
 Copyright © 2010 Technology Radar | Jan 2010 | 1

Technology Radar
January 2010

Prepared by the ThoughtWorks Technical Advisory Board

 Copyright © 2010 Technology Radar | Jan 2010 | 2

Introduction
The ThoughtWorks Technical Advisory Board
consists of a group of senior technical leaders within
ThoughtWorks. They produce the ThoughtWorks
Technology Radar to help decision makers
understand emerging technologies and trends that
affect the market today. This group meets regularly
to discuss the global technology strategy for
ThoughtWorks and the technology trends that
significantly impact our industry.

The Technology Radar captures the output of these
discussions in a format that provides value to a wide
range of stakeholders, from CIOs to enterprise
developers. With this in mind the content provided
in this document is kept at a summary level, leaving
it up to the reader to pursue more detailed
knowledge as the need arises.

The goal of the radar is conciseness, so that its
target audience understands it quickly. To that end,
it is graphical in nature. However, terseness requires
extra context; thus, there are some aspects that
warrant further explanation. The first is the
groupings (or quadrants) that radar items are placed
within: techniques, tools, languages and platforms.
In a number of cases a single radar item could
appear in multiple quadrants, but we have tried to
map each item to the quadrant that is most
appropriate.

The titles given to each concentric circle also require
clarification: hold, assess, trial and adopt. The
placement of a radar item in one of these circles is
intended to map our current position on the item.

Hold: when placed in this band, the item may be of
interest to ThoughtWorks and others in the industry.
However it is our opinion that the item is not ready to
invest significant time and resources in which to
build experience.

Assess: a technique, tool, language or platform that
moves into the assess band of the radar is
something that we believe is worth exploring with the
goal of understanding how it will affect the
technology impacted dimensions of your enterprise.

Trial: having established a radar item as something
worth pursuing, it is important to understand how to
build up this capability. Enterprises should look to
trial the technology on projects that have a risk
profile capable of taking onboard a new technology
or approach.

Adopt: is the final stage that is of interest to us on
the radar. Here we feel that the industry has begun
to move beyond the trial phase and has found the
proper patterns of usage for an item. An item may
also appear in the adopt band if we feel strongly that
the industry should be adopting a radar item now,
rather than going through a more gradual adoption
approach.

As we look at each quadrant in detail, we try to show
the movement that each item has taken since we
last compiled this information. Given that there is a
gap of almost a year in capturing our positions on
the radar, a number of items have come from off the
radar and into the trial and adopt bands rapidly. We
expect that this will occur less often as the radar is
released more regularly.

Contributors
The ThoughtWorks Technical Advisory Board is
comprised of

! Rebecca Parsons (CTO)
! Martin Fowler (Chief Scientist)
! Scott Conley (CSO)
! Ian Cartwright
! Erik Doernenburg
! Jim Fischer
! Neal Ford
! Ajey Gore
! Wendy Istvanick
! Mike Mason
! Cyndi Mitchell
! David Rice
! Pramod Sadalage
! Chris Stevenson
! Jim Webber
! Hao Xu

with technical assistance provided by Darren Smith.

 Copyright © 2010 Technology Radar | Jan 2010 | 3

hold

assess

trial

adopt

3.

2.

1.

7.

6.

5.

4.

9.
8.

10.

11.

13.

12.

14.

16.

17.

18.15.

19.

20.

21.

23.

22.

37.

36.

38.

34.

33.

30.

31.

32.

29.

28.

27.

24.

26.

25.
35.

19. C# 4.0
20. Java language end of life
21. Functional languages
22. Concurrent languages
23. DSL’s
24. Javascript as a first-

class language

languages

techniques
1. Continuous deployment
2. Incremental data

warehousing
3. Evolutionary architecture
4. Evolutionary database
5. Web as platform
6. Emergent design
7. Lean software

development
8. Build pipelines
9. User centered design

tools
10. Visualization & metrics
11. IE6 end of life
12. ASP.NET MVC
13. Next-generation test

tools
14. Subversion
15. Distributed version

control
16. Google Wave
17. Language workbenches
18. Polyglot development

environments

25. Android
26. JVM as platform
27. Firefox
28. Cloud
29. iPhone
30. HTML 5
31. Non-relational databases
32. Rich Internet applications
33. RDF & SPARQL
34. Google as corporate platform
35. Location based services
36. Chrome OS
37. Chrome
38. IE8

platforms

 Copyright © 2010 Technology Radar | Jan 2010 | 4

Techniques
The past 2 years or more has seen a proliferation of
continuous integration tools and platforms leading to
substantial innovation in the build and release
space. Distribution of builds is one such innovation
and yet another is the way in which builds are now
structured to make greater use of automation in
various stages of the build. Build pipelines help to
provide greater insight into the quality of each build
and the environments to which they have been
deployed. A natural expansion of the build pipeline
meme is the adoption of continuous deployment
techniques, where the intention is to extend the build
pipeline into the production environment. This relies
on automated deployment techniques and
authorization mechanisms built into the continuous
integration toolset. One of the key benefits is the
ability to move new functionality into production
rapidly and reliably.

We assist many of our clients in adapting enterprise
software architecture practices to fit within an Agile
software delivery approach. In the past year we
have seen increased interest in evolutionary
enterprise architecture and how service oriented
architectures shape the boundaries between
enterprise units. The value of an evolutionary
approach to enterprise architecture is the creation of
lighter weight systems that ease integration between
disparate parts. By embracing this approach and the
notion of the web as an enterprise application

platform, we have reduced overall
complexity of application architectures,
increased quality and scalability, and
reduced development costs.

The industry has seen significant
changes to the way we use and store
data over the past few years. Agile
development practices have lead to
greater emphasis on evolutionary
database design, requiring new tools
that support migration of schemas in line
with changes to the domain model of an
application. As storage space
consistently becomes cheaper and data
access speeds increase, many
organizations are investigating the use
of multiple schemas to hold data for
different purposes, e.g. transactional and
analysis schemas. Incremental data
warehousing is becoming increasingly
popular as the cost of moving data
between a transactional data store and
an analysis environment is less than the
value of having access to near real-time

reporting of critical business data.

As Agile practices move further toward mainstream
adoption, we see significant benefits from the
adoption of Lean software development practices
as well. These practices have their roots in the
Toyota Production System and complement much of
our understanding of Agile software development to
date. One topic that Lean has also given us greater
insight into is that of set-based design. Set-based
design leads us to implement similar solutions at the
same time while the cost of doing so is constrained.
This leads us into the area of emergent design and
the ability to let experience shape our design
decisions and defer key decisions until the last
responsible moment.

The benefits of user-centered design are often
understated. Gaining a broader understanding of
data flows and users’ goals simplify the overall
architecture of a system while optimizing user
interaction. In the past year we have seen a greater
uptake of user-centered design in Agile software
development practices as experts in both fields have
established new ways of working together.

User

centered

design

Web as

platform

Emergent

Design

Build pipelines

Continuous

deployment

Incremental data

warehousing

Lean

software

development

Evolutionary

Database

Evolutionary

Enterprise

Architecture

adopttrialassesshold

 Copyright © 2010 Technology Radar | Jan 2010 | 5

Tools
Evolutionary and emergent design of enterprise
systems requires significant vigilance by
development and architecture teams. Collecting
metrics to capture development trends is a key part
of understanding the stress points for a system
under development. Assessing this information in
its raw form is even more difficult than taking stock
of a system at the source code level. To address
this concern we have found a number of
visualization tools and techniques to get what we
refer to as the 1000ft view of the system and its
internal quality. This 1000ft view allows us to
identify visual patterns that help find and address
issues more quickly.

Distributed version control systems such as Git
and Mercurial have had significant exposure in the
past year or more as open source projects move to
this toolset en masse. The social networking aspect
that GitHub and Bitbucket have brought to
distributed version control has helped to propel
these tools forward and into enterprises looking for
ways to develop across multiple geographies. The
move for many to a distributed version control
system has resulted in a move away from tools such
as Subversion and other centralized version control
systems. As organizations assess and choose
between these two different toolsets, we suggest
that you evaluate both in relation to your team’s
specific needs. While we have seen widespread
adoption of distributed version control tools within
ThoughtWorks and beyond, we still advocate the
use of continuous integration and limits to the
amount of time that code is spent outside of the
main branch.

Polyglot programming continues to gain widespread
acceptance across the industry reflecting the reality
that software developers have many languages and
tools at their disposal. One area that we have yet to
see take off is the creation of polyglot development
environments, capable of satisfying multiple
language needs of development teams. While
Eclipse, IntelliJ, Visual Studio and others have some
cross-language capabilities, their support for a wide
range of languages is limited at best.

The Ruby language community is responsible for a
number of innovations in the area of testing. The
next generation of testing tools such as rspec and
Cucumber are two such tools that have come out of
this community. These tools, along with
ThoughtWorks’ Twist, provide a way to express tests
in a more natural language syntax that captures the

intent of the system in a way that end users can
quickly grasp.

It is likely that test languages will continue to evolve
with the assistance of language workbenches,
tools that assist in the creation of domain specific
languages. Tools such as Jetbrains’ MPS and
Intentional Software’s offering are leading the
industry in this area. Both provide ways of creating
new languages to map business software more
closely to the end user’s domain language.

Google Wave has sprung up over the past few
months and looks to be a promising platform for
collaboration over the Internet. The platform is still in
early beta and suffers from some stability issues.
Some early developers have integrated with the
Google Wave platform but commercial releases of
software that utilize Google Wave will likely wait until
the beta tag has been lifted from the product.

We have been tracking ASP.NET MVC since its
early release candidates. This is an exciting
development in the .NET space from Microsoft, both
in the programming model and in the open source
license under which Microsoft has released the
library. ASP.NET MVC is similar to MVC frameworks
on the Java platform and is a move away from the
ASP.NET Web Forms approach to one that supports
greater levels of automated testing.

Visualization

& metrics
Subversion

IE6 end

of life

ASP.NET MVC

Next-gen

test tools Google

Wave

Distributed

version

control

Language

workbenches

Polyglot

dev environments

adopt trial assess hold

 Copyright © 2010 Technology Radar | Jan 2010 | 6

Languages
While JavaScript first appeared in 1995, it is only in
the past couple of years that libraries such as
Prototype and JQuery have helped the language
become more accessible to a wider developer
audience. As developers continue to embrace
JavaScript for developing rich user web applications,
we increasingly hold JavaScript in the same level of
esteem as any other production language, ensuring
that scripts are adequately tested, refactored and
maintained.

A significant amount of innovation occurred in the
JavaScript space thanks to the Ruby on Rails
community. This same community has helped to
move both internal and external DSLs forward as a
means for more closely mapping business
requirements in code. Ruby’s syntax lends itself
easily to the creation of easily readable DSLs, while
language tools such as ANTLR help to make the
creation of new domain specific languages more
accessible to interested developers.

When C# first appeared, many saw it as a direct
competitor to the Java language’s dominance in
enterprise application development. This was often
attributed to the syntactical similarities that the two
languages shared. Since its introduction, however,
C# has continued to move forward with the adoption
of language features such as lambda expressions,
extension methods, object initializers and automatic
property setters and getters, all of which
are available in the 3.5 release of the
language. With the 4.0 release of C#,
we will see the introduction of a dynamic
keyword and named and optional
parameters, which will continue to bring
C# more in line with languages such as
Ruby and well ahead of the Java
language.

As C# continues to surge ahead, the
Java language appears to be moving
slowly as the Java community waits for
Java 7. Having waited for new language
features to surface for almost 3 years,
the Java community has begun to
innovate in new languages that run on
the Java Virtual Machine, languages
such as Groovy, JRuby, Scala and
Clojure. With the increase in number of
languages available on the JVM, we
expect enterprises to begin to assess
the suitability of reducing the amount of
Java specific code developed in their
enterprise applications in favor of these

newer languages.

The remaining two language types included on the
radar are often grouped together. While functional
and concurrent languages may be adopted in similar
environments, their approaches are different.
Functional programming focuses on expressing
code in the form of mathematical functions that
avoid maintaining state across multiple invocations.
While functional languages such as Haskell have
been around for a number of years, new functional
(themed) languages such as Scala, F# and Clojure
have sparked some interest in this paradigm. Due to
the way in which functional languages manage
state, interest in these languages has increased by
many developers seeking to make the most out of
multi-core processors.

Many concurrent languages are also functional
languages. The distinction lies in the emphasis on
running operations in parallel. A number of such
languages exist; Erlang is currently the most popular
of these languages. Concurrent languages
commonly provide some means for handling
concurrency by using messages to communicate
across multiple threads.

adopt trial assess hold

C# 4.0
DSL!s

Java language

end of life

Functional

languages

Concurrent

languages

Javascript as a

first-class

language

 Copyright © 2010 Technology Radar | Jan 2010 | 7

Platforms
Web browsers continue to evolve as they strive to
keep pace with new specifications in HTML, CSS
and JavaScript. Alas, many enterprises have yet to
embrace the end of life for IE6 and move to a
newer and more standards compliant option. Of the
browsers available today, Firefox and Opera
provide support for the widest range of platforms.
The Google browser, Chrome, brings new
innovation to the browser space by splitting browser
tabs into separate processes while providing a new
implementation of JavaScript. These changes
appear to give Chrome a significant performance
boost over other browsers and have influenced the
creation of a netbook OS called Chrome OS. While
enterprises may look to move off IE6 and onto
Microsoft’s IE8, we remain concerned about IE8’s
current level of compliance to web standards.

The semantic web and its underlying technologies,
including RDF & SPARQL, have been around for 8
years or more. Broader uptake of the Cloud and
non-relational databases such Neo4j have helped
move the semantic web into the reach of enterprise
developers. Outside of the semantic web, non-
relational databases are being adopted as
alternatives to relational databases in a number of
situations. Leveraging these technologies will
require new approaches to architecture and
development that suggest widespread adoption will
only occur over a number of years.

The iPhone and android operating systems have
rapidly become key players in the mobile platform
marketplace. Apple’s app store and Google’s open
source operating system have helped both
companies leapfrog the competition in capturing
developer mindshare.

While the radar has called out the possibility of the
Java language nearing its end of life, the JVM is
demonstrating its resilience as a general-purpose
virtual machine for other languages such as Ruby,
Groovy, Scala and Clojure.

Our position on Rich Internet Applications has
changed over the past year. Experience has shown
that platforms such as Silverlight, Flex and JavaFX
may be useful for rich visualizations of data but
provide few benefits over simpler web applications.
Given that these toolsets have limited support for
automated testing, it would suggest that a more
traditional web application stack provides greater
value for enterprise development. We recommend
only using RIA platforms for rich visualizations
incorporated into web applications, not as
comprehensive development targets.

At the start of October, ThoughtWorks became a
customer of Google Apps. Although we have heard
a wide range of opinions about the user experience
offered by Google Mail, Calendar and Documents,
the general consensus is that our largely consultant
workforce is happy with the move. The next step that
we as a company are looking to embrace is Google
as a corporate platform beyond the standard

Google Apps; in particular we are evaluating
the use of Google App Engine for a number of
internal systems initiatives.

Google App Engine, Amazon EC2 and
Salesforce.com all claim to be Cloud
providers, yet each of their offerings differ.
The Cloud fits into a broad categorization of
service offerings split out into Infrastructure as
a Service (e.g. Amazon EC2 and Rackspace),
Platform as a Service (e.g. App Engine) and
Software as a Service (e.g. Salesforce.com).
In some cases, providers may span multiple
service categories, further diluting the Cloud
as a label. Regardless, the value of
infrastructure, platform and software in the
cloud is difficult to question and although
many offerings have hit bumps in the road,
they certainly have earned their position on
the radar.

adopttrialassesshold

IE8

Chrome OS

Chrome

Location based

services

Google as

corporate platform

Rich

Internet

applications

Cloud

iPhone

JVM as

platformRDF &

SPARQL

HTML 5
Firefox

android

Non-relational

databases

 Copyright © 2010 Technology Radar | Jan 2010 | 8

References
Jez Humble, Chris Read, Dan North. “The
Deployment Production Line.” Proceedings of the
conference on AGILE 2006. 2006. http://tr.im/GtOt

Neal Ford. “Evolutionary architecture and emergent
design: Investigating architecture and design.”
developerWorks. February 24, 2009 http://tr.im/GtOF

Neal Ford. “Evolutionary architecture and emergent
design: Emergent design through metrics.”
developerWorks. June 30, 2009 http://tr.im/GtOX

M. Poppendick & T. Poppendick. “Implementing
Lean Software Development: From Concept to
Cash.” Addison-Wesley Professional. 2006

S. W. Ambler & P. J. Sadalage. “Refactoring
Databases: Evolutionary Database Design.”
Addison-Wesley Professional. 2006

Frederick Cheung. “Migrations.” RailsGuides. 2008
http://tr.im/GtP2

Dave Robertson & John Johnston. “Agile methods
and user centered design.” Infoq. February 02, 2009
http://tr.im/GtP8

Interview with Erik Doernenburg. “Erik Doernenburg
on Software Visualization.” Infoq. October 19, 2007
http://tr.im/GtPg

Martin Fowler. “Feature Branch.” martinfowler.com.
September 3, 2009. http://tr.im/GtPl

Martin Fowler. “Language Workbenches: The Killer-
App for Domain Specific Languages?”
martinfowler.com. June 12, 2005 http://tr.im/GtPp

Scott Guthrie. “ASP.NET MVC Framework.”
weblogs.asp.net. October 14, 2007. http://tr.im/GtPx

Ben Parr. “Google Wave: A Complete Guide.”
Mashable. September 29, 2009. http://tr.im/GtPI

Douglas Crockford. “The World’s Most
Misunderstood Programming Language Has
Become the World’s Most Popular Programming
Language.” crockford.com. March 3, 2008.
http://tr.im/GtPQ

“C# 4.0 Language Specification.” Microsoft
Corporation. March, 2009.

Michael Calore. “Norwegian Websites Declare War
on IE 6.” Wired. February 19, 2009. http://tr.im/GtQ0

Phillip van Hoof. “Introduction to RDF and SPARQL.”
Replicating Memes. July 14, 2009. http://tr.im/GtQ9

J. Ellis. “NoSQL Ecosystem.” Rackspace Cloud
Blog. November 9, 2009. http://tr.im/JwXJ

S. Pichai & L. Upson. “Introducing Google Chrome
OS.” Google Blog. July 7, 2009. http://tr.im/GtTy

Geva Perry. “Application Lifecycle in the Cloud.”
Thinking Out Cloud. November 10, 2009.
http://tr.im/GtTE

http://tr.im/GtOt
http://tr.im/GtOF
http://tr.im/GtOX
http://tr.im/GtP2
http://tr.im/GtP8
http://tr.im/GtPg
http://tr.im/GtPl
http://tr.im/GtPp
http://tr.im/GtPx
http://tr.im/GtPI
http://tr.im/GtQ0
http://tr.im/GtPQ
http://tr.im/GtQ9
http://tr.im/JwXJ
http://tr.im/GtTy
http://tr.im/GtTE

