
MARCH 2012

Technology Radar

Prepared by the ThoughtWorks 
Technology Advisory Board

http://www.thoughtworks.com/radar



Introduction

What’s new?

The ThoughtWorks Technology Advisory Board is a group of senior technology 
leaders within ThoughtWorks. They produce the ThoughtWorks Technology Radar to 
help decision makers understand emerging technologies and trends that affect the 
market today. This group meets regularly to discuss the global technology strategy 
for ThoughtWorks and the technology trends that significantly impact our industry.

The Technology Radar captures the output of these discussions in a format that provides value to a wide range of 
stakeholders, from CIOs to enterprise developers. The content provided in this document is kept at a summary level, 
leaving it up to the reader to pursue more detail when needed. The goal of the radar is conciseness, so that its target 
audience understands it quickly. The radar is graphical in nature, grouping items into techniques, tools, languages 
and platforms. Some radar items could appear in multiple quadrants, but we mapped them to the quadrant that 
seemed most appropriate. We further group these items in four rings to reflect our current position on them.  

The rings are:

• Adopt: We feel strongly that the industry should be adopting these items. 
  We use them when appropriate on our projects.

• Trial: Worth pursuing. It is important to understand how to build up this capability. 
  Enterprises should try this technology on a project that can handle the risk.

• Assess: Worth exploring with the goal of understanding how it will affect your enterprise.

• Hold: Proceed with caution.

Items that are new or have moved since the last radar are represented as triangles, while items that have not moved 
since the last radar are represented as circles. As we look at each quadrant in detail, we show the movement that 
each item has taken since the last publication of the radar. Items that have not moved recently fade and are no 
longer displayed unless something significant happens.

Contributors

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Nick Hines (CTO Innovation)
Evan Bottcher
Graham Brooks
Ian Cartwright
Erik Doernenburg

Ronaldo Ferraz
Jim Fischer
Neal Ford
Ajey Gore
Wendy Istvanick
Badri Janakiraman

James Lewis
Mike Mason
Sam Newman
Pramod Sadalage
Scott Shaw
Hao Xu
Jeff Norris

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 2

Since the last publication of the Technology Radar, these technology trends are most prominent:

• Continued development of alternatives to SQL datastores
• Treating all code from UI to tests with respect
• Increasing diversification and rigor in browser based languages and technologies
• Smaller, simpler and faster applications and services

The ThoughtWorks Technology Advisory Board is comprised of



Technology Radar - March 2012 - 3

New or moved
No change

Tools
35. Git
36. Github
37. Infrastructure as code

38. Client-side MVC
39. FPM
40. Frank
41. Jade
42. JavaScript micro frameworks
43. JavaScript tooling
44. Log aggregation 
 & indexing
45. Message buses without
 smarts
46. NuGet

47. Polyglot persistence
48. PowerShell
49. PSake
50. Vagrant

51. Gradle
52. jQuery Mobile
53. Logic-free markup
54. Open source BI/ETL tools
55. Riak
56. Sonar

57. Code in configuration
58. Cross-platform mobile toolkits
59. Enterprise service bus
60. Maven
61. VCS with implicit workflow

Techniques
1. Automate database deployment
2. Coding architects
3. Continuous Delivery (CD)
4. Data visualizations of 
 development and operations
5. DevOps
6. Emergent design
7. Evolutionary architecture
8. Evolutionary database 
9. Health check pages
10. Simple performance trending
11. Test at the appropriate level

12. Acceptance test of journeys
13. Agile analytics
14. Build your own radar
15. Categorization & prioritization 
 of technical debt
16. Embedding a servlet container
17. Event APIs
18. Infrastructure automation of   
 development workstations
19. Out-of-container functional testing
20. Performance testing as
 a first-class citizen

21. Single command deploy
22. Thoughtful caching
23. Windows infrastructure   
 automation

24. Event sourcing
25. Experience Design (XD)
26. Mechanical sympathy
27. Micro-services
28. Production immune system

29. Database based integration
30. Feature branching
31. Manual infrastructure   
 management
32. Scrum certification
33. Server / application 
 container end-of-life
34. Test recorders

29

15

56

38

22 44 58

97

95

96

100

77

69

71

102

104

93

98

92

52 59

61

57

7

37

36

35

45

1
6

5
8

10
11

2
4

3

14 48

54

17

30

31

24

12

50

32
33

34

25 28

51

16

18

23

13

9

47

91
101

94

68
72

79

99

88

81

103

40

39

49

42

43

41

46
55

60

53

19

26

21

20

27

87

84
86

85

80

83

74

63

67

62
66

73

89
78

75

90

82

76

70
64

65

Adopt Adopt

Trial

TrialAssess Assess

Hold
Hold

62. ATOM
63. AWS
64. Care about hardware
65. Communication between 
 those responsible for 
 hardware and software
66. KVM
67. Mobile web

68. Domain-specific PaaS
69. Heroku
70. Linux containers
71. Offline mobile webapps (just HTML5)
72. Private clouds
73. Tablet
74. Ubiquitous computing
75. Windows Phone 7
76. AppHarbor

77. Cloud Foundry
78. GPGPU
79. Hybrid clouds
80. Node.js
81. OpenSocial
82. Single threaded servers with
 asynchronous I/O
83. vFabric

84. Buying solutions you can 
 only afford one of
85. GWT
86. Java Portal Servers
87. RIA
88. Treating VMs like physical
 infrastructure
89. WS-*
90. Zero-code packages

Platforms
91. Care about languages
92. HTML5
93. JavaScript as a first-class language

94. Clojure
95. CoffeeScript
96. Domain-specific languages
97. SASS, SCSS, and LESS
98. Scala

99. ClojureScript
100. F#
101. Functional Java
102. Future of Java

103. Google Dart
104. Logic in stored procedures

Languages
Adopt Adopt

Trial

Trial

Assess

Assess
Hold

Hold

Copyright © 2012  ThoughtWorks



Techniques
Emergent design is one of the more advanced aspects 
of agile engineering practices, and therefore an area of 
active research & development. Such architectures should 
be driven by the underlying technical requirements of 
the system, rather than speculative planning for a future 
that may change. We have identified at least two facets 
of emergent design: the Lean software principle of last 
responsible moment, which mostly applies to greenfield 
projects, and finding & harvesting idiomatic patterns, which 
is more applicable to existing projects.

We recommend adopting evolutionary architecture as an 
alternative to traditional up-front, heavy-weight enterprise 
architectural designs. 

Micro-services, often deployed out-of-container or 
using an embedded HTTP server, are a move away from 
traditional large technical services. This approach trades 
benefits such as maintainability for additional operational 
complexity. These drawbacks are typically addressed using 
infrastructure automation and continuous deployment 
techniques. On balance, micro-services are an effective 
way of managing technical debt and handling different 
scaling characteristics especially when deployed in a service 
oriented architecture built around business capabilities.

A decade ago when memory was at a premium, application 
servers made a lot of sense. They were popular and useful 
as a mechanism to run and manage multiple applications 
on a shared server or cluster. These days applications are 
more often run on separate physical or virtual servers and 
the need for an application server is reduced. Consider 
evaluating server / application container end-of-life 
within your organization, and only use one if you benefit 
from the added complexity.

Embedding a servlet container, such as Jetty, inside  
a Java application has many advantages over running the 
application inside a container. Testing is relatively painless 
because of the simple startup, and the development 
environment is closer to production. Nasty surprises like 
mismatched versions of libraries or drivers are eliminated  
by not sharing across multiple applications. While you will 
have to manage and monitor multiple Java Virtual Machines 
in production using this model, we feel the advantages 
offered by the simplicity and isolation are significant.

With the popularity of embedded HTTP servers increasing, 
so has the technique of out-of-container functional 
testing. That is writing tests at the boundary of the 
system, using a mock container to provide both fast 
feedback and high coverage. Servers such as Jetty and  

Build your own radar

Hold Assess Trial Adopt

Coding
architectsContinuous delivery

Data visualizations for DevOps

Evolutionary DB

Simple performance trending

Test at the
appropriate level

Emergent designHealth
check
pages

DevOps

Evolutionary
architecture

Acceptance 
test of journeys

Thoughtful
caching

Agile Analytics

Categorization 
& prioritization 
of technical debt

Embedding a servlet container

Event APIs

Dev workstations

Out of container
functional testing

Performance testing 
as a first-class citizen

Single command deploy

Windows
infrastructure
automation

Event sourcing

Experience Design (XD)

Mechanical sympathy

Micro-services

Production 
immune system

Database based integration

Feature branching

Manual infrastructure
management

Scrum certification

Server / application container 
end-of-life

Test recorders

Automate DB  
 deployment

Technology Radar - March 2012 - 4

tools like Plasma for the .Net platform can provide  
a significant reduction in the time it takes to run your  
test suite.

Experience Design (XD) is an example of ways in which 
agility must evolve to accommodate real-world constraints. 
We are always interested in finding innovative ways to 
incorporate what have traditionally been up-front exercises 
into practices like Continuous Delivery. XD is a ripe field for 
study.

There is a worrying trend that developers are becoming 
too distant from the hardware on which their code 
runs. Increasing virtualization and separation between 
development and operations makes this worse. In stark 
contrast some teams are writing code that leverages 
mechanical sympathy to get incredibly high performance 
from their software. The LMAX Disruptor is an open-source 
example in Java. For high performance cases like finance 
and Big data, getting closer to the metal can yield big 
returns.

Applying agile methods to data warehousing, business 
intelligence and agile analytics provides better return  
and improved business responsiveness. This is done by 
applying lightweight technologies like REST services to 
move data around in near real-time instead of batch 
updates. This allows information about customer behavior 
and application usage to be derived and responses 
incorporated within the applications for better user 
experience and data visualization.

Copyright © 2012  ThoughtWorks



Technology Radar - March 2012 - 5

We have found adding simple health check pages to 
applications is incredibly useful. This allows people to 
quickly understand the health of an individual node.  
We often extend them to add metrics like the number  
of orders placed, error rates, or similar information.  
Using simple embedded web servers, even non-web based 
services can easily expose internal information over HTTP. 
By using microformats, these web pages can easily be 
scraped by other monitoring tools to become part of  
holistic monitoring.

A key step in the Continuous Delivery process is the ability 
to release software arbitrarily close to when the business 
wants it. The ability to do single command deploy relies 
on a complete set of activities that fall under the umbrella 
of Continuous Delivery including extensive automation 
of everything from build/test to scripted environment 
provisioning and deployment. We have found that adopting 
this as a goal tends to drive the automation and testing 
pre-requisites upstream into the rest of your organization.

Continuous Delivery techniques are shortening the  
“last mile” to get changes into production, allowing more 
frequent feature releases. A production immune system 
tracks changes as they are put into production, and 
automatically rolls back changes that have a negative  
effect on key metrics, such as revenue. Solid metrics,  
as well as automated A/B deployment, are required for  
this kind of aggressive rollback to be successful.

Automation is one of the core practices of Continuous 
Delivery. While companies are getting better at automating 
the management of infrastructure and environments, one 
commonly forgotten aspect is infrastructure automation 
of development workstations. This leads to huge gains 
in productivity by avoiding manually building specific 
environments and allows a seamless pairing environment. 
As with other parts of the environment, tools like Puppet 
and Chef can be used though they are not entirely 
necessary as the judicious use of platform packaging and 
language build tools can be sufficient.

Mature tools such as PowerShell, together with newer 
options such as Chef and Puppet, lead us to highlight 
Windows infrastructure automation on this edition of the 
technology radar. Manual configuration using a mouse and 
menu options is slow and leads to misconfiguration and 
“snowflake” machines in an unknown state. We recommend 
command-line tools for their clarity and scriptability.

We have long advocated for both static and dynamic code 
analysis tools to help glean information about your code 

base. As the focus of software development broadens 
because of the Continuous Delivery movement, data 
visualizations of development and operations with 
effective, actionable profiling and monitoring should be  
part of your technical stack as well.

Story level testing can lead to a focus on completing 
individual stories instead of coherent functionality. It tends 
to produce a large, hard to maintain test suite which runs 
slowly, delaying the feedback loop. The alternative is user 
journeys, which are groupings of user stories into sets 
of user interactions that provide value for both users and 
the business. Automating these into a suite leads to tests 
which hold their intent for longer periods of time and whose 
failure reveals a failure in the application’s ability to deliver 
concrete value to its users.

The advent of behavior-driven design (BDD) testing 
frameworks like Cucumber, combined with browser 
automation tools like Selenium, has encouraged 
widespread use of acceptance testing at the browser level. 
This unfortunately encouraged doing the bulk of testing 
where the cost to run the tests is the greatest. Instead, 
we should test at the appropriate level, as close to the 
code as possible, so that tests can be run with maximum 
efficiency. Browser-level tests should be the icing on the 
cake, supported by acceptance and unit tests executed  
at appropriate layers.

While unit and acceptance testing are widely embraced 
as standard development practices, this trend has not 
continued into the realm of performance testing. Currently, 
the common tooling drives testers towards creating throw-
away code and a “click-and-script” mentality. Treating 
performance testing as a first class citizen enables 
the creation of better tests that cover more functionality, 
leading to better tooling to create and run performance 
tests, resulting in a test suite that is maintainable and 
can itself be tested.

Test recorders seem invaluable as they provide a quick 
way to capture navigation through an application. However, 
we strongly advise against their regular use, as it tends  
to result in brittle tests which break with small changes 
to the UI. The test code they produce tends to be 
relatively poor and riddled with unnecessary duplication. 
Most importantly, test recorders tend to cut channels 
of communication between the test automation and 
development teams. When faced with an application that  
is difficult to test through the user interface, the solution  
is to have a critical conversation between the teams to 
build a more testable UI.

Copyright © 2012  ThoughtWorks

Techniques continued



Polyglot persistence is the technique of storing data in 
various data stores based on efficiency and how that data 
is going to be used. Do not just use the default database, 
often an RDBMS, for all the needs of the application. 
Instead, ask questions like: Does session management 
data belong in the database or does it belong in a key-value 
store? Do relationships between customers and products 
belong in a graph database? Using NoSQL databases like 
MongoDB, Riak and Neo4J allows us to reconsider how 
data is treated, even with-in a single application.

Riak is a distributed key-value store that is schemaless 
and data-type agnostic. It can be put to good use in write 
heavy projects to store data such as sessions, shopping 
carts and streaming logs. The ability of the distributed 
cluster to self recover, distribute data across the cluster with 
tunable consistency and availability settings, do collision 
detection and resolve those if needed can be helpful in high 
availability environments and provide interesting solutions in 
the architecture.

With mobile applications on the rise, JavaScript size and 
performance is even more critical. JavaScript micro 
frameworks have emerged as a direct response to ‘bloat’ in 
some of the larger libraries. These small libraries do exactly 
one thing, such as DOM selection or MVC, and can be 
under one kilobyte in size. By combining a number of micro 
frameworks, developers can get exactly the functionality 
they need without the overhead of a larger library.  
Microjs.com hosts a collection of these micro frameworks, 
as well as a tool that can bundle them into a single library.

JavaScript is now established as a powerful, mainstream 
language that can be used in a variety environments both 
on client and server sides. As JavaScript codebases expand, 
more JavaScript tooling support becomes necessary, 
especially in the continuous integration and testing spaces. 
Tools like Backbone.js, SpineJS, JavaScriptMVC, Jasmine, 
JSTestDriver and HRcov are coming to the forefront. They 
are created by a vibrant community that continues to grow.

Frank is an open source library that allows functional 
tests for iPhones and iPads to be written in Cucumber and 
executed on a remote device. This fills an important niche in 
iOS development where acceptance test-driven development 
was previously cumbersome and awkward.

While MVC has been a staple of web development for the 
past few years, most libraries and frameworks fail to adhere 
to one of its most important principles: keeping logic out 
of the view layer. The consequences of not having logic-
free markup include complex dependencies, difficulty 
testing and inability to reuse code. Recent DSLs like 
Mustache are available for many languages and platforms 
and have started to turn the trend. They allow editing in 
any tool, without extra requirements for language support 

and provide huge gains for UI development and overall 
application design.

We continue to highlight infrastructure as code. This 
technique treats infrastructure configuration in the same 
way as code; checking configuration into source control, 
then carefully pushing changes out to the data center.

There are many advantages to using OS-native packages  
to deploy components and dependencies, however the  
tools which build native packages for Linux are not trivial. 
FPM is a useful tool which makes it easy to create RPM, 
DEB, or Solaris packages with a minimum of fuss.

Package management systems are a widely accepted 
practice for incorporating third party libraries. Tools such  
as RubyGems, Maven, APT, are available at both language 
and system level. NuGet is such a system for .Net platform.  
It consists of a Visual Studio IDE extension and a PowerShell 
module that opens the possibility for further improving build 
automation on the .Net platform.

PSake (pronounced ‘sake’ like the Japanese rice wine) 
is a build automation tool implemented in PowerShell. 
PSake provides a tidy syntax for declaring build tasks and 
dependencies without programming in XML. You also have 
access to all the features of PowerShell and the .NET 
framework from within your build scripts.

Maven has long been a staple of build automation in the 
Java space. However, given its lack of flexibility and support 
for automation best practices, especially in the Continuous 
Delivery domain, the use of alternatives such as Gradle 
should be considered.

Git
Github

Infrastructure as Code

FPM

Frank

Jade

JavaScript
micro frameworks

Log aggregation 
& indexing (wa

Message 
buses without
smarts

NuGet

Polyglot Persistence

Powershell

PSake

Vagrant

Gradle

jQuery Mobile

logic-free markup

Open source 
BI/ETL tools

Riak

Sonar

Code in con�guration

Cross platform
mobile toolkits

Enterprise Service Bus

Maven

VCS with implicit work�ow

HoldAssessTrialAdopt

JavaScript tooling

Client-side
MVC

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 6

Tools



Platforms
Node.js is just one example of a class of single 
threaded servers with asynchronous I/O that 
are seeing increased popularity. A traditional web or 
application server associates each incoming request  
with a thread until all the processing tasks associated 
with that request are complete and the response has 
been sent back. If any of those tasks involve I/O, the 
thread blocks while that I/O takes place. This approach 
can waste finite resources such as file descriptors and 
memory since each connection occupies a thread 
whether or not that thread is actually consuming 
CPU cycles. An alternative architecture is starting to 
emerge in implementations like Node.js (a JavaScript 
server running on Google V8), Nginx (an open source 
web server and proxy), and Webbit (a Java application 
server), that uses a single thread to serve many 
connections, processing all I/O asynchronously.  
These servers support orders of magnitude more 
simultaneous connections because each one  
consumes far fewer resources.

Because of concerns over privacy and security, or a 
need to repurpose existing hardware investments, many 
businesses are choosing to implement their own private 
cloud. There are are a variety of products, both open 
source and commercial for this purpose, but it should be 
noted that compute, storage, and network management 
are only the starting points for a useful private cloud. 
There are many services and processes that must be 
custom implemented to provide a cloud facility that 
rivals the public offerings from Amazon, Rackspace,  
or others.

Hybrid clouds describe a set of patterns that combine 
the best features of public clouds and private data 
centers. They allow applications to run in a private data 
center during normal periods then use rented space 
in a public cloud for overflow capacity during peak 
traffic periods. Another way to combine public and 
private clouds in an agile way is to use the elasticity 
and malleability of public clouds for developing 
and understanding an application’s production 
characteristics, then moving it into permanent 
infrastructure in a private data center when it is stable.

While it can be all too easy to ignore geographical 
location of cloud-based services, for legal and technical 
reasons it can be a serious constraint when considering 
appropriate platforms. With the recently announced 
Brazil and Singapore regions, Amazon has made AWS-

based systems more viable for people in areas  
previously poorly served by IaaS providers. In addition, 
they continue to add features to existing services,  
such as VPC. We remain confident in recommending 
AWS for those situations where flexibility in provisioning 
resources is key.

AppHarbor is a Platform as a Service (PaaS) offering 
for the .NET Platform using the same pricing model and 
structure pioneered by Heroku. It is a promising take on 
the deployment of .NET applications as it abstracts away 
most of the underlying configuration needs that come 
with the platform. It is maturing quickly and we expect  
it will see growing interest in time to come.

One style of virtualization that is particularly attractive for 
SaaS and PaaS implementations is the virtual container. 
Linux containers such as OpenVZ provide the isolation 
and management benefits of a virtual machine without 
the overhead usually associated with general-purpose 
virtualization. In the container model, the guest OS 
is limited to being the same as the underlying host 
OS, but that is not a serious limitation for many cloud 
applications.

Hold Assess Trial Adopt
ATOM

AWS

Care about
hardware

Communication 
between hardware 
and software teams

KVMMobile web

Domain-speci�c PaaS

Heroku

Linux containers

O�ine mobile 
web apps (HTML5)

Private clouds

Tablet

Ubiquitous computing

Windows Phone 7

AppHarbor

Cloud Foundry

GPGPU

Hybrid clouds

Node.js

Open Social

Single threaded async servers
vFabric

Buying solutions you
can only a�ord one of

GWT

Java portal servers

RIA

Testing VMs like 
physical infrastructure

WS-*

Zero-code packages

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 7



Platforms continued

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 8

We find that many businesses are starting to build 
their own internal cloud deployment environments that 
can be easily replicated for development and testing 
environments. In many cases, provisioning is self-
service, and with a single keystroke, developers can 
create a set of hosts that implement core enterprise 
assets and collaborating systems. In a sense, this is  
a domain-specific PaaS offered to internal customers.

Windows Phone 7 has surprised even some of the 
long time critics of Windows platforms. After many failed 
attempts, Microsoft has managed not only to produce a 
mobile operating system that provides a user experience 
on par with the other major contenders in the space but 
also the development support to go with it. Microsoft 
is making Windows Phone 7 a viable competitor and 
another choice for a more integrated experience in 
the corporate arena. Whether it will be able to change 
adoption trends remains to be seen.

OpenSocial is a specification that provides a standard 
way to share content between semi-trusted applications. 
While initially proposed for public facing social 
networking sites, it has possibly more potential within 
the corporate firewall, where the benefits of being able 
to share data and content between applications in a 
standard manner frequently outweigh the requirements
of scale and security.

One of the principal mechanisms that allows agile 
software development to work is feedback loops.  
One common yet expensive broken feedback loop we 
have observed is the lack of communication between 
those responsible for hardware and software.  
The end result creates cost but not worth. You must view 
architecture holistically; neither hardware nor software 
has a full enough perspective to be successful alone.

While virtualization is on the rise, some organizations 
are treating virtual machines like physical 
infrastructure. We frown on doing a full operating 
system install for each VM or using VMs for load testing. 
Virtual machines can be cloned, snapshotted, and 
manipulated in ways physical machines cannot, and 
also have vastly different performance characteristics 
than physical hardware. VMs should be used with full 
understanding of their benefits and limitations, otherwise 
you can really get into trouble with them.

Many teams encounter problems that are caused by 
their test environment missing an expensive hardware 
component that is only present in production. While 
a pre-production environment in many cases cannot 
approach the scale of a production environment, all of 
its components should be present. We recommend not 
buying solutions you can only afford one of, such 
as SAN, firewalls or load balancers, as this prevents 
realistic testing anywhere but in production.

We have long been less than enthusiastic about RIA 
technologies such as Flash and Silverlight because 
of vendor lock in potential, anemic support for agile 
engineering practices, and potential for overuse. It 
seems even the large vendors are starting to agree with 
us. Now that modern versions of HTML handle most of 
the common cases that formerly required RIA, we feel 
that new projects must have enormous justification 
and careful strategic thought before using any of these 
technologies.

There are a number of enterprise software packages on 
the market that purport to offer flexible functionality with 
zero coding. This is certainly an appealing notion – that 
a non-technical business user could configure software 
to the unique requirements of any business without 
learning a programming language or hiring a professional 
software developer. However, it should be kept in mind 
that any change that affects the behavior of software 
in production, whether it is code, configuration, data 
or environments, could cause defects or failures in the 
business system. Writing code is only one step in a 
professional software production lifecycle. The need for 
repeatable analysis, testing, build, and deployment does 
not go away because the system is modified via a drag-
and-drop interface instead of a high-level programming 
language. When evaluating a zero-code package, 
ensure that the the product supports these processes 
and that you have the necessary IT support structures  
in place to implement them.

We are reiterating our advice that given the progress  
and acceptance of simpler web-as-platform techniques 
such as REST and OAuth and the known issues with  
WS-*, it should only be used cautiously.



Languages

Care 
about 
languages HTML 5

Javascript as a 
�rst class language

Clojure

Co�eescript

Domain-speci�c
languages

SASS, SCSS, and LESS

Scala

ClojureScript

F#

Functional java

Future of Java

Google Dart

Logic in
stored

procedures

HoldAssessTrialAdopt

The industry is experiencing something of  
a renaissance in programming languages. 
ThoughtWorks thinks it is time to start  
assessing which other languages will help  
your organization while taking stock of 
the useful lifetime remaining for your 
current choices. You need to care about 
languages. Traditionally structured 
organizations with separate support 
teams may find skills constrain choice, 
DevOps offers a path forwards here.

Functional programming continues its 
slow but steady ascent into developer 
mind share and, increasingly, code bases. 
New languages like Clojure, Scala, and F# 
offer great new features. Now libraries such 
as Functional Java, TotallyLazy and LambdaJ 
are back porting some functional language 
capabilities, particularly around higher-order 
functions and collections, into Java. We like this 
trend because it previews common capabilities  
of future languages yet allows developers to stay 
in their comfort zone.

Microsoft’s F# continues to evolve, with the recent 
release of F# 3.0 beta. F# is excellent at concisely 
expressing business and domain logic. Developers trying 
to achieve explicit business logic within an application 
may opt to express their domain in F# with the majority 
of plumbing code in C#.

ClojureScript illustrates just how cross-platform the  
core of Clojure really is: they ported the primary parts  
to run on JavaScript. It is missing some of the whizz-
bang features of Clojure on the JVM and CLR, like 
software transactional memory, but has a surprisingly 
high fidelity with its more sophisticated cousins. One 
interesting option afforded by ClojureScript is the ability 
to send data structures à la JSON using ClojureScript as 
the data structure. Because Clojure is a Lisp, this means 
that you can also send “real” code.

Rich experiences delivered via the web to desktops, 
tablets and mobile devices rely heavily on JavaScript, 
and we continue to recommend treating JavaScript 
as a “first class” language within your application. 
Developers should carefully consider how they structure, 
test, refactor and maintain JavaScript code, applying the 
same rigor as they would with any other programming 
language.

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 9

Dart is Google’s 
attempt at creating 
a programming language 
to replace JavaScript due to 
JavaScript’s perceived flaws and 
inherent performance issues. Dart, in line 
with previous Google languages, provides 
Java-like syntax and semantics that are intended to 
be more appealing than JavaScript’s prototype-based 
nature. Reception within the browser-development 
community has been understandably cool and it remains 
to be seen if the language will become more widely 
accepted, though Chrome’s continued rise and the 
search for alternatives like CoffeeScript may yet shift 
that balance.



References

ThoughtWorks is a global IT consultancy

LMAX Disruptor http://martinfowler.com/articles/lmax.html
Polyglot persistence http://martinfowler.com/bliki/PolyglotPersistence.html
JavaScript microframeworks http://microjs.com/
Frank – IOS testing http://testingwithfrank.com/
Functional Java http://functionaljava.org/

ThoughtWorks – The custom software experts. A company wholly devoted to the art and science 
of custom software. We make it, and we make our clients better at it. Our bottom line is to 
design and deliver software fast and predictably. Doing enterprise-scale software is tough, but  
the returns to those organizations that can deliver – on target – are tremendous. 

ThoughtWorks’ products division offers tools to manage the entire Agile development lifecycle 
through its Adaptive ALM solution™, comprised of Mingle®, Go™ and Twist®. 

ThoughtWorks employs 1,800 professionals to serve clients from offices in Australia, Brazil, 
Canada, China, Germany, India, Singapore, South Africa, the United Kingdom and the United 
States. We lead the industry in rapid, reliable and efficient custom software development. When 
you need an expert partner to help you get ahead and stay ahead of the competition, get in touch.

Copyright © 2012  ThoughtWorks Technology Radar - March 2012 - 10


