
JANUARY 2014

TECHNOLOGY
RADAR

Prepared by the ThoughtWorks Technology Advisory Board

thoughtworks.com/radar

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 2

WHAT’S NEW?
Here are the trends highlighted in this edition:
•	 Early warning and recovery in production - We are seeing a plethora of new tools and techniques for logging, monitoring,
	 storing and querying operational data. When combined with the short recovery times afforded by virtualization and infrastructure
	 automation, businesses can reduce the amount of testing required before deployment, perhaps even pushing that testing into the
	 production environment itself.

•	 Privacy vs. big data - While we are excited about the new business insights made possible by exhaustive data collection and the
	 new tools and platforms for storing and analyzing that data, we are also concerned that many businesses are storing vast
	 amounts of personal data unnecessarily. We advocate that businesses adopt an attitude of “datensparsamkeit” and store only
	 the absolute minimum personal information from their customers.

•	 The Javascript juggernaut rolls on - The ecosystem around JavaScript as a serious application platform continues to evolve.
	 Many interesting new tools for testing, building, and managing dependencies in both server- and client-side JavaScript applications
	 have emerged recently.

•	 Merging of physical and digital - Low-cost devices, open hardware platforms, and new communication protocols are pushing
	 the computing experience away from the screen and into the world around us. A great example is the proliferation of wearable
	 devices to track personal biometrics, and hardware support in mobile devices to interact with these devices.

ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it, and constantly
aim to improve it – for everyone. Our mission is to champion software excellence and revolutionize IT. We create and share
the ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks Technology Advisory Board, a group of
senior technology leaders in ThoughtWorks, creates the radar. They meet regularly to discuss the global technology strategy for
ThoughtWorks and the technology trends that significantly impact our industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a wide range
of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage you to explore these
technologies for more detail. The radar is graphical in nature, grouping items into techniques, tools, platforms, and languages &
frameworks. When radar items could appear in multiple quadrants, we chose the one that seemed most appropriate. We further
group these items in four rings to reflect our current position on them. The rings are:

•	 Adopt:	 We feel strongly that the industry should be adopting these items. We use them when appropriate on our projects.
•	 Trial:	 Worth pursuing. It is important to understand how to build up this capability. Enterprises should try this technology
		 on a project that can handle the risk.
•	 Assess:	 Worth exploring with the goal of understanding how it will affect your enterprise.
•	 Hold:	 Proceed with caution.

Items that are new or have had significant changes since the last radar are represented as triangles, while items that have not
moved are represented as circles. The detailed graphs for each quadrant show the movement that items have taken. We are
interested in far more items than we can reasonably fit into a document this size, so we fade many items from the last radar to
make room for the new items. Fading an item does not mean that we no longer care about it.

For more background on the radar, see http://martinfowler.com/articles/radar-faq.html

CONTRIBUTORS - The ThoughtWorks Technology Advisory Board is comprised of:

Rebecca Parsons (CTO)
Martin Fowler (Chief
Scientist)
Badri Janakiraman
Brain Leke
Claudia Melo

Darren Smith
Erik Doernenburg
Evan Bottcher
Hao Xu
Ian Cartwright

James Lewis
Jeff Norris
Jonny LeRoy
Mike Mason
Neal Ford

Rachel Laycock
Sam Newman
Scott Shaw
Srihari Srinivasan
Thiyagu Palanisamy

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

THE RADAR
TECHNIQUES
ADOPT
1	 Capturing client-side JavaScript errors
2	 Continuous delivery for mobile devices
3	 Mobile testing on mobile networks
4	 Segregated DOM plus node for JS Testing
5	 Windows infrastructure automation

TRIAL
6	 Capture domain events explicitily
7	 Client and server rendering with same code
8	 HTML5 storage instead of cookies
9	 Instrument all the things
10	 Masterless Chef/Puppet
11	 Micro-services
12	 Perimeterless enterprise
13	 Provisioning testing
14	 Structured Logging

ASSESS
15	 Bridging physical and digital worlds with simple hardware
16	 Collaborative analytics and data science
17	 Datensparsamkeit
18	 Development environments in the cloud
19	 Focus on mean time to recovery
20	 Machine image as a build artifact
21	 Tangible interaction

HOLD
22	 Cloud lift and shift
23	 Ignoring OWASP Top 10
24	 Siloed metrics
25	 Velocity as productivity

PLATFORMS
ADOPT
26	 Elastic Search
27	 MongoDB
28	 Neo4J
29	 Node.js
30	 Redis
31	 SMS and USSD as a UI

TRIAL
32	 Hadoop 2.0
33	 Hadoop as a service
34	 OpenStack
35	 PostgreSQL for NoSQL
36	 Vumi

ASSESS
37	 Akka
38	 Backend as a service
39	 Low-cost robotics
40	 PhoneGap/Apache Cordova
41	 Private Clouds
42	 SPDY
43	 Storm
44	 Web Components standard

HOLD
45	 Big enterprise solutions
46	 CMS as a platform
47	 Enterprise Data Warehouse

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 3

New or moved
No change

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

THE RADAR
TOOLS
ADOPT
48	 D3
49	 Dependency management for JavaScript

TRIAL
50	 Ansible
51	 Calabash
52	 Chaos Monkey
53	 Gatling
54	 Grunt.js
55	 Hystrix
56	 Icon fonts
57	 Librarian-puppet and Librarian-Chef
58	 Logstash & Graylog2
59	 Moco
60	 PhantomJS
61	 Prototype On Paper
62	 SnapCI
63	 Snowplow Analytics & Piwik

ASSESS
64	 Cloud-init
65	 Docker
66	 Octopus
67	 Sensu
68	 Travis for OSX/iOS
69	 Visual regression testing tools
70	 Xamarin

HOLD
71	 Ant
72	 Heavyweight test tools
73	 TFS

LANGUAGES & FRAMEWORKS
ADOPT
74	 Clojure
75	 Dropwizard
76	 Scala, the good parts
77	 Sinatra

TRIAL
78	 CoffeeScript
79	 Go language
80	 Hive
81	 Play Framework 2
82	 Reactive Extensions across languages
83	 Web API

ASSESS
84	 Elixir
85	 Julia
86	 Nancy
87	 OWIN
88	 Pester
89	 Pointer Events
90	 Python 3
91	 TypeScript
92	 Yeoman

HOLD
93	 Handwritten CSS
94	 JSF

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 4

New or moved
No change

ADOPT
1	 Capturing client-side JavaScript errors
2	 Continuous delivery for mobile devices
3	 Mobile testing on mobile networks
4	 Segregated DOM plus node for
	 JS Testing
5	 Windows infrastructure automation

TRIAL
6	 Capture domain events explicitily
7	 Client and server rendering with
	 same code
8	 HTML5 storage instead of cookies
9	 Instrument all the things
10	 Masterless Chef/Puppet
11	 Micro-services
12	 Perimeterless enterprise
13	 Provisioning testing
14	 Structured Logging

ASSESS
15	 Bridging physical and digital worlds
	 with simple hardware
16	 Collaborative analytics and
	 data science
17	 Datensparsamkeit
18	 Development environments in
	 the cloud
19	 Focus on mean time to recovery
20	 Machine image as a build artifact
21	 Tangible interaction

HOLD
22	 Cloud lift and shift
23	 Ignoring OWASP Top 10
24	 Siloed metrics
25	 Velocity as productivity

Capturing client-side JavaScript errors has helped our
delivery teams identify issues specific to a browser or plug-
in configuration that impact user experience. Over the past
year a number of service providers have started to surface in
support of this requirement. Other than storing these errors
in application data stores, web applications can log this data to
web analytics or existing monitoring tools such as New Relic to
offload storage requirements.

Since the last radar a few advances have made continuous
delivery for native apps on mobile devices less painful. Xctool,
the recently open-sourced “better xcodebuild” improves iOS
build automation and unit testing. The arrival of automatic
updates in iOS7 reduces the friction of regular releases.
Travis-CI now supports OS X agents, removing another hurdle
in seamless CD pipelines for mobile platforms. Our advice
from the last radar on the value of hybrid approaches and the
importance of test automation for mobile still applies.

As client-side JavaScript applications grow in sophistication, we
see an increased need for engineering sophistication to match.
A common architectural flaw is unfettered access to the DOM
from across the codebase - mixing DOM manipulation with
application logic and AJAX calls. This makes the code difficult

to understand and extend. Thinking about separation of
concerns is a useful antidote. This involves aggressively
restricting all DOM access (which usually translates to all jQuery
usage) to a thin ‘segregation layer’. One pleasant side-effect
of this approach is that everything outside of that segregated
DOM layer can be tested rapidly in isolation from the browser
using a lean JavaScript engine such as node.js.

When using techniques such as “instrument all the things”
and semantic logging, it can be very useful to capture domain
events explicitly. You can avoid having to infer user intent
behind state transitions by modeling these transitions as first-
class concerns. One method of achieving this outcome is to use
an event sourced architecture with application events being
mapped to business meaningful events.

Increasingly, HTML is rendered not only on the server but
also on the client, in the web browser. In many cases this split
rendering will remain a necessity but with the growing maturity
of JavaScript templating libraries an interesting approach has
become viable: client and server rendering with same code.

You cannot act on important business events unless you
monitor them. The principle, instrument all the things,
encourages us to think proactively about how we achieve this
at the start of our software development. This allows us to
expose key metrics, monitor them, and report on them to
improve operational effectiveness.

Chef & Puppet servers are a central place to store recipes/
manifests that propagate configuration changes to managed
machines. They are also a central database of node information
and provide access control for manifests/recipes. The
disadvantage of having these servers is that they become a
bottleneck when multiple clients simultaneously connect to
them. They are a single point of failure and take effort to be
robust and reliable. In light of this, we recommend chef-solo
or standalone puppet in conjunction with a version control
system when the server is primarily used to store recipes/
manifests. Teams can always introduce the servers as the need
arises or if they find themselves reinventing solutions to the
problems the servers have already solved.

Increasingly we are unbounded by our ability to procure and
provision hardware. However with the massive increase in
flexibility this affords us, we have found that we are bounded

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

TECHNIQUES

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 5

by the scale and complexity of the software assets used to
manage our virtual estates. Using techniques more familiar
in the software development world such as TDD, BDD and CI
offers an approach to managing this complexity and gives us
the confidence to make changes to our infrastructure in a safe,
repeatable and automatable manner. Provisioning testing
tools, like rspec-puppet, Test Kitchen and serverspec, are
available for most platforms.

Treating logs as data gives us greater insight into the
operational activity of the systems we build. Structured
logging, which is using a consistent, predetermined message
format containing semantic information, builds on this
technique and enables tools such as Graylog2 and Splunk to
yield deeper insights.

The reduction in cost, size, power consumption and simplicity
of physical devices has led to an explosion in devices that open
physical domains to software. These devices often contain
little more than a sensor and a communication component
like Bluetooth Low Energy or WiFi. As software engineers, we
need to expand our thinking to include bridging physical and
digital worlds with simple hardware. We are already seeing
this in the car, the home, the human body, agriculture and other
physical environments. The cost and time required to prototype
such devices is shrinking to match the fast iterations possible in
software.

In our desire to support ever-changing business models, learn
from past behavior and provide the best experience for every
individual visitor, we are tempted to record as much data as
possible. At the same time hackers are more ferocious than
ever, with one spectacular security breach after another, and
we now know of unprecedented mass-surveillance by
government agencies. The term Datensparsamkeit is taken
from German privacy legislation and describes the idea to only
store as much personal information as is absolutely required
for the business or applicable laws. Some examples are instead
of storing a customer’s full IP address in access logs, just using
the first two or three octets and instead of logging transit
journeys with a username using an anonymous token. If you
never store the information, you do not need to worry about
someone stealing it.

As the lines between hardware and software continue to
blur, we see traditional computing increasingly embedded
in everyday objects. Although connected devices are
now ubiquitous in retail spaces, automobiles, homes, and
workplaces, we still do not understand how to blend them

TECHNIQUES continued

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 6

into a useful computing experience that goes beyond a
simple glass screen. Tangible interaction is a discipline that
blends software and hardware technology, architecture, user
experience, and industrial design. The goal is to provide natural
environments made up of physical objects where humans can
manipulate and understand digital data.

As cloud adoption grows we are unfortunately seeing a trend
to treat the cloud as just another hosting provider. This cloud
lift and shift trend is unfortunately being encouraged by large
vendors re-branding existing hosting offerings as “cloud.” Few
of these offer any real flexibility or pay-as-you-use pricing. If you
think you can move to the cloud without re-architecting you are
probably not doing it right.

Barely a week goes by without the IT industry being
embarrassed by yet another high profile loss of data, leak of
passwords, or breach of a supposedly secure system. There are
good resources to help with making sure security gets treated
as a first-class concern during software development and we
need to stop ignoring them; the OWASP Top 10 is a good place
to start.

As more businesses move online we have noted a tendency to
end up with siloed metrics. Specific tools are implemented to
gather and display specific metrics: one tool for page-views and
browser behavior, another for operational data and another to
consolidate log messages. This leads to data silos and the need
to swivel-chair integrate between the tools in order to gather
business intelligence that is crucial to running the business.
This is a tool-led split in the analytics domain that hurts the
team’s ability to make decisions. A much better solution is
to have a consolidated view of near-real time analytics using
integrated dashboards displaying time-sensitive domain and
team relevant information.

Of all the approaches that we might disagree with, equating
velocity with productivity has become so prevalent that we felt
it important to call it out in our hold ring. When properly used,
velocity allows the incorporation of “yesterday’s weather” into
the iteration planning process. Velocity is simply a capacity
estimate for a given team at a given time. It can improve as
a team gels or by fixing problems like technical debt or a flaky
build server. However, like all metrics, it can be misused.
For example, over-zealous project managers attempt to insist
on continual improvement of velocity. Treating velocity
as productivity leads to unproductive team behaviors that
optimize the metric at the expense of actual working software.

Using Dependency management tools for JavaScript has
helped our delivery teams handle large amounts of JavaScript
by structuring their code and loading the dependencies at
runtime. Though this simplified the effort in most cases,
lazy loading complicates supporting offline mode. Different
dependency management tools have different strengths,
so choose based on your context.

In the category of DevOps orchestration engines, Ansible has
nearly universal acclaim within ThoughtWorks projects. It has
useful tools and abstractions at a useful level of granularity.

On mobile projects, we have been impressed with the
functionality and gradually evolving capabilities and maturity
of Calabash. It is an automated acceptance test tool for both
Android and iOS applications that supports common
ecosystem tools like Cucumber. It is an attractive choice on
heterogeneous projects.

Following our recommendation in the last radar to consider
a focus on reducing mean time to recovery, we want to highlight
Chaos Monkey from Netflix’s Simian Army suite. It is a tool that
randomly disables instances in the production environment
during normal operation. When run with comprehensive
monitoring and a team on stand by, it helps to uncover
unexpected weaknesses in the system, which in turn allows the
development team to build automatic recovery mechanisms
ahead of time, rather than struggling to respond to an outage
that caught everyone by surprise.

Several of our ThoughtWorks teams developing Node.js
apps are using Grunt to automate most of the development
activities like minification, compilation, and linting. Many of the
common tasks are available as Grunt plugins. You can even
programmatically generate the configuration if necessary.

Managing the web of dependencies in a distributed system
is complicated, and is a problem more people are facing with
the move to finer-grained micro-services. Hystrix is a library
for the JVM from Netflix that implements patterns for dealing
with downstream failure, offers real-time monitoring of
connections, and caching and batching mechanisms to make
inter-service dependencies more efficient. In combination with
hystrix-dashboard and Turbine, this tool can be used to build

TOOLS

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 7

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

more resilient systems and provide near-real time data on
throughput, latency and fault tolerance.

Testing HTTP-based micro-services can be painful and tricky.
Particularly in two scenarios, the consumption of a group of
micro-services from front-end, and the communication between
micro-services. To deal with these, Moco can be handy. It is a
lightweight stub framework for testing HTTP-based endpoints.
You can have an embedded stubbed service up and running
with 2 lines of Java or Groovy code, or a standalone one with
few lines of JSON to describe the required behavior.

We have long favored the use of hand-drawn, low fidelity
prototypes to illustrate user interactions without getting caught
up in the nitty-gritty of the graphic design. Prototype On Paper
is a tool that allows individual mockups drawn on paper to be
captured via camera on iOS or Android and linked together
to allow for testing of user interaction. This bridges the gap
nicely between the static, lo-fi paper prototypes and more hi-fi
prototyping techniques.

ADOPT
48	 D3
49	 Dependency management
	 for JavaScript

TRIAL
50	 Ansible
51	 Calabash
52	 Chaos Monkey
53	 Gatling

54	 Grunt.js
55	 Hystrix
56	 Icon fonts
57	 Librarian-puppet and Librarian-Chef
58	 Logstash & Graylog2
59	 Moco
60	 PhantomJS
61	 Prototype On Paper
62	 SnapCI
63	 Snowplow Analytics & Piwik

ASSESS
64	 Cloud-init
65	 Docker
66	 Octopus
67	 Sensu
68	 Travis for OSX/iOS
69	 Visual regression testing tools
70	 Xamarin

HOLD
71	 Ant
72	 Heavyweight test tools
73	 TFS

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 8

TOOLS continued

We mentioned ThoughtWorks’ SnapCI -- a hosted service
that provides deployment pipelines -- on the last edition of
the Radar. Since then, we have seen many teams successfully
use SnapCI on their projects. If you need a simple continuous
delivery solution in the cloud, SnapCI can provide it with one
click. No hardware, no hassle.

With increasing scrutiny over the privacy of data, more
companies are concerned about sharing web analytics with
third parties. Snowplow Analytics and Piwik are examples
of open-source analytics platforms that can be self-hosted
and provide a promising feature set and roadmap.

Cloud-init is a simple but powerful technique for carrying out
actions on a cloud instance at boot time. It is particularly useful
when used with instance metadata to allow a newly booted
instance to pull the configuration, dependencies and software
needed to perform a particular role. When used together with
the Immutable or Phoenix server pattern, this can create
a very responsive and light-weight mechanism for managing
deployments in the cloud.

The Docker open-source project has generated a great deal
of interest within ThoughtWorks, and is growing in momentum
and maturity. Docker allows applications to be packaged and
published as portable lightweight containers that run identically
on a laptop or a production cluster. It provides tooling for the
creation and management of application containers, and a
run-time environment based on LXC (LinuX Containers).

Many monitoring tools are built around the idea of the machine.
We monitor what the machine is doing and which software is
running on it. When it comes to cloud based infrastructure,
especially patterns like Phoenix and Immutable servers this is
a problematic approach. Machines come and go, but what is
important is that the services remain working. Sensu allows a
machine to register itself as playing a particular role and Sensu
then monitors it on that basis. When we are finished with the
machine we can simply de-register it.

All development for iOS must be carried out on OS X. Due to
technical and licensing restrictions running server farms with
OS X is neither easy nor common. In spite of these difficulties,
Travis CI, with support from Sauce Labs, now provides cloud-
based continuous integration services for iOS and OS X projects.

Growing complexity in web applications has increased the
awareness that appearance should be tested in addition
to functionality. This has given rise to a variety of visual
regression testing tools, including CSS Critic, dpxdt,
Huxley, PhantomCSS, and Wraith. Techniques range from
straightforward assertions of CSS values to actual screenshot
comparison. While this is a field still in active development we
believe that testing for visual regressions should be added to
continuous delivery pipelines.

Among the various choices available for building cross-platform
mobile apps, Xamarin offers a fairly unique toolset. It supports
C# and F# as the primary language with bindings to platform
specific SDKs and the Mono runtime environment that works
across iOS, Android and Windows Phone. Applications are
compiled to native code instead of the typical cross-platform
approach that renders HTML-based UI in an embedded
browser. This gives apps a more native look and feel. When
using this toolset, it is imperative that the platform specific UI
tier be separated from the rest of the tiers to ensure code reuse
across different platforms. The application binary tends to be
a bit bigger due to the runtime environment that is included.

We continue to see teams expend significant effort on
un-maintainable Ant and Nant build scripts. These are
hard to understand and extend due to the inherent lack
of expressiveness and clean modularity provided by the
tools. Alternatives like Gradle, Buildr, and PSake have clearly
demonstrated superior maintainability and productivity.

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 9

We observe organizations that have piloted Hadoop successfully
starting to consolidate their Hadoop infrastructure services
into a centralized, managed platform before rolling it out
across the enterprise. These Hadoop-as-a-Service platforms
are characterized by the control tier that interfaces with and
coordinates among different core Hadoop infrastructure
components. The capabilities of the platform are usually
exposed via higher-level abstractions to the enterprise. Such
a managed platform gives organizations the ability to deploy
processes, infrastructure and datasets in a fairly consistent way
across the organization. These services are built in private data
centers and public cloud infrastructure.

Akka is a toolkit and runtime for building highly concurrent,
distributed, and fault tolerant event-driven applications on
the JVM. It offers very lightweight event-driven processes with
approximately 2.7 million actors per GB RAM and a “let-it-crash”
model of fault-tolerance designed to work in a distributed
environment. Akka can be used as a library for web-apps or
as a stand-alone kernel to drop an application into.

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

PLATFORMS
The recent explosion of mobile-focused products, coupled
with widespread adoption of “Lean Start-up” approaches that
put a premium on time-to-market for new ideas, has spawned
an ecosystem of Backend-as-a-service (BaaS) offerings that
enable developers to focus on the client application while
offloading backend concerns. Assess adding these services to
your toolkit where fast and low-cost proving of a new product
idea is important. Our usual advice on build/buy/borrow
decisions still applies: be clear on which functional areas are
strategic to your business and which are commodities. For
potentially strategic areas be sure to plan a migration path
that will allow you to use the BaaS provider to get started
quickly, while avoiding friction when your architecture evolves
and you need to migrate to owning this functionality and
customizing it as a differentiator.

With the cost of industrial robots dropping and their safety
and ease of use increasing, the world of useful, commercial
robotics is opening up. Robots like Rethink Robotics’ Baxter*
or Universal Robotics’ U5, make it feasible for small to
medium-sized businesses to automate repetitive tasks
previously performed by humans. Increasingly, enterprise
software will have to integrate with low-cost robotics as
another participant in the value stream. The challenge lies in
making the experience easy and productive for the human
co-workers as well.

The need for physically storing data within nations or
organizations has increased significantly in recent years.
There is concern around sensitivity of information hosted in
cloud environments. Organizations are looking into private
cloud as an alternative when data that needs to be housed
in close proximity with control over access and distribution.
Private cloud offers cloud infrastructure provisioned for
exclusive use by a single organization with the following
characteristics; on-demand self-service, broad network access,
resource pooling, rapid elasticity and measured service.

SPDY is an open networking protocol for low-latency transport
of web content proposed for HTTP2 that has seen a rise in
modern browser support. SPDY reduces page load time by
prioritizing the transfer of subresources so that only one

ADOPT
26	 Elastic Search
27	 MongoDB
28	 Neo4J
29	 Node.js
30	 Redis
31	 SMS and USSD as a UI

TRIAL
32	 Hadoop 2.0
33	 Hadoop as a service
34	 OpenStack
35	 PostgreSQL for NoSQL
36	 Vumi

ASSESS
37	 Akka
38	 Backend as a service
39	 Low-cost robotics
40	 PhoneGap/Apache Cordova
41	 Private Clouds
42	 SPDY
43	 Storm
44	 Web Components standard

HOLD
45	 Big enterprise solutions
46	 CMS as a platform
47	 Enterprise Data Warehouse

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 10

PLATFORMS continued

connection is required per client. Transport layer security is
used in SPDY implementations with the transmission headers
gzip or deflate compressed instead of human-readable text
in HTTP. It is great for high-latency environments.

Heterogeneous and overwhelmingly large amounts of data
is not the only theme of big data. In certain circumstances,
speed of processing can be as important as the volume.
Storm is a distributed realtime computation system. It has
similar scalability to Hadoop, with throughput as fast as a
million tuples per second. It enables for real time processing
what Hadoop does for batch.

In the previous radar we cautioned against the use of traditional
web component frameworks that provide a component model
on the server side. The Web Components standard that
originated at Google, is something quite different. It provides
an easier way to create recyclable widgets by helping with
encapsulation of HTML, CSS and JavaScript, so they do not
interfere with the rest of the page and the page does not
interfere with them. Developers can use as much or as little
of the framework as needed. Early support is provided by the
Polymer Project.

While centralized integration of data for analysis and reporting
remains a good strategy, traditional Enterprise Data
Warehouse (EDW) initiatives have a higher than 50% failure
rate. Big up-front data modeling results in overbuilt warehouses
that take years to deliver and are expensive to maintain. We
are placing these old-style EDWs and techniques on hold in this
edition of the radar. Instead, we advocate evolving towards an
EDW. Test and learn by building small, valuable increments that
are frequently released to production. Nontraditional tools and
techniques can help, for example using a Data Vault schema
design or even a NoSQL document store such as HDFS.

Content Management Systems (CMS) have their place. In
many cases it is unreasonable to write editing and workflow
functionality from scratch. However, we have experienced
serious problems when CMS-as-a-platform becomes an IT
solution that grows beyond managing simple content.

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 11

Scala is a large language that is popular because of its
approachability for new developers. This banquet of
features is a problem because many aspects of Scala, like
implicit conversions and dynamics, can get you into trouble.
To successfully use Scala, you need to research the language
and have a very strong opinion on which parts are right for
you, creating your own definition of Scala, the good parts.
You can disable the parts you do not want using a system
called feature flags.

The Go language was originally developed by Google as a
system programming language to replace C & C++. Four years
out, Go is gaining traction in other areas. The combination of
very small, statically linked binaries combined with an excellent
HTTP library means Go has been popular with organizations
making use of finer-grained, micro-service architectures.

Hive is a data warehouse built on top of Hadoop which
provides a SQL-like query and data definition language that
converts queries into MapReduce jobs that can be run across
the entire Hadoop cluster. Like all useful abstractions, Hive
does not try to deny the existence of the underlying mechanics
of Hadoop and supports custom map-reduce operations as
a powerful extension mechanism. Despite the superficial
similarities to SQL, Hive does not try to be a replacement
for low-latency, real-time query engines found on relational
database systems. We strongly advise against using Hive for
online ad-hoc querying purposes.

The Play Framework 2 blip has generated many internal
discussions. We had competing suggestions to move it to
adopt and hold. These differences relate primarily to the
specific applications for which it is used, how it is used, and
what expectations people have for it. While none of these
issues are unique for Play, Play has generated far more
controversy than is typical in the standard library versus
framework debate. We reiterate the cautions stated in the
previous radar, and we will monitor how Play continues to
mature to support its sweet spot.

Reactive Programming deals with streams or values that
change over time. Using elements of data flow, implicit
concurrency and transparent event propagation, these
techniques enable efficient handling of events on a large
scale with a high degree of efficiency and low latency. In the

LANGUAGES & FRAMEWORKS
previous radar, we mentioned Reactive Extensions in .NET
due to the extensive work done by Microsoft in making
Rx a core part of the .NET framework. Since then, with the
introduction of the Reactive Cocoa library for Objective C,
the Java port of Reactive Extensions, the React JavaScript
library, the Elm language based on Haskell & the Flapjax
JavaScript library, we are extending this blip to include
Reactive Extensions across languages.

Until recently, Microsoft’s Web API was the least-worst
option for building a RESTful service using ASP.NET. Web
API 2 fixes a number of rough edges with better support
for flexible routing, sub-resources, media types and
 improved testability. It continues to be our preferred
library for building .NET REST APIs.

Elixir is a dynamic, functional, homoiconic programming
language built on top of the Erlang virtual machine with
a powerful macro system that makes it ideal for building
Domain Specific Languages. Elixir has distinctive features
such as the Pipe operator that allows developers to build
a pipeline of functions like you would in the UNIX command

24

21

22

25

23

6

39

38

41
33

44

42
46

43

37

47

84

89

92

88
91

90

94

85

82

83

79

80

9

17

15 10

7 13

14
4

49

54

62

59
50

52

61

51

64

69

65

70
67

68

71

18

19

16

20

11

12 8

72

7366

60

63

58

53

56

55

57

87

7877

75

76

31

2730

26

28

29

32

36

40

45

34

35

81

86

93

2

3

1

48

5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

74

ADOPT
74	 Clojure
75	 Dropwizard
76	 Scala, the good parts
77	 Sinatra

TRIAL
78	 CoffeeScript
79	 Go language
80	 Hive
81	 Play Framework 2
82	 Reactive Extensions across
	 languages
83	 Web API

ASSESS
84	 Elixir
85	 Julia
86	 Nancy
87	 OWIN
88	 Pester
89	 Pointer Events
90	 Python 3
91	 TypeScript
92	 Yeoman

HOLD
93	 Handwritten CSS
94	 JSF

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 12

LANGUAGES & FRAMEWORKS continued

shell. The shared byte code allows Elixir to interoperate with
Erlang and leverage existing libraries while supporting tools
such as the Mix build tool, the Iex interactive shell and the
ExUnit unit testing framework. It is a practical alternative to
Erlang for building DSLs.

Julia is a dynamic, procedural and homoiconic programming
language designed to address the needs of high performance
scientific computing. The implementation of the language is
organized around the concept of generic functions and dynamic
method dispatch. Julia programs are largely functions that
can contain multiple definitions for different combinations of
argument types. The combination of these language features
and the LLVM based just-in-time compiler help Julia achieve
a high level of performance. Julia also supports a
multiprocessing environment based on message passing to
allow programs to run on multiple processes. This enables
programmers to create distributed programs based on any
of the models for parallel programming.

PowerShell remains a widely used option for doing low-level
automation on Windows machines. Pester is a testing library
that makes it possible to execute and validate PowerShell
commands. Pester simplifies testing of scripts during
development with a powerful mocking system that makes it
possible to setup stubs and doubles in tests. Pester tests can
also be integrated into a continuous integration system to
prevent regression defects.

Python 3 was a major change from the previous Python 2.x
that introduced backwards incompatible changes. It was
notable for actually removing languages features to make
it easier to use and more consistent, without reducing its
power. This has led to problems in adoption, as some of the
supporting libraries people rely on have not been ported,
and Python developers often have to find new ways of doing
things. Nonetheless the drive towards making a language
simpler is to be applauded, and if you are actively developing
in Python, then give Python 3 another look.

After some delays, mainly caused by patent claims from Apple,
the W3C has now finalized the Touch Events recommendation.
However, in the meantime, Pointer Events, a newer, broader,
and richer standard, is picking up momentum. We recommend
considering Pointer Events for HTML interfaces that must work
across different input methods.

TypeScript is an interesting approach to bringing a new
programming language to the browser. With TypeScript, the
new language features compile down to normal JavaScript, and
yet as a superset of JavaScript it does not feel like a completely
new language. It does not represent an either-or proposition
and it does not relegate JavaScript to an intermediate execution
platform. Many of the language features are based on planned
future extensions of JavaScript.

Yeoman attempts to make web application developers more
productive by simplifying activities like scaffold, build and
package management. It is a collection of the tools Yo, Grunt
and Bower that work well as a set.

We continue to see teams run into trouble using JSF --
JavaServer Faces -- and are recommending you avoid this
technology. Teams seem to choose JSF because it is a J2EE
standard without really evaluating whether the programming
model suits them. We think JSF is flawed because it tries to
abstract away HTML, CSS and HTTP, exactly the reverse of
what modern web frameworks do. JSF, like ASP.NET webforms,
attempts to create statefulness on top of the stateless protocol
HTTP and ends up causing a whole host of problems involving
shared server-side state. We are aware of the improvements
in JSF 2.0, but think the model is fundamentally broken. We
recommend teams use simple frameworks and embrace and
understand web technologies including HTTP, HTML and CSS.

© January 2014, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR - JANUARY 2014 - 13

REFERENCES
Tangible Interactions
http://www.interaction-design.org/encyclopedia/tangible_interaction.html
http://www.computer.org/csdl/mags/co/2013/08/mco2013080070-abs.html
http://www.theverge.com/2012/9/21/3369616/co-working-robots-baxter-home
http://robohub.org/rethink-robotics-baxter-and-universal-robots-ur5-and-ur10-succeeding/

Web Components standard
http://www.polymer-project.org

Hystrix
https://github.com/Netflix/Hystrix/wiki
https://github.com/Netflix/Hystrix/tree/master/hystrix-dashboard
https://github.com/Netflix/Turbine/wiki

Reactive Extensions across languages
https://github.com/blog/1107-reactivecocoa-for-a-better-world
http://facebook.github.io/react/
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://elm-lang.org/
http://www.flapjax-lang.org/

Pointer Events
http://www.w3.org/TR/pointerevents/
http://www.w3.org/TR/touch-events/
http://www.w3.org/2012/te-pag/pagreport.html
http://msopentech.com/blog/2013/06/17/w3c-pointer-events-gains-further-web-momentum-with-patch-for-mozilla-firefox

ThoughtWorks – a software company and community of passionate individuals whose purpose is to revolutionize software creation
and delivery, while advocating for positive social change. Our product division, ThoughtWorks Studios, makes pioneering tools for
software teams who aspire to be great; such as Mingle®, Go™ and Twist® which help organizations better collaborate and deliver
quality software. Our clients are people and organizations with ambitious missions; we deliver disruptive thinking and technology to
empower them to succeed. In our 20th year, approximately 2500 ThoughtWorks employees – ‘ThoughtWorkers’ – serve our clients
from offices in Australia, Brazil, Canada, China, Germany, India, Singapore, South Africa, Uganda, the U.K. and the U.S.

