
August 2010

Technology Radar

Prepared by the ThoughtWorks
Technical Advisory Board

http://www.thoughtworks.com/radar

Introduction

What’s new?

The ThoughtWorks Technical Advisory Board consists of a group of senior technical
leaders within ThoughtWorks. They produce the ThoughtWorks Technology Radar to
help decision makers understand emerging technologies and trends that affect the
market today. This group meets regularly to discuss the global technology strategy
for ThoughtWorks and the technology trends that significantly impact our industry.

The Technology Radar captures the output of these
discussions in a format that provides value to a
wide range of stakeholders, from CIOs to enterprise
developers. With this in mind the content provided in
this document is kept at a summary level, leaving it up
to the reader to pursue more detailed knowledge as
the need arises.

The goal of the radar is conciseness, so that its target
audience understands it quickly. To that end, it is
graphical in nature. Radar items are grouped into
techniques, tools, languages and platforms. Some radar
item could appear in multiple quadrants, but we mapped
them to the quadrant that seemed most appropriate.

We further group these items in four rings to reflect our
current position on them. The rings are:

• Hold: Of interest to ThoughtWorks and others in
 the industry, but, in our opinion, not ready to invest
 significant time and resources to build experience.

• Assess: Worth exploring with the goal of understanding
 how it will affect your enterprise.

• Trial: Worth pursuing. It is important to understand
 how to build up this capability. Enterprises should try
 this technology on a project that can handle the risk.

• Adopt: Industry has finished trial and found proper
 patterns of usage, or we feel strongly that the industry
 should be adopting it now, rather than going through a
 gradual adoption approach.

As we look at each quadrant in detail, we try to show
the movement that each item has taken since the last
publication of the radar. New items are represented as
triangles, while items that were on the last radar are
represented as circles.

Contributors
The ThoughtWorks Technical Advisory Board is comprised of

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Nick Hines (CTO Innovation)
Graham Brooks
Ian Cartwright
Erik Doernenburg
Jim Fischer

Neal Ford
Ajey Gore
Wendy Istvanick
Mike Mason
Cyndi Mitchell
David Rice

Ian Robinson
Pramod Sadalage
Samir Seth
Jim Webber
Hao Xu
Jeff Norris.

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 2

Since the last publication of the Tech Radar:

• Continuous Deployment, Next-gen test tools, NoSQL, and Facebook as a business platform moved
 from assess to trial
• Visualization & metrics, Emergent Design, Android, and JVM as a platform moved from trial to adopt
• Azure moved from hold to assess
• 18 new items entered the Radar. These are represented as triangles.

Techniques Tools
1. Database based integration
2. Scrum certification
3. Incremental data warehousing
4. DevOps
5. Polyglot programming
6. Automation of technical tests
7. Capability modeling
8. Service choreography
9. Continuous deployment
10. Evolutionary architecture
11. Coding architects
12. Visualization and metrics
13. Web as platform
14. Emergent design
15. Evolutionary database
16. Platform roadmaps
17. Build pipelines

18. ESB
19. Intentional
20. Cross mobile platforms
21. Github
22. Restfulie
23. RDF triple stores
24. Apache camel
25. Next gen test tools
26. NoSQL
27. Neo4j

28. Message buses
 without smarts
29. Puppet
30. mongoDB
31. Mercurial
32. Git
33. Squid
34. ASP.NET MVC
35. Subversion

36. Java language end of life
37. F#
38. Scala
39. Clojure
40. HTML 5
41. DSL’s
42. Groovy
43. C# 4.0
44. JRuby
45. JavaScript as a first class language
46. Ruby

56

58

55

50

49

48

47

53 5152

60

61

63

62

54

59

65

66

69 70

68

67

64

40

42

41

39
38

37

36

23

22

26

21

20

25

30
27

31

32
19

1829

28

24

33

34
35

4

9

8

7

6

5
11

12

13
14

10

16
15

17

1

3

2

57

44
46

43

45

47. Rich internet applications
48. GWT
49. IE8
50. WS-* beyond basic profile
51. Azure
52. Mobile Web
53. Google App Engine
54. Application appliances
55. Google as corporate platform
56. GPGPU
57. App containers
58. OAuth
59. RDFa

60. Location based services
61. iPad
62. EC2 & S3
63. Facebook as business platform
64. JVM as platform
65. iPhone
66. Android
67. KVM
68. Atom
69. ALT.NET
70. IE6 End of Life

Platforms Languages

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 3

Techniques
It is rare for enterprise software to be developed in
isolation, with no dependencies on other systems,
deployed into production environments without support
from operations teams, and without considering the
strategic goals of the business. Yet, in our day to day
experience delivering software with client teams, we
continue to see development and delivery practices that
overlook these fundamental concerns.

For those organizations that are required to integrate
systems, many continue to use a common database,
sharing data between applications through the database
tier. In many cases this has become an established
and accepted architectural pattern: database based
integration. The side affect of such an approach is
greater coupling of database schemas, release schedules,
performance and quality of service across applications.

DevOps is a new movement seeking to achieve the
business need for rapid delivery of software products
while maintaining the stability of live environments. It
uses two approaches: first, promoting closer collaboration
between development and operations; second, applying
practices shared with agile (collaboration, automation,
simplicity, etc) to operations processes such as
provisioning, change management, and production
monitoring. It encompasses culture, processes, and
tools - all supporting better communication, faster
feedback and delivery, and more predictable outcomes.

One principle of agile software development is the
notion of the last responsible moment. This notion
applied to architectural considerations is controversial
among traditional architects. We believe that, given
properly articulated principles and appropriate test
suites, architectures can evolve to meet the changing
needs of a system, allowing for architectural decisions
to be made at the last responsible moment without
compromising the integrity of the system. We call this
approach evolutionary architecture, in that we allow the
architecture to evolve over time, always respecting the
architectural guiding principles.

Initiatives that span multiple projects require shared
understanding of the business context, operating model,
and strategic goals of an organization, as well as any
existing technical, organizational and process constraints
impinging on planning and design activities. As part of
our evolutionary approach to enterprise architecture, we
use business capability modelling to create lightweight
hierarchical models of the business functions that are
an essential part of an organization’s needs and goals.
Capabilities describe an organization’s operating model
in terms of goals and competencies (what is to be done),
rather than implementation specifics (how things are
done). Whereas business architecture models based on
people, process or technology are contingent, volatile and
often short lived, and therefore ill-suited to the long-term
planning needs of the organization, capability models

provide a description of the business context that is stable
enough to serve as a basis for identifying and prioritising
technology and process initiatives.

Integrated business processes now routinely span multiple
systems and even enterprises. This raises the question
of how these processes should be coordinated. In our
experience centralized orchestration solutions often
fail to deliver the promised benefits. They are costly to
implement, and because they maintain application state
on behalf of many consumers, they are often difficult to
scale. This has lead us to prefer service choreography,
where independently distributed participants collaborate
according to an application protocol. Using the Web as
platform, hypermedia-driven application protocols allow us
to implement integrated business processes that are easy
to evolve and easy to scale.

We strongly believe that all software delivery organizations
need to be making use of automated technical tests.
This sort of test spans failover testing, performance
testing and soak testing among others; these activities
can start early in a project’s life-cycle and continue
through to maintenance. The common practice of waiting
until near the end of a project is fraught with risk with
little time available to find and fix problems. For example
the requirement for a comprehensive production-like
environment before the start of performance testing is
a dangerous fallacy, we can discover bottlenecks, track
performance trends and test our performance tests,
without waiting for a perfect environment.

Google maps has led the way in bringing mapping
mainstream. But businesses, governments and non-profit
organizations are now learning to use these location
based services to communicate more effectively with
customers. With other mapping services providers
getting into the act, there is going to be a proliferation of
applications built around mapping targeted at customers
who are now much more map-savvy.

Scrum
certification

incremental data warehousing

Emergent
Design

Platform
roadmaps

Build pipelines

Evolutionary DB

Coding architects

Service
choreography

Web as
platform

Visualization
& metrics

Database based
integration

DevOps

Automation of technical tests

Polyglot programming

Continuous
deployment

Capability modeling

Evolutionary
architecture

Hold Assess Trial Adopt

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 4

Tools

In today’s connected systems environments almost
all new development needs to integrate with existing
applications and services. In conjunction with our
adoption of simple message buses and integration
techniques at the edges of a system, we have
successfully used small libraries such as Apache
Camel to perform the protocol bridging, message
transformation and message routing tasks common
to such integrations. Camel’s fluent Java interface,
unit testing support and connectors for many different
transports and message formats provide for an effective
anti-corruption layer when implementing distributed
applications.

While there has been much publicity around Apple’s
squashing cross-platform development options for the
iPhone and iPad, there are still perfectly valid options.
PhoneGap and Appcelerator Titanium’s approach is
to provide a native compatibility layer for all the major
mobile platforms to your Web standard HTML+CSS+JS
application.

In previous radars we recommended Distributed Version
Control (DVCS) tools in general while mentioning Git
and Mercurial in particular. In this edition we narrow our
recommendation to only Mercurial and Git as these two
have become the clear front-runners. Due to its success
and the associated network effect GitHub remains
the recommended option for enterprises that want to
interact with the open source community.

In the last radar we placed the Google Web Toolkit
(GWT) on hold and tried to provide a few reasons for
that decision. As it turned out the conciseness of the
text didn’t allow us to adequately make our points so
that they were not misunderstood. We are interested in
a discussion but our opinion about the suitability and
usability of GWT has still not changed.

Puppet is a free, open source data center automation
tool for managing changes to your production and
production-like environments. Using Puppet, you can
keep the configuration of your environments in version
control and push changes out to your systems in a
controlled, automated fashion. Infrastructure automation
tools like puppet have the benefits of reducing manual

effort allowing ops to focus on higher priorities, providing
consistency and repeatability by reducing waste
eliminating environmental differences between test and
production environments.

NoSQL is about scale, massive datasets, cloud data,
social network data, data in buckets, data in graphs
i.e. a range of use cases for which “traditional” SQL
databases may not be the optimal choice. Unravelling
NoSQL and trying to explain what it is and why you
should or should not be interested in it is difficult as
the term covers a wide range of technologies, data
architectures and priorities and represents as much
a movement or a school of thought as it does any
particular technology. Types of NoSQL technologies
include key-value, column and object stores as well
as document, graph and XML databases.

ThoughtWorks has been working with Intentional
Software for the past several years, and we are thrilled
at the recent limited availability and production use
of the Intentional Domain Workbench. We believe this
technology represents a radical departure from the
traditional software development approach. We place
this technology in the assess ring, since we believe
that it is time to begin exploring the application of
Intentional’s technology in proofs of concept.

Neo4j
Mercurial

Git
ASP.NET MVC

RDF
triple
stores

NoSQL

Squid

Restfulie

mongoDB
ESB

Intentional

HoldAssessTrialAdopt

Cross mobile
platforms

Apache Camel

Puppet

Subversion

Message buses
without smarts

Next-gen
test tools

GitHub

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 5

Languages

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 6

Javascript as a
first-class language

Groovy

DSL’s
Java Language end of life

C# 4.0
JRuby

F#

Scala

Clojure

HTML 5

Ruby

HoldAssessTrialAdopt
The maintainability, testability and
readability of JavaScript is a very
significant contributor to the productivity
of teams producing Web-based
applications and sites. ThoughtWorks
believes JavaScript deserves to be
treated as a first class language, viewing
it as second class citizen has become
an excuse for a whole series of bad
practice we would not tolerate in Java
or C#. We need to use the same kind
of tools (e.g. unit testing) and approaches
(e.g. refactoring) as we’d use for any
other production language. V8 and other
JavaScript engines are raising the bar on
performance, while Flash & Silverlight seem
to be losing momentum to HTML5 + JavaScript
in areas where a rich client-like experience is
required. This is good news for all interested in
open standards on the Web.

The functional languages F#, Clojure and Scala
still reside in the assess ring of the radar. Interest
in functional languages continues to grow. Two
characteristics of functional languages in particular are
driving this interest, immutability with its implications for
parallelism and functions as first class objects. While the
introduction of closures to C# brings some of the latter
capability, functional languages are almost synonymous
with immutability. The placement of these languages
within the assess ring indicates our view of their relative
maturity and appropriateness.

F#, based on OCaml, is fully supported within the
Visual Studio toolset. F# includes support for objects
and imperative constructs in addition to functional
language constructs in a natural way. Scala, like F#,
combines the object and functional paradigms, although
the syntax of Scala is more Java-like. Clojure began as
a JVM language and is now available on the .NET CLR.
Clojure does allow for mutable state although it has an
extensive set of immutable persistent data structures, all
supporting multi-threaded applications. There are many
similarities between these three languages, but at the
moment we believe F# and Clojure to be better suited to
most organizations for assessing than Scala. More work
clearly needs to be done to validate this assertion.

Platforms
HTML 5 continues to be the preferred choice for developing
complex Web-based applications, with features including
improved integration of rich audio and video content, client-
side storage, better document structure, Web sockets and
offline use. Safari, Chrome, Firefox and Opera each support
significant subsets of the proposed standards, with support
coming in Internet Explorer 9. HTML 5 is likely to remain in
draft for some time to come, however; early adopters may wish
to reflect on the bleakly comedic saga of two separate groups
attempting to drive its evolution.

RDFa, a mechanism for attaching meaningful vocabularies
to HTML content that is being quickly and widely adopted by
content providers, is the first mainstream success to arise
from the Semantic Web stack. RDFa enables tools ranging
from custom point integrations to Google spiders to more richly
understand your Web content. If you would like to quickly open
up your content to a multitude of integration possibilities in a
simple, cheap, standards-based fashion, we recommend you
try RDFa.

While we are bullish on RDFa, we remain highly guarded on
native RDF triple stores as a persistence mechanism. The
leading available triple stores vary greatly in their capabilities,
capacity, and performance characteristics. If you are exploring
the use of a triple store, you must do extensive testing to make
sure the triple store fits your needs.

One of the foundational technologies of the Web as platform,
Atom is an extensible data syndication format with broad tool
support in almost all languages. In conjunction with the Atom
Publication Protocol, Atom comprises a lightweight platform
for publishing and consuming data with high quality-of-service
guarantees. Atom-based solutions trade scalability for latency,
however, making Atom often inappropriate for very low-latency
scenarios.

OAuth is a Web-based authorization protocol that allows
applications to access a user’s secured resources in
another application without the user having to share their
private security credentials. Now an RFC, OAuth represents
a significant standards-based attempt to improve privacy
and security for Web browser and machine-based access
to distributed Web resources. Library support is patchy and
adopters can expect to spend some time wrangling their code
to achieve true interoperability. OAuth 2.0 is due towards the
end of 2010, with specific flows for Web applications, desktop
applications, mobile phones, and household devices. Because
OAuth 2.0 is not backwardly compatible with version 1 and the
implementation challenges around the current version, OAuth
is still in the assess ring.

AWS is the most mature and broadest of the current cloud
offerings providing scalable services for computation (EC2),
storage (S3 & SBS), databases (SimpleDB & RDS), messaging
(SQS & SNS), etc. The list of services provided by AWS
continues to expand rapidly with new services being added on
an almost monthly basis, (http://bit.ly/90887v). While existing
applications can be deployed on AWS through the use of
Amazon Machine Images the full benefits of this platform will
come from applications that are developed to take advantage
of AWS. The usage based billing model adopted by AWS
allows organizations to scale applications without large upfront
investment and avoid the overhead cost of under utilized
hardware.

The iPhone changed the face of the mobile phone. The iPad
has the potential to radically alter the way users interact with
and consume Web-based resources and applications and will
spawn a plethora of similar tablet devices. The addition of
wireless application distribution in IOS4 allows organizations
to securely host and distribute in-house applications without
using the App Store, overcoming one of the main barriers to
corporate adoption. IOS4’s introduction of multitasking with
applications running in the background has opened up new
possibilities for enterprise applications, at the cost of extra
battery usage.

The use of GPUs for computing offers efficiencies and
performance for certain classes of problems that would be
prohibitively expensive for more traditional hardware. Problems
that fit Single Instruction Multiple Data (SIMD) processing
models can gain significant advantages at the cost of difficult
learning curves using specialized APIs. OpenCL, CUDA from
NVidia and DirectCompute from Microsoft offer developers
access to General-purpose computing on graphics processing
units (GPGPU).

Google as corporate platform

IE8

GPGPU

GWT

Application
Appliances

Google App
Engine

Mobile
web

Azure

App containers

Rich
Internet
applications

JVM as
platform

KVM

IE6 end
of life

Facebook
as business
platform

EC2
& S3

RDFa

OAuth

iPad

Location
based
services

iPhone
Android ALT.NET

AtomWS-* beyond
basic profile

Hold Assess Trial Adopt

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 7

References

ThoughtWorks is a global IT consultancy

http://www.infoq.com/presentations/agilists-and-architects

http://martinfowler.com/ieeeSoftware/enterpriseArchitects.pdf

http://intentsoft.com/

http://www.infoq.com/presentations/Intentional-Software-at-Work

http://clojure.org/

http://fsharp.net

http://www.scala-lang.org/

We deliver custom applications and provide consulting grounded in reality;
we help organizations become efficient through Agile and Lean practices and
principles. By hiring exceptional people, we can solve our clients’ biggest and
most pressing problems. All of our services are offered both on and offshore,
and are delivered with pride and passion.

Copyright © 2010 thoughtworks.com Technology Radar - August 2010 - 8

