimental
robotic projects where real-time response hasn’t been
a requirement, and we’ve created open source software
drivers with Gobot. Gobot HTTP APIs enable simple
hardware integration with mobile devices to create
richer applications.

Our mobile teams have been excited about
LEAKCANARY, a tool for detecting annoying memory
leaks in Android and Java. It’s simple to hook up and
provides notifications with a clear trace-back to the

http://www.clara-rules.org/
http://github.com/cssinjs/jss
http://github.com/emotion-js/emotion
http://github.com/styled-components/styled-components
https://www.thoughtworks.com/radar/techniques/npm-for-all-the-things
http://github.com/styled-components/styled-components
https://thoughtworks.com/radar/languages-and-frameworks/react-js
http://github.com/styled-components/jest-styled-components
http://www.digdag.io/
https://thoughtworks.com/radar/platforms/bigquery
http://github.com/jilen/druid
http://github.com/ecomfe/echarts
http://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
http://echarts.baidu.com/echarts2/x/doc/index.html
https://thoughtworks.com/radar/languages-and-frameworks/go-language
http://gobot.io/
http://github.com/HendrikLouw/robocar
http://github.com/HendrikLouw/robocar
http://github.com/square/leakcanary

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 21

cause of the leak. Adding this to your toolkit can save
tedious hours troubleshooting out-of-memory errors on
multiple devices.

PYTORCH is a complete rewrite of the Torch machine
learning framework from Lua to Python. Although
quite new and immature compared to Tensorflow,
programmers find PyTorch much easier to work with.
Because of its object-orientation and native Python
implementation, models can be expressed more
clearly and succinctly and debugged during execution.
Although many of these frameworks have emerged
recently, PyTorch has the backing of Facebook and
broad range of partner organisations, including NVIDIA,
which should ensure continuing support for CUDA
architectures. ThoughtWorks teams find PyTorch useful
for experimenting and developing models but still rely
on TensorFlow’s performance for production-scale
training and classification.

SINGLE-SPA is a JavaScript metaframework that allows
us to build micro frontends using different frameworks
that can coexist in a single application. In general, we
don’t recommend using more than one framework for
an application, but there are times when we can’t avoid
doing so. For instance, single-spa can be quite useful
when you’re working with a legacy application and
you want to experiment by developing a new feature,
with either a new version of the existing framework or
a completely different one. Given the short life span
of many JavaScript frameworks, we see a need for a
solution that would allow for future framework changes
and localized experimentation, without affecting the
entire application. single-spa seems to be a good start
in that direction.

Programming for smart contracts requires a more
expressive language than a scripting system for
transactions. SOLIDITY is the most popular among
the new programming languages designed for smart
contracts. Solidity is a contract-oriented, statically
typed language whose syntax is similar to JavaScript. It
provides abstractions for writing self-enforcing business
logic in smart contracts. The toolchain around Solidity
is growing fast. Nowadays, Solidity is the primary choice
on the Ethereum platform. Given the immutable nature
of deployed smart contracts, it should go without saying
that rigorous testing and audit of dependencies is vital.

TENSORFLOW MOBILE makes it possible
for developers to incorporate a wide range of
comprehension and classification techniques into

their iOS or Android applications. This is particularly
useful given the range of sensor data available on
mobile phones. Pretrained TensorFlow models can
be loaded into a mobile application and applied to
inputs such as live video frames, text or speech.
Mobile phones present a surprisingly opportune
platform for implementing these computational
models. TensorFlow models are exported and loaded
as protobuf files, which can present some problems
for implementers. Protobuf’s binary format can make
it hard to examine models and requires that you link
the correct protobuf library version to your mobile
app. But local model execution offers an attractive
alternative to TensorFlow Serving without the
communication overhead of remote execution.

We’ve had success using Clara rules for
scenarios where a rules engine makes sense.
We like that it uses simple Clojure code to
express and evaluate the rules, which means
they are amenable to refactoring, testing and
source control.
(Clara rules)

TRUFFLE is a development framework that brings
a modern web development experience to the
Ethereum platform. It takes over the job of smart
contract compiling, library linking and deployment, as
well as dealing with artifacts in different blockchain
networks. One of the reasons we love Truffle is that
it encourages people to write tests for their smart
contracts. You need to take tests really seriously as
smart contract programming is often related to money.
With its built-in testing framework and integration with
TestRPC, Truffle makes it possible to write the contract
in a TDD way. We expect to see more technologies
similar to Truffle to promote continuous integration in
the blockchain area.

WEEX is a framework for building cross-platform
mobile apps by using the Vue.js component syntax.
For those who prefer the simplicity of Vue.js, Weex
is a viable option for native mobile apps, but it also
works very well for more complicated apps. We see
many successes for fairly complicated mobile apps
built on this framework, including TMall and Taobao,
two of the most popular mobile apps in China. Weex
was developed by Alibaba, and is now an Apache
incubator project.

http://pytorch.org/
http://torch.ch/
https://thoughtworks.com/radar/platforms/tensorflow
http://github.com/CanopyTax/single-spa
https://thoughtworks.com/radar/techniques/micro-frontends
http://en.bitcoin.it/wiki/Script
http://en.bitcoin.it/wiki/Script
http://github.com/ethereum/solidity
https://thoughtworks.com/radar/platforms/ethereum
https://thoughtworks.com/radar/platforms/tensorflow-serving
http://truffleframework.com/
https://thoughtworks.com/radar/platforms/ethereum
http://github.com/ethereumjs/testrpc
http://github.com/alibaba/weex
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
http://www.tmall.com/
http://world.taobao.com/
http://github.com/apache/incubator-weex
http://github.com/apache/incubator-weex

Be the first to know when the Technology Radar
launches, and keep up to date with exclusive

webinars and content.

SUBSCRIBE NOW

thght.works/Sub-EN

https://info.thoughtworks.com/technology-radar-subscription?utm_campaign=tech-radar&utm_medium=download&utm_source=pdf&utm_content=subscribe

ThoughtWorks is a technology consultancy and community of passionate,
purpose-led individuals. We help our clients put technology at the core of their

business, and together create the software that matters most to them. Dedicated
to positive social change; our mission is to better humanity through software, and

we partner with many organisations striving in the same direction.

Founded over 20 years ago, ThoughtWorks has grown to a company of over 4500
people, including a products division which makes pioneering tools for software

teams. ThoughtWorks has 42 offices across 15 countries: Australia, Brazil, Canada,
Chile, China, Ecuador, Germany, India, Italy, Singapore, South Africa, Spain, Turkey,

the United Kingdom and the United States.

thoughtworks.com

https://www.thoughtworks.com/
https://www.thoughtworks.com/

