
July 2011

Technology Radar

Prepared by the ThoughtWorks
Technology Advisory Board

http://www.thoughtworks.com/radar

Introduction

What’s new?

The ThoughtWorks Technology Advisory Board is a group of senior technology
leaders within ThoughtWorks. They produce the ThoughtWorks Technology Radar to
help decision makers understand emerging technologies and trends that affect the
market today. This group meets regularly to discuss the global technology strategy
for ThoughtWorks and the technology trends that significantly impact our industry.

The Technology Radar captures the output of these discussions in a format that provides value to a wide range of
stakeholders, from CIOs to enterprise developers. The content provided in this document is kept at a summary level,
leaving it up to the reader to pursue more detail when needed. The goal of the radar is conciseness, so that its target
audience understands it quickly. The radar is graphical in nature, grouping items into techniques, tools, languages
and platforms. Some radar items could appear in multiple quadrants, but we mapped them to the quadrant that
seemed most appropriate. We further group these items in four rings to reflect our current position on them.

The rings are:
•	Adopt: We feel strongly that the industry should be adopting these items. We use them when appropriate
	 on our projects.
•	Trial: Worth pursuing. It is important to understand how to build up this capability. Enterprises should try
	 this technology on a project that can handle the risk.
•	Assess: Worth exploring with the goal of understanding how it will affect your enterprise.
•	Hold: Proceed with caution.

Items that are new or have moved since the last radar are represented as triangles, while items that have not moved
since the last radar are represented as circles. As we look at each quadrant in detail, we show the movement that
each item has taken since the last publication of the radar. Items that have not moved in two publications of the
radar fade and are no longer displayed unless something significant happens.

Contributors

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Nick Hines (CTO Innovation)
Evan Bottcher
Graham Brooks
Ian Cartwright
Erik Doernenburg

Neal Ford
Ajey Gore
Wendy Istvanick
Mike Mason
David Rice
Pramod Sadalage

Samir Seth
Scott Shaw
Hao Xu
Jeff Norris

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 2

Since the last publication of the Technology Radar, these technology trends are most prominent:

•	Tools for effectively delivering and testing mobile web
•	Simple techniques for testing and obtaining performance
•	Several new approaches to business intelligence
•	Continued emphasis on continuous delivery and web based architectures

The ThoughtWorks Technology Advisory Board is comprised of

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 3

Tools
30.	Subversion
31.	Git
32.	Infrastructure as code
33.	Github
34.	Caching reverse proxies
35.	Splunk
36.	Mercurial
37.	Message buses without
	 smarts
38.	NoSQL
39.	Next gen test tools
40.	New Relic beyond Rails
41.	TLB
42.	Powershell

43.	Selenium 2 testing of
	 mobile websites
44.	Deltacloud
45.	Vagrant
46.	API management services
47.	jQuery Mobile
48.	Backbone.js
49.	Sonar
50.	Open source bI tools
51.	Gradle
52.	Cross platform mobile toolkits
53.	ESB
54.	VCS with “implicit workflow”
55.	Code in configuration

74.	Javascript as a first class language
75.	HTML 5
76.	SASS, SCSS, and LESS
77.	HAML
78.	Domain-specific languages
79.	Scala
80.	Coffeescript
81.	Clojure
82.	F#
83.	Future of Java
84.	Logic in stored procedures

26

16

13

22

12

5

3

32

36

46

53
45

44

37
39

35

38

304

6

56

61

62

82
83

77

79

74

78

76

68

67

65

69

66

5857

7

15 14

25

29

28

27

21

23

17

19

24

18

20 11

9

2

10

64

59

81 84

8075

72

73

70

71

63

60

31
33

42 41

40 50

47

48
49

51 54

43

55

52

34

1
8

56.	JRuby
57.	ATOM
58.	KVM
59.	AWS
60.	Mobile web
61.	Heroku
62.	Tablet (formerly iPad)
63.	Offline mobile webapps (just html5)
64.	Ubiquitous computing

65.	vFabric
66.	OpenStack
67.	Node.js
68.	OAuth
69.	GPGPU
70.	Cloud Foundry
71.	WS-*
72.	GWT
73.	Java portal servers

Platforms Languages

New or Moved
No change

Techniques
1.	 Progressive enhancement
2.	 Automate database deployment
3.	 Platform roadmaps
4.	 Evolutionary database
5.	 Emergent design
6.	 Visualization and metrics
7.	 Coding architects
8.	 Evolutionary architecture
9.	 DevOps
10.	Simple performance trending
11. Continuous delivery
12.	Concurrency abstractions
	 and patterns
13. Acceptance test of journeys
14.	Categorization & prioritization
	 of technical debt
15.	Continuous deployment
16.	Capability modeling
17.	Thoughtful caching
18.	Iterative data warehousing

19.	Build your own radar
20.	Event API’s
21.	Event driven business intelligence
22.	Smart systems
23.	Event sourcing
24.	Decision driven BI
25.	Scrum certification
26.	Database based integration
27.	Procedure oriented integration
28.	Feature branching
29.	Manual infrastructure management
	

Techniques
If you are wondering “What comes after agile?,” you
should look towards continuous delivery. While
your development processes may be fully optimized,
it still might take your organization weeks or months
to get a single change into production. Continuous
delivery focuses on maximizing automation including
infrastructure as code, environment management
and deployment automation to ensure your system is
always ready for production. It is about tightening your
feedback loops and not putting off anything until the
end. Continuous delivery is not the same as continuous
deployment, which means deploying every change to
production. Continuous delivery is not a cowboy show.
It puts you in charge of your production environment.
The business can pick and choose what and when to
deploy. If you think you’ve nailed agile development,
but aren’t considering how to achieve continuous
delivery, you really haven’t even started.

Improving the interactions and relationship between
development and IT operations gives us more effective
delivery and production systems that are more stable
and maintainable. Creating a DevOps culture requires
attention to team organization, work practices, reporting
lines, and incentives - leading to joint responsibility
for faster and safer delivery. We recommend adopting
DevOps because we cannot see any situation where
attention in this area will not have a positive benefit.

In contrast to traditional up-front, heavy-weight
enterprise architectural designs, we recommend
adopting evolutionary architecture. It provides the
benefits of enterprise architecture without the problems
caused by trying to accurately predict the future.
Instead of guessing how components will be re-used,
evolutionary architecture supports adaptability, using
proper abstractions, database migrations, test suites,
continuous integration and refactoring to harvest
re-use as it occurs within a system. The driving technical
requirements for a system should be identified early to
ensure they are properly handled in subsequent designs
and implementations. We advocate delaying decisions
to the latest responsible moment, which might in fact
be up-front for some decisions.

RESTful APIs have become standard in our industry.
A good REST API provides a simple, lightweight means
of building customizations and integrations. However,
many of the quick, high value integrations we’d like
to build require knowing when something happened.
Consider building an event API, which, when used in
conjunction with a REST API, facilitates simple workflow,
notification, and synchronization integrations. These
integrations often require no more than 20 or 30 lines
of code. Often event APIs take the form of a “web hook”
or callback mechanism, but don’t be afraid of using a
poll-based Atom style either. An Atom event API scales
cheaply and gives the client the power to guarantee
delivery.

Hold Assess Trial Adopt

Progressive enhancement

Automate database deployment

Platform roadmaps

Evolutionary database

Emergent design

Visualization
and metrics

Coding architects

Evolutionary architecture

DevOps

Simple performance trending

Continuous delivery

Concurrency
abstractions and patterns

Acceptance test of journeys

Categorization
& prioritization
of technical debt

Continuous deployment

Capability modeling

Iterative data warehousing Build your
own radar

Event API’s

Event driven business intelligence

Smart systems

Event sourcing

Decision driven BI

Scrum certification

Database based integration

Procedure oriented
integration

Feature branching

Manual infrastructure
management

Thoughtful caching

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 4

One of the goals of SOA has been to decouple services
by exchanging human-readable business documents
instead of programming parameters. However, in
implementing SOA, many businesses have simply used
web services to expose the underlying programming
models of back-end systems. Procedure oriented
integration is nothing more than remote procedure
calls implemented via a different protocol. The
consequences of this are additional layers of complexity
with no improvement in business flexibility. To avoid
this, implementers of SOA should first understand the
business meaning of their services, then implement
human-readable contracts that are independent of
legacy system implementation.

All too often caching is an afterthought used to address
performance problems with a blanket approach and
common cache lifetime. This leads to issues and
workarounds. The “time value” of information is
inherently linked to the business purpose and hence
needs to be captured at the same time as other
requirements. We believe thoughtful caching should
be addressed early in the project and not just treated
as a last minute performance fix.

Starting performance tests late in a project is risky and
costly. Very simple performance tests that exercise key
parts of the system, run on a regular basis, are good
enough to track trends, so we can react if we see a
change in performance. Run these tests with your build
or as an overnight job and graph the results to create
simple performance trending. Complex performance
tests in a truly representative environment are still useful,
but don’t wait for them to start understanding how the
performance of your code is changing.

Techniques continued

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 5

If the rate at which business is changing is an indicator
of change in requirements, then the days of doing
upfront database design are gone. Instead, projects
should follow evolutionary database techniques and
continue to change their database schemas as new
requirements are implemented over the course of the
project. Deployment of database changes should also
be automated so that the application release that relies
on those changes does not have to wait for manual
deployment of the database changes. Automated
database deployment ensures that application and
database changes can be deployed automatically.
Evolutionary database and automated database
deployments ensure highly productive teams a path to
continuous delivery.

Despite advances in automation, many people fall back
on manual infrastructure management. We often see
problems caused by manual configuration of firewalls
and load balancers, and especially by DBAs cutting and
pasting SQL scripts to run against production databases.
All of these activities, if not fully automated, should at
least be scripted and repeatable across environments.

Disappointingly, we continue to see development teams
embrace the practice of feature branching to isolate
work and defer integration. Feature branches commonly
cause significant pain and unpredictability during late
merges, but more importantly prevent the continual
design improvement necessary to maintain high quality
software. We recommend continuous integration and
branch by abstraction as an alternative to feature
branching.

Recent use of progressive enhancement with mobile
applications has been very effective and demonstrates
the universal nature of this web design strategy. We
encourage people to adopt this strategy to keep their
code clean and give each user the optimal experience
for their device.

Event sourcing is an approach to thinking about
persistent data where the primary record is a log of all
events that make updates. A traditional representation
of database state can be entirely recreated by
reprocessing this event log. Event sourcing’s benefits
include strong auditing, creation of historic state, and
replaying of events for debugging and analysis. Event
sourcing has been around for a while, but we think it
is used much less than it should be.

Traditional approaches to implementing data
warehouses and business intelligence work from
the bottom up in horizontal tiers, assembling and
cleansing data sources from across the enterprise
then aggregating them into a comprehensive data
mart before reports can be generated. Some people
are now employing an alternative approach that starts
with the real outcome--a business decision--and pulls
work items through the process as needed to support
that decision. Decision driven business intelligence
allows a more incremental approach to BI and facilitates
rapid feedback to the decision makers who are the
ultimate consumers of business intelligence.

Like iterative software development, there is lot of value
to be gained by delivering data warehousing projects
using iterative techniques. Iterative data warehousing
techniques allow the end users of the data warehouse to
determine what reports they want and the ETL developers
and data modelers to deliver those features without
wasting time with data modeling and ETL jobs that do not
provide immediate value to the business.

Data visualizations have been effective in business
and IT decision making. Organizations are making
effective use of real time data through visualizations.
These visualizations include point in time data as well
as trends plotted over time. We are seeing increased
adoption of these techniques in optimizing operations
and software development.

Building your own technology radar helps you
decide, normalize, and publicize consensus technology
views for all interested parties. ThoughtWorks produces
a technology radar for clients and friends, telling the
world our opinions about upcoming technology trends.
You should do this for your own company as well. Too
many decisions in large companies happen in a vacuum,
with no input from the technologists who have to live with
them every day.

Tools

The DevOps movement continues to grow, with developers
and operations staff working closely together to solve the
“software last mile” problem. Infrastructure as code
is a technique for treating infrastructure configuration in
the same way as code; checking it into source control,
then using it to push changes out to the data center. In
addition to web server, application server and application
configuration, we are seeing network configuration treated
in the same way. Network switch, firewall and load
balancer configuration can be infrastructure as code, and
even changed at runtime.

Measuring software internal quality is still a mystery, even
though many source code metrics have been around for
years. The problem with those metrics is they usually only
capture one aspect of quality. We must consult many
metrics to come to a conclusion about the overall quality
of our code. Sonar is an integrated tool for checking,
tracking and visualizing those metrics. It not only combines
metrics together, but also mixes them with historical
measures, giving us a better insight into the internal
quality of the codebase.

Many organizations try to minimize change in production
IT environments. This frequently leads to behavioral
anti-patterns. One example of this is over use of code
in configuration to affect the behavior of production
systems. Changes that really belong in code end up in
configuration files which don’t necessarily pass through
the same levels of testing as the application. Streamlining
the path to production and focusing on quality simplifies
rather than complicate things.

If your test suites are growing slower and you have
already verified that it is not a serious problem with
your application, first make your tests faster, then look at
parallelization. The Test Load Balancer (TLB) project is
a big development in the world of parallel test execution.
It removes the inefficiencies of manual work distribution
using smart algorithms and historical test execution data
to optimize workload distribution and minimize elapsed
time. Further, it orders the tests in intelligent ways like
executing the test that failed in the previous execution
first to get quicker feedback. Parallel execution can occur
across a grid of machines or across multiple processes
on a single machine. JUnit, RSpec, Test::Unit, Twist and
Cucumber are currently supported and NUnit is under
development.

Application designs that incorporate caching reverse
proxies as first class design elements are simpler and
more resilient to infrastructure failures. Placing a caching

reverse proxy between an application and a web service it
consumes reduces the risk of service failures affecting the
application while improving overall system performance.

Even though JavaScript increasingly plays a more
important role in today’s world of software development,
it is still troublesome to organize in a clean structure.
Backbone.js is a library which provides an MVC
(model view controller) framework for JavaScript heavy
applications. It allows developers to write JavaScript code
in a more manageable and testable way.

Starting from a challenge posed to the Linux community
to stop using commercial version control, Git has proved
itself. Git embodies a well architected, high performance
implementation of distributed version control. Git is
powerful, so it should be used with respect, but that power
enables agile engineering workflows that simply cannot
exist with other tools. Git’s popularity is supported by the
existence of GitHub. GitHub combines public and private
Git repositories, social networking, and a host of other
innovative tools and approaches.

Some tools seek to enable and facilitate different ways
of working. Unfortunately other tools are created using a
different premise, one of low trust in users and the need
to enforce a predefined process. ClearCase and TFS do
this. This makes version control systems with “implicit
workflow” unsuitable tools for modern agile software
development. Project methodologies and the best ways

Subversion

Git

Infrastructure
as code

Github

Caching reverse proxies

Splunk

Mercurial

Message buses
without smarts

NoSQL

New Relic
beyond Rails

TLBPowershell

Selenium 2 testing
of mobile websites

Deltacloud

Vagrant

API management services

jQuery Mobile

Backbone.js
Sonar

Open source bI tools

Gradle

Cross platform mobile toolkits

ESB

VCS with “implicit workflow”

Code in configuration

HoldAssessTrialAdopt

Next gen
test tools

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 6

Tools continued

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 7

of working on a project need to emerge. Tools that enforce
high ceremony around things like check in just get in the
way and kill productivity.

Thoughtworks has used jQuery Mobile on two projects
with mobile websites and had mixed experiences. One
project found the library very useful for dealing with device
differences and graceful degradation on older browsers.
On this project we were working in a way that fit with
the jQuery Mobile approach. Our other project found the
tool less useful and felt to some extent it was trying to
force them to work a particular way that did not fit their
application well. For these reasons we have decided to
leave this tool in assess. If you are doing mobile web it is
definitely worth spiking but it may not fit every application.

When building mobile web applications we can now use
Selenium 2 mobile tests to run the same acceptance
tests on iOS, Android and Blackberry. This works on
emulators, simulators and physical devices. We have
successfully used this approach on production software
for all 3 platforms. While the Blackberry driver is still
in beta, we found it stable enough for use. The key
challenge is the different ways to install the driver and
start the browser, but this only needs to be solved once.
We suggest that companies doing mobile web for these
devices try this approach. We see no reason why this
approach cannot be extended to Windows Phone in
the future.

With very few exceptions, tools that claimed to create
seamless user experiences across Windows, Linux and
OSX did not deliver. We ended up with compromised
experiences on one or more of the operating systems.
Mobile adds complexity to this problem with different
hardware form factors and conventions for user
interactions. We have made several attempts to use
cross platform mobile toolkits on our projects with
varying degrees of success. We saw issues like having
to create a project for each platform or invoking specific

native UI widgets to get things working. For these reasons
we have put cross platform mobile toolkits in hold.
While this may change in the future, we remain skeptical
especially given past experiences on hardware that was
far more homogeneous.

NoSQL technologies are maturing daily, allowing for
innovative solutions as businesses need to scale massively
or ask intelligent questions of existing data. Technologies
like MongoDB, Riak, Neo4J, Cassandra and many others
are helping power the NoSQL space.
Open source BI tools such as Pentaho, JasperSoft,
CloverETL, Talend, BIRT and SpagoBI are matching
features with the proprietary tools and allowing for easy
entry into the BI space. We recommend that you assess
them.

We have regularly used New Relic hosted performance
monitoring with Ruby on Rails systems in development
and production. The combination of fast setup and
comprehensive reporting has proven extremely valuable
in troubleshooting performance. We are now seeing good
results from the New Relic monitoring services for Java
and .NET systems.

Powershell is as important tool for managing Windows
servers and applications. Built into Windows 2008 and
Windows 7, Powershell allows Unix-like scripting and
automation across a server farm. Scripts can be executed
on remote machines, and a single command can manage
hundreds of machines at once. Powershell scripts can
deploy and configure applications and operating system
components, and can be extended by writing .NET
“commandlets.”

Gradle is an attempt to bring sanity to the enterprise build
space by marrying best-of-breed tools with cutting edge
techniques. Gradle allows you to interact with your existing
Maven repositories, but adds scriptability to your builds
with a clean domain specific language.

Interesting Tools
Fog – Cloud services library for Ruby to administer compute, CDN, DNS and storage using a common API – http://fog.io

MCollective – MCollective supports automated parallel command execution on large clusters of servers. Instead of
addressing servers by hostnames or IP addresses, it allows querying by server facts – reducing a source of maintenance
problems. – http://puppetlabs.com/mcollective/introduction/

Midje – Tool for readable tests in Clojure – https://github.com/marick/Midje/wiki

Play Framework – Framework for creating web applications with Java and Scala – http://playframework.org/

Platforms
Mobile web was in our trial ring on previous radars, but
we’ve moved it into adopt in recognition of the fact we
have created many mobile web applications. We believe
this is the right way to create web content for mobile
devices.

HTML5 includes features that allow control and storage
of offline data within the browser using client side
JavaScript. These features allows creation of offline
mobile web applications in a cross platform way that
would have previously required installed applications.
For instance an application that can download articles
for reading later or a data capture application that can
work offline and upload when you are online. While the
standard is not finalized yet, support for these offline
features is available and ready for use in the WebKit
based browsers found on iOS, Android and newer
Blackberry phones.

Tablet devices provide a new model of computing.
The next generation of tablets show the potential
for new interaction paradigms, and we expect interest
and innovation to continue to escalate.

Ubiquitous computing is tricky term as it covers many
different ideas. What we find interesting and exciting
at the moment is that both consumer and specialist
mobile devices are increasingly based on commodity
operating systems such as Android or iOS. This means
that in many cases, software can be developed by
organizations themselves, opening the door to innovative
new applications without requiring expensive niche skills.
Lower price points for the hardware also make this
area more accessible, especially with peripherals like
payment card readers, PIN key pads and high quality
bar code scanners becoming available for both Android
and iOS devices. When combined with features already
available on these consumer devices, whole new ways
of working open up.

OAuth is a web-friendly, lightweight standard for
authorization that allows a user to share private
resources between internet services, e.g., allowing
your favorite social networking site to access your
photos from your favorite photo sharing site. OAuth
is simple, avoids password proliferation, and allows
a service to grant bare minimum privileges. If you
are exposing your application’s data in a lightweight,
web-friendly manner you should strongly consider
using OAuth as your standard for authorization.

Charles Nutter and the JRuby team continue to improve
JRuby at a frantic pace. It is fast and they place massive
importance on keeping their ecosystem up-to-date,
including DB adapters, gem management, and modern
Rails deployment. Rails 3 + JRuby is an awesome
platform. There really is no reason to not be using Ruby,
one of our favorite languages, in the enterprise.

Amazon continues to evolve the AWS cloud with
services such as RDB, making it even easier to engineer
and deploy cloud-based applications. Not every AWS
feature is as mature as EC2 and S3, so you should
carefully evaluate which AWS components to use.
We feel comfortable recommending AWS where elasticity
or on-demand computing are required.

Cloud Foundry is an open source Platform as a Service
that can be deployed in your own data center or hosted
by VMWare. At present Cloud Foundry supports Java/
Spring applications, Rails, Sinatra, Grails and Node.js.
Additional services include MongoDB, MySQL and Redis.
The platform seems to be enjoying active development
with the recent addition of Scala and Lift support.
Cloud Foundry is an interesting addition to the growing
list of PaaS solutions. It is not clear what the relationship
between vFabric and Cloud Foundry will be going
forward.

Hold Assess Trial Adopt

JRuby
ATOM

KVM

AWS

Mobile webHeroku

Tablet (formerly iPad)

Offline mobile webapps (just html5)

Ubiquitous computing

vFabric

OpenStack

Node.js

OAuth

GPGPU

Cloud Foundry

WS-*

GWT

Java portal servers

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 8

Platforms continued

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 9

Heroku is a beautifully simple Platform as a Service
(PaaS). Although Heroku began as a Ruby on Rails
platform, it is evolving to support a variety of languages
and web frameworks, most recently Clojure. Heroku uses
a standard stack and deploys applications with a simple
Git push. Heroku’s recent acquisition by Salesforce.com
has not diminished its service quality.

A continuing cause of delivery problems lies in the use
of Java Portal Server packages. These problems occur
in both open source and commercial portal platforms.
The promised productivity of these platforms is hindered
by their complex and unwieldy programming models
and difficulty in automating deployment, data migration,
and tests. Although product demos are compelling, the
base features of portal products are often a poor fit for
real web applications, while the extra advertised features
such as single sign-on or search are usually already
served by existing, targeted, enterprise assets.

GWT is a reasonable implementation of a poor
architectural choice. GWT attempts to hide many of
the details of the web as a platform by creating desktop
metaphors in Java and generating JavaScript code to
implement them. First, in many ways, JavaScript is
more powerful and expressive than Java, so we
suspect that the generation is going in the wrong
direction. Secondly, it is impossible to hide a complex
abstraction difference like that from event-driven
desktop to stateless-web without leaky abstraction
headaches eventually popping up. Third, it suffers from
the same shortcomings of many elaborate frameworks,
where building simple, aligned applications is quick and
easy, building more sophisticated but not supported
functionality is possible but difficult, and building
the level of sophistication required by any non-trivial
application becomes either impossible or so difficult
it isn’t reasonable.

Previously our advice has been to tread carefully when
using the WS-* stack beyond the basic profile. Given
the progress and acceptance of simpler web-as-platform
techniques such as REST and OAuth and the known
issues with the WS-*, it should only be used cautiously.

Languages

HoldAssessTrialAdopt

Javascript as a first
class language

HTML 5

SASS, SCSS, and LESS

HAML

Domain-specific languages

Scala

Coffeescript

Clojure

F#

Future of Java

Logic in stored procedures

While HTML5 is an evolving standard, many
elements have reached the stage where they can
be safely used in production to create both on
and offline mobile web applications. Based
on our projects we think HTML5 is ready to
be adopted for mobile web applications. As
the standard continues to evolve we expect
HTML5 will become an increasingly viable
alternative to native applications with
the distinct advantage of being inherently
cross platform.

Clojure is a dynamic, functional language
that runs on the JVM. Although its roots
are in Lisp, one of the oldest computer
languages, it also embodies many modern
programming concepts, including lazy
evaluation and advanced concurrency
abstractions. Clojure has spawned a vibrant
community of programmers who are contributing
a rich set of frameworks and tools. One example
of these is Midje, an innovative spin on unit testing
and mocking frameworks

JavaScript is a powerful, ubiquitous programming
language with tricky and error prone syntax.
Coffeescript fixes many of the warts of JavaScript
in a clean, simple syntax that generates readable
JavaScript. For example, creating true private variables
in JavaScript is a syntactic nightmare; CoffeeScript
generates the technically correct but hideous syntax.

Some readers may be confused by our advocacy of
Coffeescript given our general dislike for GWT, because
on the surface they seem similar: tools that generate
JavaScript. However, it is the level of abstraction that
differs. GWT has an elaborate component model, which
tries to hide details about the underlying language
(JavaScript) and platform (the web). Coffeescript tries
to make it easier to write proper JavaScript, avoiding
pathological but default “features” of JavaScript, and
does not build a layer that tries to insulate you from
the platform.

It is startling to us that we continue to find new
systems in 2011 that implement significant business
logic in stored procedures. Programming languages
commonly used to implement stored procedures lack
expressiveness, are difficult to test, and discourage
clean modular design. You should only consider stored
procedures executing within the database engine in
exceptional circumstances, where there is a proven
performance issue.

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 10

References

ThoughtWorks is a global IT consultancy

Backbone.js http://documentcloud.github.com/backbone/
Business logic in stored procedures http://bit.ly/storedprocedure
Cloud Foundry http://cloudfoundry.org/
CoffeeScript http://jashkenas.github.com/coffee-script/
Continuous Delivery http://bit.ly/delivery-vs-deployment
Cross platform mobile http://martinfowler.com/bliki/CrossPlatformMobile.html
Event Sourcing http://martinfowler.com/eaaDev/EventSourcing.html
Feature Branching http://martinfowler.com/bliki/FeatureBranch.html
Gradle http://gradle.org/
JQuery Mobile http://bit.ly/jQueryMobile
New Relic http://newrelic.com
Offline mobile Webapps http://diveintohtml5.org/storage.html
Selenium 2 testing of mobile websites http://slidesha.re/selenium2
Sonar http://sonarsource.org/
Test Load Balancer http://test-load-balancer.github.com/

ThoughtWorks - The custom software experts. A company wholly devoted to
the art and science of custom software. We make it, and we make our clients
better at it. Our bottom line is to design and deliver software fast and predictably.
Doing enterprise-scale software is tough, but the returns to those organizations
that can deliver – on target – are tremendous.ThoughtWorks’ products division,
ThoughtWorks Studios, offers tools to manage the entire Agile development
lifecycle through its Adaptive ALM solution™, comprised of Mingle®, Go® and
Twist®. ThoughtWorks employs 1,700 professionals to serve clients from offices
in Australia, Brazil, Canada, China, Germany, India, the United Kingdom and
the United States.

We lead the industry in rapid, reliable and efficient custom software development.
When you need an expert partner to help you get ahead and stay ahead of the
competition, call us.

Copyright © 2011 ThoughtWorks Technology Radar - July 2011 - 11

