
TECHNOLOGY
RADAR NOV ‘16

Our thoughts on the
technology and trends that

are shaping the future

thoughtworks.com/radar
#TWTechRadar

https://thoughtworks.com/radar

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 1

“DOCKER AS PROCESS, PAAS AS MACHINE, MICROSERVICES ARCHITECTURE
AS PROGRAMMING MODEL”
The microservices style of architecture highlights rising abstractions in the developer world because of
containerization and the emphasis on low coupling, offering a high level of operational isolation. Developers can think
of a container as a self-contained process and the PaaS as the common deployment target, using the microservices
architecture as the common style. Decoupling the architecture allows the same for teams, cutting down on
coordination cost among silos. Its attractiveness to both developers and DevOps has made this the de facto standard
for new development in many organizations.

WHAT’S NEW?
Here are the themes highlighted in this edition:

AR AND VR EASING TOWARD MAINSTREAM
We see augmented and virtual reality (AR/VR) generating business interest, both technologies that were once relegated
merely to games and novelty. Whereas chasing virtual cartoons brought AR to public attention via mobile SDKs,
hardware such as the Oculus Rift, HTC Vive and Microsoft HoloLens is maturing to the point that early adopters can
reap benefits without fumbling with immature technology. Although software platforms like OpenVR and Unity have
long been mature, new natural language processing (NLP) tools like Nuance Mix and hardware that provides natural
interactions will have a huge impact on the adoption of AR and VR. We are already running VR and AR labs in our offices
to explore future applications like remote interactions or retail wayfinding. Our experiments demonstrate VR as a
surprisingly powerful medium for more empathetic remote collaboration and storytelling due to its ability to bypass
abstraction and immerse users directly in an experience. However, we will see significant challenges in the creation and
delivery of VR and AR content as the skills and capabilities lag behind the pace of hardware, particularly in the enterprise.

INTELLIGENT EMPOWERMENT
Long-time R&D topics like machine learning and artificial intelligence suddenly have practical applications through
frameworks like Nuance Mix and TensorFlow. Developers can download frameworks that range from NLP to machine
learning libraries. We happily observe that companies frequently open source sophisticated libraries and tools in
this space that would have been stratospherically expensive and therefore restricted a decade ago, making them
available to a wide audience of developers. Many factors have evolved and combined to make new tools possible:
commodity computing, targeting specific hardware like GPUs and cloud resources. Perhaps your Big Data hoarding is
starting to pay off....

CONTRIBUTORS
The Technology Radar is prepared by the ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO)

Martin Fowler (Chief Scientist)

Anne J Simmons

Badri Janakiraman

Bharani Subramaniam

Camilla Falconi Crispim

Erik Doernenburg

Evan Bottcher

Fausto de la Torre

Hao Xu

Ian Cartwright

James Lewis

Jiaxing Chen

Jonny LeRoy

Marco Valtas

Mike Mason

Neal Ford

Rachel Laycock

Scott Shaw

Srihari Srinivasan

Zhamak Dehghani

THE HOLISTIC EFFECT OF TEAM STRUCTURE
Team structure has always had a large impact on a wide variety of software development subjects, and has become
an area of increased focus given foundations such as self-service PaaS and microservices. Companies now favor
product thinking over projects; tech companies are popularizing the “you build it, you run it” style of team autonomy,
and we’re seeing the same product thinking applied to enterprise projects. When restructuring teams yields better
results, it illustrates once again that software development is still mostly a communication problem. Building cross-
functional teams increases the beneficial surface area of communication across traditionally segregated job roles,
which in turn removes friction imposed by artificial structures like silos.

https://www3.oculus.com/en-us/rift/
https://www.vive.com/
https://thoughtworks.com/radar/platforms/hololens
https://thoughtworks.com/radar/platforms/openvr
https://thoughtworks.com/radar/platforms/unity-beyond-gaming
https://thoughtworks.com/radar/platforms/nuance-mix
https://thoughtworks.com/radar/platforms/nuance-mix
https://thoughtworks.com/radar/platforms/tensorflow
http://www.thoughtworks.com/profiles/rebecca-parsons
http://www.thoughtworks.com/profiles/martin-fowler
http://www.thoughtworks.com/profiles/anne-j-simmons
http://www.thoughtworks.com/profiles/badrinath-janakiraman
http://www.thoughtworks.com/profiles/bharani-subramaniam
http://www.thoughtworks.com/profiles/camilla-crispim
http://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/fausto-de-la-torre
http://www.thoughtworks.com/profiles/xu-hao
http://www.thoughtworks.com/profiles/ian-cartwright
http://www.thoughtworks.com/profiles/james-lewis
http://www.thoughtworks.com/profiles/jiaxing-chen
http://www.thoughtworks.com/profiles/jonny-leroy
http://www.thoughtworks.com/profiles/marco-valtas
http://www.thoughtworks.com/profiles/mike-mason
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/rachel-laycock
http://www.thoughtworks.com/profiles/scott-shaw
http://www.thoughtworks.com/profiles/srihari-srinivasan
http://www.thoughtworks.com/profiles/zhamak-dehghani

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 2

ABOUT THE TECHNOLOGY RADAR
ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it,
and constantly aim to improve it—for everyone. Our mission is to champion software excellence and revolutionize
IT. We create and share the ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks
Technology Advisory Board, a group of senior technology leaders in ThoughtWorks, creates the radar. They meet
regularly to discuss the global technology strategy for ThoughtWorks and the technology trends that significantly
impact our industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a
wide range of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage
you to explore these technologies for more detail. The radar is graphical in nature, grouping items into techniques,
tools, platforms, and languages & frameworks. When radar items could appear in multiple quadrants, we chose the
one that seemed most appropriate. We further group these items in four rings to reflect our current position on
them. The rings are:

Items that are new or have had significant changes since the last radar are represented as triangles, while items that
have not moved are represented as circles. We are interested in far more items than we can reasonably fit into a
document this size, so we fade many items from the last radar to make room for the new items. Fading an item does
not mean that we no longer care about it.

For more background on the radar, see thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

We feel strongly that the industry should be
adopting these items. We use them when
appropriate on our projects.

Worth pursuing. It is important to
understand how to build up this
capability. Enterprises should try
this technology on a project that can
handle the risk.

Worth exploring
with the goal of
understanding how
it will affect your
enterprise.

Proceed with
caution.

https://thoughtworks.com/radar/faq

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 3

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

THE RADAR
TECHNIQUES
ADOPT
1.	 	 Consumer-driven contract testing
2.	 	 Pipelines as code
3.	 	 Threat Modeling

TRIAL
4.	 	 APIs as a product
5.	 	 Bug bounties
6.	 	 Data Lake
7.	 	 Hosting PII data in the EU
8.	 	 Lightweight Architecture Decision Records
9.	 	 Reactive architectures
10.	 Serverless architecture

ASSESS
11.	 Client-directed query
12.	 Container security scanning
13.	 Content Security Policies
14.	 Differential privacy
15.	 Micro frontends
16.	 OWASP ASVS
17.	 Unikernels
18.	 VR beyond gaming

HOLD
19.	 A single CI instance for all teams
20.	 Anemic REST
21.	 Big Data envy
22.	 Cloud lift and shift

PLATFORMS
ADOPT
23.	 Docker
24.	 HSTS
25.	 Linux security modules

TRIAL
26.	 Apache Mesos
27.	 Auth0
28.	 AWS Lambda
29.	 Kubernetes
30.	 Pivotal Cloud Foundry
31.	 Rancher
32.	 Realm
33.	 Unity beyond gaming

ASSESS
34.	 .NET Core
35.	 Amazon API Gateway
36.	 Apache Flink
37.	 AWS Application Load Balancer
38.	 Cassandra carefully
39.	 Electron
40.	 Ethereum
41.	 HoloLens
42.	 IndiaStack
43.	 Nomad
44.	 Nuance Mix
45.	 OpenVR
46.	 Tarantool
47.	 wit.ai

HOLD
48.	 CMS as a platform
49.	 Overambitious API gateway
50.	 Superficial private cloud

New or moved
No change

new

new

new

new

new
new

new
new

new

new

new
new

new

new

new
new
new

new
new

new

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 4

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

THE RADAR
TOOLS
ADOPT
51.	 Babel
52.	 Consul
53.	 Grafana
54.	 Packer

TRIAL
55.	 Apache Kafka
56.	 Espresso
57.	 fastlane
58.	 Galen
59.	 HashiCorp Vault
60.	 JSONassert
61.	 Let’s Encrypt
62.	 Load Impact
63.	 OWASP Dependency-Check
64.	 Pa11y
65.	 Serverspec
66.	 Talisman
67.	 Terraform
68.	 tmate
69.	 Webpack
70.	 Zipkin

ASSESS
71.	 Android-x86
72.	 axios
73.	 Bottled Water
74.	 Clojure.spec
75.	 FBSnapshotTestcase
76.	 Grasp
77.	 LambdaCD
78.	 Pinpoint
79.	 Pitest
80.	 Repsheet
81.	 Scikit-learn

HOLD
82.	 Jenkins as a deployment pipeline

LANGUAGES & FRAMEWORKS
ADOPT
83.	 Ember.js
84.	 React.js
85.	 Redux
86.	 Spring Boot

TRIAL
87.	 Butterknife
88.	 Dagger
89.	 Dapper
90.	 Elixir
91.	 Enzyme
92.	 Immutable.js
93.	 Phoenix
94.	 Quick and Nimble
95.	 React Native
96.	 Robolectric

ASSESS
97.	 Aurelia
98.	 ECMAScript 2017
99.	 Elm
100.	 GraphQL
101.	 JuMP
102.	 Physical Web
103.	 Rapidoid
104.	 Recharts
105.	 ReSwift
106.	 Three.js
107.	 Vue.js
108.	 WebRTC

HOLD
109.	 AngularJS
110.	 JSPatch

New or moved
No change

new

new

new

new
new

new

new

new

new

new
new

new
new

new

new

new
new

new

new
new

new

new
new

new
new

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 5

We’ve decided to bring consumer-driven contract
testing back from the archive for this edition even though
we had allowed it to fade in the past. The concept isn’t new,
but with the mainstream acceptance of microservices, we
need to remind people that consumer-driven contracts
are an essential part of a mature microservice testing
portfolio, enabling independent service deployments.
But in addition, we want to point out that consumer-
driven contract testing is a technique and an attitude
that requires no special tool to implement. We love
frameworks like Pact because they make proper contract
tests easier to implement in certain contexts. But we have
noticed a tendency for teams to focus on the framework
rather than on the general practice. Writing Pact tests is
not a guarantee that you are creating consumer-driven
contracts; likewise, in many situations you should be
creating good consumer-driven contracts even where no
pre-built testing tool exists.

Teams are pushing for automation across their
environments, including their development
infrastructure. Pipelines as code is defining the

deployment pipeline through code instead of configuring
a running CI/CD tool. LambdaCD, Drone, GoCD and
Concourse are examples that allow usage of this
technique. Also, configuration automation tools for
CI/CD systems like GoMatic can be used to treat the
deployment pipeline as code—versioned and tested.

Businesses have wholeheartedly embraced APIs as a
way to expose business capabilities to both external
and internal developers. APIs promise the ability
to experiment quickly with new business ideas by
recombining core capabilities. But what differentiates an
API from an ordinary enterprise integration service? One
difference lies in treating APIs as a product, even when
the consumer is an internal system. Teams that build
APIs should understand the needs of their customers
and make the product compelling to them. Products
are also improved, maintained and supported over the
long term. They should have an owner who advocates
for the customer and strives for continual improvement.
Products are actively maintained and supported, easy
to find and easy to use. In our experience, a product
orientation is the missing ingredient that makes the
difference between ordinary enterprise integration and
an agile business built on a platform of APIs.

In a number of countries, we see government agencies
seeking broad access to private, personally identifiable
information (PII). The increased use of public cloud
solutions makes it more difficult for organizations to
protect the data entrusted to them by their users while
also respecting all relevant laws. The European Union
has some of the most progressive privacy laws, and
all the major cloud providers—Amazon, Google and
Microsoft—offer multiple data centers and regions
within the European Union. Therefore, we recommend
that companies, especially those with a global user base,
assess the feasibility of a safe haven for their users’ data
by hosting PII data in the EU. Since we wrote about
this technique in the last Radar, we have rolled out a
new internal system that handles sensitive information
relating to all our employees, and we have chosen to
host it in a data center located in the European Union.HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

TECHNIQUES

ADOPT
1.	 		 Consumer-driven contract testing
2.	 		 Pipelines as code
3.	 		 Threat Modeling

TRIAL
4.	 		 APIs as a product
5.	 		 Bug bounties
6.	 		 Data Lake
7.	 		 Hosting PII data in the EU
8.	 		 Lightweight Architecture Decision 	

	 Records
9.	 		 Reactive architectures
10.			 Serverless architecture

ASSESS
11.	 Client-directed query
12.			 Container security scanning
13.			 Content Security Policies
14.			 Differential privacy
15.			 Micro frontends
16.			 OWASP ASVS
17.			 Unikernels
18.			 VR beyond gaming

HOLD
19.	 	A single CI instance for all teams
20.			 Anemic REST
21.			 Big Data envy
22.			 Cloud lift and shift

http://www.martinfowler.com/articles/consumerDrivenContracts.html
http://martinfowler.com/articles/microservice-testing/
https://github.com/realestate-com-au/pact
https://thoughtworks.com/radar/tools/lambdacd
http://readme.drone.io/usage/overview/
https://thoughtworks.com/radar/tools/gocd
https://thoughtworks.com/radar/tools/concourse-ci
https://github.com/SpringerSBM/gomatic

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 6

Although much documentation can be replaced with
highly readable code and tests, in a world of evolutionary
architecture it’s important to record certain design
decisions for the benefit of future team members and
for external oversight. Lightweight Architecture
Decision Records is a technique for capturing important
architectural decisions along with their context and
consequences. Although these items are often stored in
a wiki or collaboration tool, we generally prefer storing
them in source control with simple markup.

Serverless architecture is an approach that replaces
long-running virtual machines with ephemeral
compute power that comes into existence on request
and disappears immediately after use. Since the last
Radar, we have had several teams put applications into
production using a ”serverless” style. Our teams like the
approach; it’s working well for them and we consider it
a valid architectural choice. Note that serverless doesn’t
have to be an all-or-nothing approach: some of our
teams have deployed a new chunk of their systems using
serverless while sticking to a traditional architectural
approach for other pieces.

Although many problems that people encounter with
RESTful approaches to APIs can be attributed to the
anemic REST antipattern, some use cases warrant
exploration of other approaches. In particular,
organizations that have to support a long tail of
client applications (and thus a likely proliferation of
API versions even if they employ consumer-driven
contracts)—and have a large portion of their APIs
supporting the endless-list style of activity feeds—may
hit some limits in RESTful architectures. These can
sometimes be mitigated by employing the client-
directed query approach to client-server interaction.
We see this approach being successfully used in both
GraphQL and Falcor, where clients have more control
over both the contents and the granularity of the data
returned to them. This does put more responsibility
onto the service layer and can still lead to tight
coupling to the underlying data model, but the benefits
may be worth exploring if well-modeled RESTful APIs
aren’t working for you.

The container revolution instigated by Docker has
massively reduced the friction in moving applications
between environments but at the same time has blown
a rather large hole in the traditional controls over what
can go to production. The technique of container

TECHNIQUES continued

security scanning is a necessary response to this
threat vector. Docker now provides its own security
scanning tools, as does CoreOS, and we’ve also had
success with the CIS Security Benchmarks. Whichever
approach you take, we believe the topic of automated
container security validation is of high value and a
necessary part of PaaS thinking.

It has long been known that “anonymized” bulk data
sets can reveal information about individuals, especially
when multiple data sets are cross-referenced together.
With increasing concern over personal privacy, some
companies—including Apple and Google—are turning
to differential privacy techniques in order to improve
individual privacy while retaining the ability to perform
useful analytics on large numbers of users. Differential
privacy is a cryptographic technique that attempts
to maximize the accuracy of statistical queries from a
database while minimizing the chances of identifying its
records. These results can be achieved by introducing
a low amount of “noise” to the data, but it’s important
to note that this is an ongoing research area. Apple
has announced plans to incorporate differential
privacy into its products—and we wholeheartedly
applaud its commitment to customers’ privacy—but
the usual Apple secrecy has left some security experts
scratching their heads. We continue to recommend
Datensparsamkeit as an alternative approach: simply
storing the minimum data you actually need will
achieve better privacy results in most cases.

We’ve seen significant benefit from introducing
microservice architectures, which have allowed
teams to scale delivery of independently deployed
and maintained services. However, teams have
often struggled to avoid the creation of front-end
monoliths—large and sprawling browser applications
that are as difficult to maintain and evolve as the
monolithic server-side applications we’ve abandoned.
We’re seeing an approach emerge that our teams call
micro frontends. In this approach, a web application is
broken up by its pages and features, with each feature
being owned end-to-end by a single team. Multiple
techniques exist to bring the application features—
some old and some new—together as a cohesive user
experience, but the goal remains to allow each feature
to be developed, tested and deployed independently
from others. The BFF - backend for frontends approach
works well here, with each team developing a BFF to
support its set of application features.

https://thoughtworks.com/radar/techniques/evolutionary-architecture
https://thoughtworks.com/radar/techniques/evolutionary-architecture
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/npryce/adr-tools
https://github.com/npryce/adr-tools
http://www.martinfowler.com/articles/serverless.html
https://thoughtworks.com/radar/techniques/anemic-rest
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://github.com/Netflix/falcor
https://thoughtworks.com/radar/platforms/docker
https://blog.docker.com/2016/05/docker-security-scanning/
https://blog.docker.com/2016/05/docker-security-scanning/
https://coreos.com/blog/vulnerability-analysis-for-containers/
https://benchmarks.cisecurity.org/
https://www.washingtonpost.com/news/the-switch/wp/2016/05/13/new-government-data-shows-a-staggering-number-of-americans-have-stopped-basic-online-activities/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
http://research.google.com/pubs/pub42852.html
https://blog.cryptographyengineering.com/2016/06/15/what-is-differential-privacy/
http://martinfowler.com/bliki/Datensparsamkeit.html
https://thoughtworks.com/radar/techniques/microservices
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 7

With the increasing popularity of the BFF - Backend for
frontends pattern and use of one-way data-binding
frameworks like React.js, we’ve noticed a backlash
against REST-style architectures. Critics accuse REST
of causing chatty, inefficient interactions among
systems and failing to adapt as client needs evolve.
They offer frameworks such as GraphQL or Falcor as
alternative data-fetch mechanisms that let the client
specify the format of the data returned. But in our
experience, it isn’t REST that causes these problems.
Rather, they stem from a failure to properly model
the domain as a set of resources. Naively developing
services that simply expose static, hierarchical data
models via templated URLs result in an anemic
REST implementation. In a richly modeled domain,
REST should enable more than simple repetitive
data fetching. In a fully evolved RESTful architecture,
business events and abstract concepts are also
modeled as resources, and the implementation should
make effective use of hypertext, link relations and
media types to maximize decoupling between services.
This antipattern is closely related to the Anemic Domain
Model pattern and results in services that rank low in
Richardson Maturity Model. We have more advice for
designing effective REST APIs in our Insights article.

We continue to see organizations chasing “cool”
technologies, taking on unnecessary complexity and
risk when a simpler choice would be better. One
particular theme is using distributed, Big Data systems
for relatively small data sets. This behavior prompts us
to put Big Data envy on hold once more, with some
additional data points from our recent experience.
The Apache Cassandra database promises massive
scalability on commodity hardware, but we have
seen teams overwhelmed by its architectural and
operational complexity. Unless you have data volumes

that require a 100+ node cluster, we recommend
against using Cassandra. The operational team you’ll
need to keep the thing running just isn’t worth it.
While creating this edition of the Radar, we discussed
several new database technologies, many offering “10x”
performance improvements over existing systems.
We’re always skeptical until new technology—especially
something as critical as a database—has been
properly proven. Jepsen provides analysis of database
performance under difficult conditions and has found
numerous bugs in various NoSQL databases. We
recommend maintaining a healthy dose of skepticism
and keeping an eye on sites such as Jepsen when you
evaluate database tech.

As more organizations are choosing to deploy
applications in the cloud, we’re regularly finding IT
groups that are wastefully trying to replicate their
existing data center management and security
approaches in the cloud. This often comes in the form
of firewalls, load balancers, network proxies, access
control, security appliances and services that are
extended into the cloud with minimal rethinking. We’ve
seen organizations build their own orchestration APIs
in front of the cloud providers to constrain the services
that can be utilized by teams. In most cases these layers
serve only to cripple the capability, taking away most
of the intended benefits of moving to the cloud. In this
edition of the Radar, we’ve chosen to rehighlight cloud
lift and shift as a technique to avoid. Organizations
should instead look more deeply at the intent of their
existing security and operational controls, and look
for alternative controls that work in the cloud without
creating unnecessary constraints. Many of those
controls will already exist for mature cloud providers,
and teams that adopt the cloud can use native APIs for
self-serve provisioning and operations.

TECHNIQUES continued

https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://netflix.github.io/falcor/
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
http://cassandra.apache.org/
https://thoughtworks.com/radar/tools/jepsen
http://jepsen.io/analyses.html
https://aphyr.com/posts/283-call-me-maybe-redis
https://aphyr.com/posts/284-call-me-maybe-mongodb

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 8

HTTP Strict Transport Security (HSTS) is a now widely
supported policy that allows websites to protect
themselves from downgrade attacks. A downgrade attack
in the context of HTTPS is one that can cause users of
your site to fall back to HTTP rather than HTTPS, allowing
for further attacks such as man-in-the-middle attacks.
With HSTS, the server sends a header that informs the
browser that it should only use HTTPS to access the
website. Browser support is now widespread enough that
this easy-to-implement feature should be added to any
site using HTTPS. Mozilla’s Observatory can help identify
this and other useful headers and configuration options
that improve security and privacy. When implementing
HSTS, it is critical to verify that all resources load
properly over HTTPS, because once HSTS is turned on,

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

PLATFORMS
there is (almost) no turning back until the expiry time.
The directive to include subdomains should be added
but, again, a thorough verification that all subdomains
support secure transport is required.

Application whitelisting has proven to be one of
the most effective ways to mitigate cyber intrusion
attacks. A convenient way to implement this widely
recommended practice is through Linux security
modules. With SELinux or AppArmor included by
default in most Linux distributions, and with more
comprehensive tools such as Grsecurity readily
available, we have moved this technology into the
Adopt ring in this edition. These tools help teams assess
questions about who has access to what resources
on shared hosts, including contained services. This
conservative approach to access management will help
teams build security into their SDLC processes.

We’ve continued to have positive experiences
deploying the Apache Mesos platform to manage
cluster resources for highly distributed systems. Mesos
abstracts out underlying computing resources such as
CPU and storage, aiming to provide efficient utilization
while maintaining isolation. Mesos includes Chronos for
distributed and fault-tolerant execution of scheduled
jobs, and Marathon for orchestrating long-running
processes in containers.

We have a growing belief that for most scenarios
it is rarely worth rolling your own authentication
code. Outsourced identity management speeds up
delivery, reduces mistakes and tends to enable a faster
response to newly discovered vulnerabilities. Auth0
has particularly impressed us in this field for its ease
of integration, range of protocols and connectors
supported, and rich management API.

ADOPT
23.			 Docker
24.			 HSTS
25.			 Linux security modules

TRIAL
26.			 Apache Mesos
27.			 Auth0
28.			 AWS Lambda
29.			 Kubernetes
30.			 Pivotal Cloud Foundry
31.			 Rancher
32.			 Realm
33.			 Unity beyond gaming

ASSESS
34.			 .NET Core
35.			 Amazon API Gateway
36.			 Apache Flink
37.			 AWS Application Load Balancer
38.			 Cassandra carefully
39.			 Electron
40.			 Ethereum
41.			 HoloLens
42.			 IndiaStack
43.			 Nomad
44.			 Nuance Mix
45.			 OpenVR
46.			 Tarantool
47.			 wit.ai

HOLD
48.			 CMS as a platform
49.			 Overambitious API gateway
50.			 Superficial private cloud

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
https://observatory.mozilla.org/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-167.pdf
http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm#mitigation1
http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm#mitigation1
http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm#mitigation1
http://mesos.apache.org/
https://mesos.github.io/chronos/
https://mesosphere.github.io/marathon/
https://auth0.com/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 9

PLATFORMS continued

Our teams continue to enjoy using AWS Lambda and
are beginning to use it to experiment with serverless
architectures, combining Lambda with the API Gateway.
We do recommend that Lambda functions contain
only a moderate amount of code. Ensuring the quality
of a solution based on a tangle of many large Lambda
functions is difficult, and such a solution may not be
cost-effective. For more complex needs, deployments
based on containers or VMs are still preferable. In
addition, we have run into significant problems using
Java for Lambda functions, with erratic latencies up to
several seconds as the Lambda container is started. Of
course, you can sidestep this issue by using JavaScript or
Python, and if Lambda functions do not contain a lot of
code, the choice of programming language should not
matter too much.

Realm is a database designed for use on mobile
devices, with its own persistence engine to achieve high
performance. Realm is marketed as a replacement for
SQLite and Core Data. Note that migrations are not
quite as straightforward as the Realm documentation
would have you believe. However, more and more teams
are choosing Realm as the persistence mechanism in
production environments for mobile applications.

After experiencing years of growth as a platform
for game development, Unity has recently become
the platform of choice for VR and AR application
development. Whether you’re creating a fully immersive
world for the Oculus or HTC Vive headsets, a holographic
layer for your newly spatial enterprise application or an
AR feature set for your mobile app, Unity likely provides
what you need to both prototype it and get it ready for
prime time. Many of us at ThoughtWorks believe that
VR and AR represent the next significant shift in the
computing platform, and for now, Unity is the single
most important tool in the toolbox we use to develop
for this change. We’ve used Unity to develop all our VR
prototypes, as well as AR functionality for headsets and
phone/tablet applications.

.NET Core is an open source modular product for creating
applications that can be easily deployed in Windows,
macOS and Linux. .NET Core makes it possible to build
cross-platform web applications using ASP.NET Core with
a set of tools, libraries and frameworks—another choice
for microservices architecture. The community around
.NET Core and other related projects has been growing.

New tools have appeared and evolved quickly, such
as Visual Studio Code. There are Docker images based
on both Linux and Windows (Nano Server) with .NET
Core that simplify applying a microservice architecture.
CoreCLR and CoreFX appeared in the Radar in the past.
However, a few months ago Microsoft announced the
release of .NET Core 1.0, the first stable version. We
see good new opportunities, changes and a vibrant
community as reasons to keep assessing this product.

Amazon API Gateway is Amazon’s offering enabling
developers to expose API services to Internet clients.
It offers the usual API gateway features like traffic
management, monitoring, authentication and
authorization. Our teams have been using this service to
front other AWS capabilities like AWS Lambda as part of
serverless architectures. We continue to monitor for the
challenges presented by overambitious API gateways,
but at this stage Amazon’s offering appears to be
lightweight enough to avoid those problems.

Interest continues to build for Apache Flink, a new-
generation platform for scalable distributed batch and
stream processing. At the core of Apache Flink is a
streaming data-flow engine, with support for tabular
(SQL-like), graph-processing and machine learning
operations. Apache Flink stands out with feature rich
capabilities for stream processing: event time, rich
streaming window operations, fault tolerance and
exactly-once semantics. The project shows significant
ongoing activity, with the latest release (1.1) introducing
new datasource/sink integrations as well as improved
streaming features.

Amazon recently launched the AWS Application Load
Balancer (ALB), a direct replacement for Elastic Load
Balancers introduced back in 2009. ALB supports Layer
7 traffic inspection and is built to support modern cloud
architecture. If you’re building a microservices-based
system using ECS, the new load balancers will directly
understand container hosting and scaling, with multiple
containers and ports per EC2 instance. Content-based
routing allows segmentation of requests onto groups
of target servers, along with independent scaling of
those groups. Health checks performed by the load
balancers are much improved, with the ability to capture
detailed metrics about application performance. We like
everything that we see here, and teams have begun to
report successful usage of ALB.

https://aws.amazon.com/lambda/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/platforms/amazon-api-gateway
https://realm.io/
https://unity3d.com/
https://www.microsoft.com/net/core
http://www.asp.net/core
https://thoughtworks.com/radar/tools/visual-studio-code
https://thoughtworks.com/radar/platforms/docker
https://www.microsoft.com/net/core#docker
https://thoughtworks.com/radar/platforms/microsoft-nano-server
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0
https://aws.amazon.com/api-gateway/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/platforms/overambitious-api-gateways
https://flink.apache.org/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://thoughtworks.com/radar/platforms/aws-ecs

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 10

Apache’s Cassandra database is a powerful, scalable Big
Data solution for storing and processing large amounts
of data, often using hundreds of nodes split over
multiple worldwide locations. It’s a great tool and we like
it, but too often we see teams run into trouble using it.
We recommend using Cassandra carefully. Teams often
misunderstand the use case for Cassandra, attempting
to use it as a general-purpose data store when in fact
it is optimized for fast reads on large data sets based
on predefined keys or indexes. Its dependence on the
storage schema can also make it difficult to evolve
over time. Cassandra also has significant operational
complexity and some rough edges, so unless you
absolutely need the scaling it provides, a simpler
solution is usually better. If you don’t need Cassandra’s
specific use-case and scaling characteristics, you might
just be choosing it out of Big Data envy. Careful use of
Cassandra will include extensive automated testing, and
we’re happy to recommend CassandraUnit as part of
your testing strategy.

Electron is a solid framework for building native desktop
clients using web technologies such as HTML, CSS and
JavaScript. Teams can leverage their web know-how to
deliver polished cross-platform desktop clients without
spending time learning another set of technologies.

The hype seems to have peaked for blockchain and
cryptocurrencies, as evidenced by the previous firehose-
scale announcements in this area slowing to a trickle,
and we expect some of the more speculative efforts to
die out over time. One of the blockchains, Ethereum, is
making good progress and is worth watching. Ethereum
is a public blockchain with a built-in programming
language that allows ”smart contracts” to be built
into it. These are algorithmic movements of “ether”
(the Ethereum cryptocurrency) in response to activity
happening on the blockchain. R3Cev, the consortium
building blockchain tech for banks, built its first proof of
concept on Ethereum. Ethereum has been used to build
a Distributed Autonomous Organization (DAO)—one of
the first “algorithmic corporations”—although a recent
heist of $150m worth of Ether demonstrates that the
blockchain and cryptocurrencies are still the Wild West of
the technology world.

In the HoloLens, Microsoft has delivered the first truly
usable AR headset. Not only is it a beautiful piece of
industrial design and an eminently comfortable device
to wear, but it also clearly demonstrates the promise of
AR for the enterprise via its gorgeous optics and deep
Windows 10 integration. We expect HoloLens to be

the first AR platform on which we deliver substantial
application functionality to our clients in the near term,
and we look forward to its evolution as it gains broader
traction.

IndiaStack is a set of Open APIs designed with the goal
of transforming India from a data-poor to a data-rich
country. The stack emphasizes layered innovation by
specifying a minimal set of APIs and encourages the rest
of the ecosystem to build custom applications on top
of these APIs. Aadhaar serves as one of the foundation
layers, providing authentication services for more than
a billion Indian citizens. In addition, there are services to
provide paperless transactions through digital signatures
(eSign), unified online payment (UPI) and an electronic
consent layer (e-KYC) to securely provide Aadhaar details
to service providers. We believe in the Open API–driven
initiative to bring digital innovation, and the design
principles behind IndiaStack could be used as a change
agent for other regions/countries.

Nuance Mix is a framework for natural language
processing from the company that created the speech-
to-text technology behind Dragon Speaking and the
first roll-out of Siri. This framework supports the
creation of grammars that allow for free-form user
interaction via voice. The developer defines a domain-
specific grammar that the framework can train itself
to understand. The outcomes are responses to user
input that identify the user’s intents and interaction
concepts. At first, it is limited to phrases close to
the ones used to train it, but over time it can start
to identify meaning from more divergent phrasing.
Though it is still in beta, the accuracy from early
exploration has been compelling, and the eventual
product is one to watch for application forms that
could benefit from hands-free user interaction—
including mobile, IoT, AR, VR and interactive spaces.

OpenVR is the underlying SDK in making many of the
VR head-mounted displays (HMDs) work with Unity and
will likely keep growing in importance. Much of the VR
work at ThoughtWorks was built on top of OpenVR,
because it will run on any HMD, unlike the other SDKs.
Though it is not open source, it is free via the license.
The Oculus SDK is more restrictive in its licensing and
only works on Oculus devices. OSVR, while truly open
source, doesn’t seem to have as much adoption yet. If
you’re going to develop a VR application and target as
many devices as possible—and not use Unity or Unreal
to develop them—OpenVR is the most concrete and
pragmatic solution right now.

PLATFORMS continued

http://cassandra.apache.org/
https://thoughtworks.com/radar/techniques/big-data-envy
https://github.com/jsevellec/cassandra-unit
http://electron.atom.io/
https://www.ethereum.org/
http://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.microsoft.com/microsoft-hololens/en-us
http://www.indiastack.org/
http://www.indiastack.org/Resource#Aadhaar
https://uidai.gov.in/beta/authentication/aadhaar-financial-inclusion/aadhaar-e-kyc.html
https://developer.nuance.com/public/index.php?task=mix
https://github.com/ValveSoftware/openvr
http://www.osvr.org/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 11

PLATFORMS continued

Tarantool is an open source NoSQL solution that
combines database and cache into one entity and provides
APIs for writing application logic in Lua. Both in-memory
and disk-based engines are supported, and users can
create multiple indexes (HASH, TREE, RTREE, BITSET) based
on their use cases. The data itself is stored in MessagePack
format and uses the same protocol to communicate
between clients and server. Tarantool supports write-
ahead logs, transactions and asynchronous master-
master replication. We are happy with the architectural
decision of embracing single-writer policy and cooperative
multitasking to handle concurrent connections.

Hype surrounding machine intelligence has reached
a crescendo, but as with Big Data, useful frameworks
and tools are waiting to be discovered among all the
hot air. One such tool is wit.ai, a SaaS platform that
allows developers to create conversational interfaces
using natural language processing (NLP). Wit works with
either text or speech inputs, helps developers manage
conversational intent and allows custom business logic
to be implemented using JavaScript. The system is free
for commercial and noncommercial use and encourages
the creation of open applications. Be aware that you
must agree to let Wit use your data in order to improve
the service and for its own analysis, so read the terms
and conditions carefully. Another contender in this space
is the Microsoft Bot Framework, but it’s available only
in limited preview form as of this writing. As with most
things Microsoft, we expect the Bot Framework to evolve
quickly, so it’s worth keeping an eye on.

We are seeing too many organizations run into trouble
as they attempt to use their CMS as a platform for
delivering large and complex digital applications. This
is often driven by the vendor-fueled hope of bypassing
unresponsive IT organizations and enabling the business
to drag and drop changes directly to production. While
we are very supportive of providing content producers
with the right tools and workflows, for applications with
complex business logic we tend to recommend treating
your CMS as a component of your platform (often in a
hybrid or headless mode) cooperating cleanly with other
services, rather than attempting to implement all of your
functionality in the CMS itself.

One of our regular complaints is about business smarts
implemented in middleware, resulting in transport
software with ambitions to run critical application
logic. Vendors in the highly competitive API gateway
market continue to add features that differentiate
their products. This results in overambitious API
gateway products whose functionality—on top of what
is essentially a reverse proxy—encourages designs
that are difficult to test and deploy. API gateways can
provide utility in dealing with some generic concerns—
for example, authentication and rate-limiting—but any
domain smarts such as data transformation or rule
processing should live in applications or services where
they can be controlled by product teams working closely
with the domains they support.

https://tarantool.org/
https://thoughtworks.com/radar/tools/nosql
https://thoughtworks.com/radar/languages-and-frameworks/lua
http://msgpack.org/
https://wit.ai/
https://wit.ai/terms
https://wit.ai/terms
https://dev.botframework.com/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 12

Babel.js has become the default compiler for writing
next-generation JavaScript. Its ecosystem is really taking
off, thanks to its restructured plugin system. It allows
developers to write ES6 (and even ES7) code that runs in
the browser or in the server without sacrificing backward
compatibility for older browsers, and with very little
configuration. It has first-class support for different
build-and-test systems, which makes integration with
any current workflow simple. It is a great piece of
software that has become the main driver of ES6 (and
ES7) adoption and innovation.

When combining modern techniques and architecture
styles, such as microservices, DevOps and QA in
production, development teams need increasingly
sophisticated monitoring. Simply looking a graphs of
disk usage and CPU utilization is not sufficient anymore,
and many teams collect application and business-
specific metrics using tools such a Graphite and Kibana.
Grafana makes it easy to create useful and elegant
dashboards for data from a number of sources. A
particularly useful feature allows timescales of different
graphs to be synchronized, which helps with spotting
correlations in the underlying data. The templating
system that is being added shows a lot promise and
will likely make managing sets of similar services even
easier. Based on its strengths, Grafana has become our
default choice in this category.

Machine images have become a staple of modern
deployment pipelines, and there are a number of
tools and techniques to create the images. Because
of its comprehensive feature set and the positive
experiences we’ve had with it, we recommend Packer
over the alternatives. We also recommend against
trying to write custom scripts to do what Packer does
out of the box.

TOOLS

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

At the top of the testing pyramid for Android application
development, our teams are increasingly using Espresso
as the functional-testing tool. Its small-core API hides
the messy implementation details and helps in writing
concise tests, with faster and reliable test execution. With
Espresso, you can run automated UI tests simulating user
interactions within a single target app on both emulators
and real devices across different Android versions.

fastlane is our go-to tool for automating most of the
boring activities involved in getting iOS and Android
mobile apps built, tested, documented and provisioned.
Simple configuration, a range of tooling and multiple
pipelines make this a key ingredient in doing continuous
delivery for mobile.

ADOPT
51.			 Babel
52.			 Consul
53.			 Grafana
54.			 Packer

TRIAL
55.			 Apache Kafka
56.			 Espresso
57.			 fastlane
58.			 Galen
59.			 HashiCorp Vault
60.			 JSONassert
61.			 Let’s Encrypt
62.			 Load Impact
63.			 OWASP Dependency-Check
64.			 Pa11y
65.			 Serverspec
66.			 Talisman
67.			 Terraform
68.			 tmate
69.			 Webpack
70.			 Zipkin

ASSESS
71.			 Android-x86
72.			 axios
73.			 Bottled Water
74.			 Clojure.spec
75.			 FBSnapshotTestcase
76.			 Grasp
77.			 LambdaCD
78.			 Pinpoint
79.			 Pitest
80.			 Repsheet
81.			 Scikit-learn

HOLD
82.	 Jenkins as a deployment pipeline

http://babeljs.io/
http://babeljs.io/docs/plugins/#presets
https://thoughtworks.com/radar/languages-and-frameworks/es6
https://thoughtworks.com/radar/techniques/microservices
https://thoughtworks.com/radar/techniques/devops
https://thoughtworks.com/radar/techniques/qa-in-production
https://thoughtworks.com/radar/techniques/qa-in-production
http://grafana.org/
http://packer.io/
https://google.github.io/android-testing-support-library/docs/espresso/index.html
https://fastlane.tools/
https://thoughtworks.com/radar/techniques/continuous-delivery-cd
https://thoughtworks.com/radar/techniques/continuous-delivery-cd

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 13

TOOLS continued

Testing that layout and styling of responsive websites is
working as expected across various form factors can be
a slow and often manual process. Galen helps ease this
problem by providing a simple language, running on top
of Selenium, that allows you to specify expectations for
the appearance of your website in various screen sizes.
Although Galen suffers from the typical brittleness and
speed issues of any end-to-end testing approach, we have
found benefit in the early feedback on design issues.

Having a way to securely manage secrets is increasingly
becoming a huge project issue. The old practice of
keeping secrets in a file or in environment variables is
becoming hard to manage, especially in environments
with multiple applications and large numbers of
microservices. HashiCorp Vault addresses the problem
by providing mechanisms for securely accessing secrets
through a unified interface. It has served us well on a
number of projects, and our teams liked how easy it
was to integrate Vault with their services. Storing and
updating secrets is a bit cumbersome, because it relies
on a command-line tool and a fair amount of discipline
from the team.

More projects are emitting and consuming information
formatted as JSON. Writing tests in Java for JSON can be
laborious. JSONassert is a small library to help write
smaller tests dealing with JSON by simplifying assertions
and providing better error messages.

Pa11y is an automatic accessibility tester that can run
from the command line and be embedded into a build
pipeline. Our teams have had success using Pa11y on
a highly dynamic site by first creating a static HTML
version, then running the accessibility tests against that.
For many systems—especially government websites—
accessibility testing is a requirement, and Pa11y makes
it all a lot easier.

With the maturity of tools such as Vault, there is no
longer an excuse for storing secrets in code repositories,
particularly since this often ends up being the soft
underbelly of important systems. We’ve previously
mentioned repository-scanning tools such as Gitrob,
but we are now pushing proactive tools such as (the
ThoughtWorks-created) Talisman, which is a prepush
hook for Git that scans commits for secrets matching
predefined patterns.

With Terraform, you can manage cloud infrastructure
by writing declarative definitions. The configuration of
the servers instantiated by Terraform is usually left to
tools like Puppet, Chef or Ansible. We like Terraform
because the syntax of its files is quite readable and
because it supports a number of cloud providers while
making no attempt to provide an artificial abstraction
across those providers. Following our first, more
cautious, mention of Terraform almost two years ago,
it has seen continued development and has evolved
into a stable product that has proven its value in our
projects. The issue with state file management can
now be sidestepped by using what Terraform calls
a “remote state backend.” We’ve successfully used
Consul for that purpose.

Pair programming is an essential technique for us, and—
given that we’re seeing more and more teams whose
members are distributed across multiple locations—we
have experimented with a number of tools to support
remote pairing. We certainly liked ScreenHero but are
concerned about its future. For teams that don’t rely
on a graphical IDE, using tmate for pairing has turned
out to be a great solution. tmate is a fork of the popular
tmux tool, and compared to tmux for remote pairing,
the setup is much easier. Compared to graphical
screen-sharing solutions, the bandwidth and resource
requirements are modest, and it obviously never suffers
from blurry screens. Teams can also set up their own
server, thus retaining full control of the privacy and
integrity of the solution.

Android-x86 is a port of the Android open source project
to x86 platforms. The project started by hosting various
patches from the community for x86 support but then
later created its own codebase to provide support for
different x86 platforms. We have seen significant time
savings by utilizing Android-x86 in our CI servers instead
of emulators for hermetic UI testing. However, for UI-
specific tests targeting a particular device resolution—
simulating low memory, bandwidth and battery—it is
better to stick with emulators.

Our teams have had success with axios, a promises-
based HTTP client in JavaScript that they describe
as “better than Fetch.” The project has lots of
endorsements and activity on GitHub, and it gets a
thumbs-up from us.

http://galenframework.com/
http://www.seleniumhq.org/
https://thoughtworks.com/radar/techniques/microservices
https://github.com/hashicorp/vault
http://jsonassert.skyscreamer.org/
http://pa11y.org/
https://thoughtworks.com/radar/tools/hashicorp-vault
https://thoughtworks.com/radar/tools/gitrob
https://github.com/thoughtworks/talisman
https://www.terraform.io/
https://thoughtworks.com/radar/tools/consul
https://screenhero.com/
https://tmate.io/
http://hamvocke.com/blog/remote-pair-programming-with-tmux/
http://www.android-x86.org/
http://source.android.com/
https://github.com/mzabriskie/axios
https://thoughtworks.com/radar/languages-and-frameworks/fetch

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 14

With the growth of interest in streaming data
architectures and the downstream data lakes they feed,
we have seen an increased reliance on ”change data
capture” tooling to connect transactional data stores to
stream-processing systems. Bottled Water is a welcome
addition to this field, converting changes in PostgreSQL’s
write-ahead log into Kafka events. One downside of
this approach, however, is that you are tied to low-level
database events rather than the higher-level business
events we recommend as the foundation for an event-
oriented architecture.

One of those perpetual developer debates involves
language typing: How much is just right? Clojure, the
dynamically typed functional Lisp on the JVM, added
a new entry into this discussion that blurs the lines.
Clojure.spec is a new facility built into Clojure that
allows developers to wrap type and other verification
criteria around data structures, such as allowable value
ranges. Once they are established, Clojure uses these
specifications to provide a slew of benefits: generated
tests, validation, destructuring of data structures and

others. Clojure.spec is a promising way to have the
benefits of types and ranges where developers need
them but not everywhere.

Testing the visual portion of iOS applications can be
painful, slow and flakey, which is why we’re happy to
include FBSnapshotTestcase in our toolkit. It automates
taking, storing and diff-ing snapshots of UI components
so you can keep your interfaces pixel-perfect. Since it
runs as a unit test (in the simulator), it is faster and more
reliable than functional-testing approaches.

Scikit-learn is an increasingly popular machine-
learning library written in Python. It provides a robust
set of machine-learning models such as clustering,
classification, regression and dimensionality reduction,
and a rich set of functionality for companion tasks
like model selection, model evaluation and data
preparation. Since it is designed to be simple, reusable
in various contexts and well documented, we see this
tool accessible even to nonexperts to explore the
machine-learning space.

TOOLS continued

https://github.com/confluentinc/bottledwater-pg
https://thoughtworks.com/radar/platforms/postgresql-for-nosql
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/techniques/capture-domain-events-explicitly
https://thoughtworks.com/radar/techniques/capture-domain-events-explicitly
https://thoughtworks.com/radar/languages-and-frameworks/clojure
https://clojure.org/about/spec
https://github.com/facebook/ios-snapshot-test-case
http://scikit-learn.org/stable/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 15

If you are faced with building a single-page application
(SPA) and trying to choose a framework to build with,
Ember.js has emerged as a leading choice. Our teams
praise Ember for its highly productive developer
experience, with far fewer surprises than other
frameworks such as AngularJS. The Ember CLI build
tooling is a haven in the storm of JavaScript build tools,
and the Ember core team and community are highly
active and responsive.

With the increasing complexity of single-page JavaScript
applications, we have seen a more pressing need to
make client-side state management predictable. Redux,
with its three principles of restrictions for updating state,
has proven to be invaluable in a number of projects
we have implemented. Getting Started with Redux and
idiomatic Redux tutorials are a good starting point for
new and experienced users. Its minimal library design
has spawned a rich set of tools, and we encourage you to
check out the redux-ecosystem-links project for examples,
middleware and utility libraries. We also particularly like
the testability story: Dispatching actions, state transitions
and rendering can be unit-tested separately from one
another and with minimal amounts of mocking.

Interest in the Elixir programming language continues
to build. Increasingly, we see it used in serious projects
and hear feedback from developers who find its Actor
model to be robust and very fast. Elixir, which is built on
top of the Erlang virtual machine, is showing promise for
creating highly concurrent and fault-tolerant systems.
Elixir has distinctive features such as the Pipe operator,
which allows developers to build a pipeline of functions
as you would in the UNIX command shell. The shared
byte code allows Elixir to interoperate with Erlang and
leverage existing libraries while supporting tools such as
the Mix build tool, the IEx interactive shell and the ExUnit
unit-testing framework.

We’ve been enjoying the rapid component-level UI
testing that Enzyme provides for React.js applications.
Unlike many other snapshot-based testing frameworks,

LANGUAGES & FRAMEWORKS

Enzyme allows you to test without doing on-device
rendering, which results in faster and more granular
testing. This is a contributing factor in our ability to
massively reduce the amount of functional testing we
find we have to do in React applications.

Immutability is often emphasized in the functional
programming paradigm, and most languages have the
ability to create immutable objects—objects that can’t
be changed once created. Immutable.js is a library for
JavaScript that provides many persistent immutable
data structures, which are highly efficient on modern
JavaScript virtual machines. Immutable.js objects are,
however, not normal JavaScript objects, so references
to JavaScript objects from immutable objects should be
avoided. More teams are using this library for tracking
mutation and maintaining state in production. We
recommend that developers investigate this library,
especially when it’s combined with the rest of the
Facebook stack.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

39

49

37

32

33

28

24
25

26

36

34

35

40

41

44

45

46

47

54

53

75

52

56

57
59

60

64

67 68

58

55

61

62

76

65

70
69 81

71
72

73

74

92

94
83

104

110

84

86

87

88

95

96

93

91

66

78

79

48

3
5

9
13

19
6

1

2

4

15

7

8
10

16

17
18

1420

21

22

77

80

82

98

101

102

103

105

106

107

29

23

30

31

43

50

85

90

11

12

27

51
63

89

97
99

100

108

109

ADOPT
83.		 Ember.js
84.		 React.js
85.		 Redux
86.		 Spring Boot

TRIAL
87.			 Butterknife
88.			 Dagger
89.			 Dapper
90.			 Elixir
91.			 Enzyme
92.			 Immutable.js
93.			 Phoenix
94.			 Quick and Nimble
95.			 React Native
96.			 Robolectric

ASSESS
97.			 Aurelia
98.			 ECMAScript 2017
99.			 Elm
100.	GraphQL
101.	JuMP
102.	Physical Web
103.	Rapidoid
104.	Recharts
105.	ReSwift
106.	Three.js
107.	Vue.js
108.	WebRTC

HOLD
109.	AngularJS
110.	JSPatch

http://emberjs.com/
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
http://redux.js.org/
http://redux.js.org/docs/introduction/ThreePrinciples.html
https://egghead.io/courses/getting-started-with-redux
https://egghead.io/courses/building-react-applications-with-idiomatic-redux
https://github.com/markerikson/redux-ecosystem-links
http://elixir-lang.org/
http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html
http://airbnb.io/enzyme/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://facebook.github.io/immutable-js/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 16

Some of our ThoughtWorks teams have had very
positive experiences with Phoenix, a server-side web
MVC framework written in Elixir. In addition to being
streamlined and easy to use, Phoenix takes advantage of
Elixir to be extremely fast. For some developers, Phoenix
evokes the joy they experienced when first discovering
Ruby and Rails. Although the ecosystem of libraries for
Phoenix is not as extensive as for some more mature
frameworks, it should benefit from the continuing
success and growth of support for Elixir.

Most of our iOS teams are now using the Quick and
Nimble pairing for their unit tests. In the RSpec family
of behavior-driven development (BDD) testing tools,
it provides very readable tests (with describe blocks)
across Swift and Objective-C and has good support for
asynchronous testing.

ECMAScript 2017—not to be confused with ES7
(a.k.a. ECMAScript 2016)—brings several noteworthy
improvements to the language. Browsers are expected
to implement this standard fully in the summer of 2017,
but the Babel JavaScript compiler already supports a
number of the features today. If you make extensive
use of JavaScript and your codebase is under active
development, we recommend that you add Babel to your
build pipeline and begin using the supported features.

JuMP is a domain-specific language for mathematical
optimizations in Julia. JuMP defines a common API
called MathProgBase and enables users to write solver-
agnostic code in Julia. Currently supported solvers
include Artelys Knitro, Bonmin, Cbc, Clp, Couenne,
CPLEX, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK,
NLopt and SCS. One other benefit is the implementation
of automatic differentiation technique in reverse mode
to compute derivatives so users are not limited to the
standard operators like sin, cos, log and sqrt but can also
implement their own custom objective functions in Julia.

We have been intrigued by the Physical Web standard
created by Google. The idea of Physical Web is simple—
beacons broadcast a URL—but the possibilities are
broad. Basically, this is a way to annotate the physical
world, tying objects and locations into the digital realm.
The current transport mechanism is Eddystone URLs
over Bluetooth LE, and sample clients are available.
Although there are obvious security concerns with
following randomly discovered links, we are most
interested in use cases with customized clients where
you can filter or proxy the URLs as required.

Rapidoid is a collection of web framework modules,
including a fast low-level HTTP server implemented
from scratch on top of Java NIO. Clever usage of off-
heap input/output buffers, object pools and thread-local
data structures provide Rapidoid an edge over other
NIO-based servers like Netty. Being a fairly new project,
Rapidoid has yet to implement a few features like built-
in cache and SSL support; we suggest you check the
roadmap for updates.

We are excited that the Redux paradigm has made
its way to Swift-land in the form of ReSwift. We’ve
found real benefits in the simplicity and readability of
codebases once state and state changes are managed in
a central place and common idiom. This also helps with
building “offline first” applications.

Despite the fervor surrounding the spate of new
headsets, we believe there are many VR and AR
scenarios that make sense in the browser, particularly
on mobile. Given this trend, we have seen an uptick in
usage of Three.js, a powerful JavaScript visualization
and 3D rendering framework. The growth in support
for WebGL, which it is based on, has helped adoption,
as has the vibrant community supporting this open
source project.

In the ever-changing world of front-end JavaScript
frameworks, Vue.js has gained a lot of ground as a
lightweight alternative to AngularJS. It is designed to
be a very flexible—and a less opinionated—library
that offers a set of tools for building interactive
web interfaces around concepts like modularity,
components and reactive data flow. It has a low
learning barrier, which makes it interesting for junior
developers and beginners. Vue.js itself is not a full-
blown framework; it is focused on the view layer only
and therefore is easy to integrate with other libraries
or existing projects.

Widespread adoption of AR/VR as a collaboration
and communication medium requires a modern and
readily available video streaming platform. WebRTC
is an emerging standard for real-time communication
between browsers that enables video streaming within
commonly available web technologies. The range of
browsers that support this standard is increasing, but
Microsoft and Apple have been slow to adopt WebRTC in
their proprietary browsers. If momentum continues to
build, WebRTC could form the future foundation for AR/
VR collaboration on the web.

LANGUAGES & FRAMEWORKS continued

https://thoughtworks.com/radar/languages-and-frameworks/elixir
https://github.com/Quick/Quick
https://github.com/Quick/Nimble
http://rspec.info/
https://thoughtworks.com/radar/languages-and-frameworks/swift
https://thoughtworks.com/radar/tools/babel
https://www.npmjs.com/package/babel-preset-es2017
https://github.com/JuliaOpt/JuMP.jl
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
http://julialang.org/
https://github.com/JuliaOpt/MathProgBase.jl
http://artelys.com/en/optimization-tools/knitro
https://projects.coin-or.org/Bonmin
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Clp
https://projects.coin-or.org/Couenne
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://github.com/ifa-ethz/ecos
http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.gnu.org/software/glpk/
http://www.gurobi.com/
https://projects.coin-or.org/Ipopt
http://www.mosek.com/
http://ab-initio.mit.edu/wiki/index.php/NLopt
https://github.com/cvxgrp/scs
https://google.github.io/physical-web/
https://github.com/google/eddystone/tree/master/eddystone-url
http://www.rapidoid.org/
http://netty.io/
https://github.com/rapidoid/rapidoid
https://thoughtworks.com/radar/languages-and-frameworks/redux
http://reswift.github.io/ReSwift
https://threejs.org/
https://vuejs.org/
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
https://webrtc.org/

© November 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2016 | 17

ThoughtWorks is a technology consultancy and community
of passionate, purpose-led individuals. We help our clients
put technology at the core of their business, and together
create the software that matters most to them. Dedicated
to positive social change; our mission is to better
humanity through software, and we partner with many
organisations striving in the same direction.

Founded over 20 years ago, ThoughtWorks has grown
to a company of over 4000 people, including a products
division which makes pioneering tools for software
teams. ThoughtWorks has 40 offices across 14 countries:
Australia, Brazil, Chile, China, Ecuador, Germany, India,
Italy, Singapore, South Africa, Spain, Turkey, the United
Kingdom and the United States.

AngularJS helped revolutionize the world of single-
page JavaScript applications, and we have delivered
many projects successfully with it over the years.
However, we are no longer recommending it (v1)

for teams starting fresh projects. We prefer the
ramp-up speed and more maintainable codebases
we are seeing with Ember and React, particularly in
conjunction with Redux.

https://thoughtworks.com
https://angularjs.org/
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/redux

