
Commoditizing the cloud
through platform engineering

Infrastructure
as product

https://www.thoughtworks.com

Introduction	 3

On-premise infrastructure
isn’t the problem	 7
Our approach to infrastructure management is

What happens if your team
doesn’t change?	 12
Or you have no team at all?

Scenario 1 in action:	 16
15-year-old fintech enterprise

Scenario 2: 	 24
Dev teams run their own infrastructure

The five pillars of product-oriented
Platform Engineering	 30

Key takeaways	 35

Infrastructure as product

3

Infrastructure as product

Introduction

Not too long ago, cloud infrastructure was being universally
praised for its incredible simplicity and manageability. For
companies and teams burdened by complex on-premise
infrastructure, it presented an intuitive, scalable, and cost-
effective alternative that promised to transform how we
approach IT infrastructure as a whole.

But, as offerings from the major public cloud providers have
grown and become more sophisticated, that simplicity has
fallen by the wayside. Today, cloud infrastructure service
portfolios are incredibly large, increasingly complex, and
harder than ever for engineering teams to keep pace with.

Figure 1. Snapshot of Google cloud capabilities

4

Infrastructure as product

Figure 2. Snapshot of AWS cloud capabilities

Figures 1 and 2 show the sheer volume and variety of cloud
capabilities offered by Google and AWS.

The market research firm 451 Research, which tracks cloud
pricing on a quarterly basis, found that the number of line

5

Infrastructure as product

items offered for purchase by the five largest cloud providers
doubled in 2019, and now exceeds 2 million products1.

As the number of these products has grown, the complexity
of cloud infrastructure has surpassed that found in the physical
data center. The design, architecture, and orchestration of these
modern infrastructures requires a dedicated team with specific
skills. Cloud infrastructure management has triggered an
explosion of new disciplines – from telemetry to cloud database
management – all of which demand their own specialist skills
and expertise.

Cloud has changed infrastructure. We need to change how we
think about infrastructure too.
Cloud and simplicity no longer go hand in hand. Today, cloud
infrastructure management is often an extremely complex task.
What was once a limited selection of basic compute, networking,
and a few RDBMS database options has evolved into a rich
smorgasbord of modern virtual data center wizardry. We’re not
dealing with simple components that can be trivially connected
through a web interface anymore.

Even for those just getting started in their cloud journeys, you
might be able to ship a product and start acquiring customers
with only a small team of full-stack devs. But over time,
as business needs grow, so will the complexity of the systems
supporting it – both technical and operational.

To deliver and maintain a sustainable, production-ready
infrastructure that is scalable, resilient, and adaptable,
you must differentiate cloud infrastructure services as a set
of internal domains, build expertise around them, and evolve

1. https://siliconangle.com/2020/07/09/rise-finops-liveramp-exec-reins-cloud-costs-melding-finance-developers/

https://siliconangle.com/2020/07/09/rise-finops-liveramp-exec-reins-cloud-costs-melding-finance-developers/
https://siliconangle.com/2020/07/09/rise-finops-liveramp-exec-reins-cloud-costs-melding-finance-developers/
https://siliconangle.com/2020/07/09/rise-finops-liveramp-exec-reins-cloud-costs-melding-finance-developers/

6

Infrastructure as product

them as internal products. Practically, that means delivering
them through an intuitive platform approach that empowers the
customers of those internal products – chiefly, your developers.

This internal platform approach isn’t entirely new, but it’s just
beginning to become common practice across enterprises. It
features significantly in Puppet’s 2020 State of DevOps report,
where they highlight that 63 percent of organizations have at
least one internal self service platform in place.

Defining a platform-based infrastructure approach
Typically, platform thinking encapsulates data, apps,
infrastructure, and every part of your broader platform
strategy. But for the purpose of this paper, when we refer
to platform infrastructure and platform-based approaches,
we’re looking at using cloud to form the foundation of the
infrastructure base. For a more comprehensive definition
of a Platform, check out Evan Bottcher’s2.

2. https://martinfowler.com/articles/talk-about-platforms.html

https://puppet.com/resources/report/2020-state-of-devops-report/
https://martinfowler.com/articles/talk-about-platforms.html
https://martinfowler.com/articles/talk-about-platforms.html

Our approach to infrastructure
management is

On-premise
infrastructure
isn’t the problem

8

Infrastructure as product

On-premise infrastructure
isn’t the problem – our approach
to infrastructure management is

Over the years, I’ve worked with many large enterprises, helping
them move to the cloud and achieve the exciting benefits it
promises; autonomous provisioning, “limitless” scale, access to
the latest technologies, and immediate, on-demand resources.

In these larger organizations, I’ve seen IT infrastructure usually
managed as a cost center, disconnected from the evolving
business capabilities that it supports. The infrastructure
team is either at the beck and call of those leading business
initiatives, often scrambling to provision project-critical
infrastructure at speed, or tucked away out of sight executing
on a large plan constructed and signed off months ago.
Both of these result in long lead times for important projects.

By the time one project goes live, others are left delayed,
and the technology landscape shifts again – leaving you with
a new infrastructure that’s in need of an update from day one.

On the surface, it would be incredibly easy to fall into the trap of
thinking that this is a problem caused by traditional on-premise
infrastructure. It’s slow, takes a long time to procure then deploy,
and ultimately limits what businesses can achieve quickly.

However, the truth is that if a different approach to
infrastructure engineering isn’t considered, exactly the same
thing will happen in a cloud-based data center. Infrastructure
teams can become just as overburdened by requests, and
processes can be just as slow, if not slower than they were
in a physical, on-premise data center.

9

Infrastructure as product

To get the results they really want to see from cloud
infrastructure, organizations must define and implement an
infrastructure engineering approach that supports the dynamic
and fast-moving world of software defined infrastructure. And
a big part of that is shifting from viewing IT infrastructure as an
operational expenditure, to seeing it as the business enablement
engine that it should be today.

Refocusing from cost to business enablement
When organizations begin planning their cloud infrastructure
migration, the same question comes up time and time again:
“How long will it be before we see ROI from the cloud?”

The answer to that question is often as unsatisfying as the
question is reductive. If you’re constantly focusing on managing
infrastructure costs and ensuring that cloud delivers measurable
ROI within the data center, you’re missing the broader point of
cloud transformation.

Figure 3 shows the operations of a modern infrastructure team,
following a platform-based approach to create reusable, self-
service solutions that enable and empower multiple teams
across the business, and help them to work faster.

As the platform and the services it provides become
more mature, it takes far less time to build and deploy the
infrastructure that developers need. Products are reused and
deployed instantly as needed, delivering superior time to value.

As the platform offering matures by creating more re-usable
elements, these can be easily combined to create new
product experiences for the product teams, and by extension
the business.

10

Infrastructure as product

Within the data center and core IT team itself, the model doesn’t
necessarily reflect higher ROI. However, what it does reflect is
the creation of ongoing value to the wider business, and faster
enablement of new business initiatives.

It’s this value that teams should be looking for from cloud
infrastructure. That is where a platform-based approach has the
ability to transform the wider organization and support business
goals – not through the delivery of raw ROI within the four walls
of the data center.

Do you have the right skills for the job?
Before you embark on a cloud modernization journey, it’s
important that you consider who’s going to lead that journey
and play a central role in defining its success.

Cloud infrastructure is entirely software-based, and brings
with it a new set of challenges. While more traditional IT
operations knowledge is still valuable – and in many cases
critical – the modern landscape demands deep appreciation

Platform speed experimentation and experience delivery

Build

Learn Measure Speed to value

Platform maturity
Low High

Figure 3. Platform speed experimentation and experience delivery

11

Infrastructure as product

for cloud API orchestration and continuous delivery software
techniques such as automated testing and promotable
programmatic changes.

One of the biggest pitfalls in this process is seeing the shift
to cloud as a natural evolution for infrastructure teams, instead
of the complete transformation that it really is. As cloud
infrastructure is entirely software-based, cloud infrastructure
management becomes a software delivery exercise –
something entirely new to traditional infrastructure teams.

If transitioning from a more traditional data center team,
it’s likely this infrastructure team is the newest to the software
engineering game of all your teams involved in the software
development process – and they’ll need to be supported.

The people writing software around these new cloud products
need to have a continuous learning mindset. It’s no longer
sufficient to be great at one thing. To be successful today,
we must build teams that are proficient in rapidly upskilling
in new and emerging cloud technologies.

There’s also increasing pressure to demonstrate the value
of what are likely to be – initially at least – significant cloud
infrastructure investments to the business at large. That requires
a deep understanding of how a positive developer experience,
ease of access, and overall development agility and speed
deliver value – all measures that traditional infrastructure teams
place limited focus on.

Platform engineering provides an opportunity to do just
that, by measuring the impact of cloud engineering on
business growth and customer satisfaction. But, once again,
it represents major changes in how your team will operate.

Or you have no team at all?

What happens
if your team
doesn’t change?

13

Infrastructure as product

What happens if your team doesn’t change?
Or you have no team at all?

When it comes to managing a cloud migration and embracing
a Platform Engineering approach, there are two main paths that
companies with existing traditional infrastructure teams get
pulled towards: Either they have their current infra team inherit
and drive their cloud journey, or have development teams self-
serve and run their own infrastructure.

Now, we’ll look at the challenges, advantages, and drawbacks
associated with each of those approaches in detail.

Scenario 1: Your infra team inherits your cloud journey
Most traditional data center teams have a wealth of experience
racking and stacking hardware, writing scripts to keep machines
running healthily and patched to the latest supported OS, and
restoring service to business-critical applications.

Frontend teams

Se
cu

rit
y

op
s

Pr
od

uc
tio

n
op

s

N
et

w
or

ks
 o

ps

Services teams

IT Ops / UNIX team

Middleware teams DBA team

Datacentre

Figure 4. Areas of responsibility traditionally mapped around
technology concern rather than business capability or outcome

14

Infrastructure as product

However, transforming a team like this – one built on the
principles and practices of traditional infrastructure – into
one that is cloud-focused and software-driven carries some
significant challenges:

1. It’s a change of craft
Writing well factored, testable code is a different craft and, like
others, takes years to learn and even more to master. Putting
code freshers on your critical cloud path without adequate
support or expertise will lead to a production infrastructure
that is hard to change with any degree of confidence, even if
it never goes down. Of course, equally impractical is waiting
several years for them to graduate in Infrastructure as Code.

2. Adapting to new positioning and structure
In my experience, data center infrastructure teams rarely see
developers as customers of their systems. At a push, they may
brand developers as “tenants”, which at least indicates their
systems have users as occupants, and there is an unspoken
acknowledgement of services being provided and consumed.

This simply doesn’t align with the relationships and structures
that need to be in place to get the most from Platform
Engineering and cloud infrastructure. In an ideal Platform
Engineering world, core infrastructure teams work primarily
to serve developers and empower them – which is not the
case in many traditional data center structures.

3. Changing measures and definitions of success
Traditional infrastructure departments measure success
in availability and stability of infrastructure services. While
important to maintaining operations, those goals naturally

https://www.thoughtworks.com/books/infrastructure-as-code-2nd-edition

15

Infrastructure as product

lead them to limit change to reduce chances of service
disruption – something traditionally seen as a positive. Of
course, that also seriously limits the value their team will
ever see from cloud infrastructure. The team in charge must
embrace its speed and flexibility, and be change-oriented.

Getting traditional data center infrastructure teams to refocus
on best serving their internal customers – your developers – and
drive positive change proactively instead of shying away from it
is unfortunately often a very difficult task3.

3. This clash of working styles is fundamentally the original DevOps dichotomy

15-year-old fintech enterprise

Scenario 1
in action:

17

Infrastructure as product

Scenario 1 in action:
15-year-old fintech enterprise

I recently worked with a 15-year-old fintech enterprise which
had just this - a data center infrastructure team rebranded
as “Platform Ops” who were eager to “learn cloud” and start
migrating workloads and teams in order to “get out of the
data center”.

Little support was provided for learning how to manage and
execute this effectively, and the team were constantly getting
pulled into production issues caused by the fragile heritage
tech stack.

To solve this problem, a new team was created called Platform
Engineering, seeded with some new cloud engineer hires, and
a few of the existing team who had demonstrated an ability
to code and an appetite to stretch out of their comfort zone.
The new hires brought software engineering values and strong
skills in the Infrastructure as Code space, and the infrastructure
team knew the production support systems, traffic patterns,
and various fragilities in the existing stack.

Their mission was set to provide a cloud platform that enabled
continuous delivery for developer teams. Org positioning: check;
craft: check. Looking good.

The team worked for 18 months to build a platform that
enabled developers to provision their own cloud components
by submitting Terraform4 pull requests to the Platform
Engineering team. The team would then merge and deploy
the applications to a load balanced set of VMs, via a continuous
delivery (CD) pipeline.

https://www.terraform.io/

18

Infrastructure as product

After a year and a half of coding, however, only 2% of the
company’s production workloads were flowing through the
new platform. Why?

Figure 6 shows the cross-backlog dependencies that this
approach created. It wasn’t a true self-service approach,
because in many cases, other teams and individuals had
to contribute to and edit a request before it was given
the go-ahead.

Each dev team had to learn this new infrastructure approach,
and write their own code before raising a request. Then, since
that code had been written by a different team, it had to go
to the platform team for review and feedback – introducing
new inefficiencies, and creating dependencies that slowed
deployment and time to market.

As new dev teams submitted more code, that inefficiency began
to scale (shown in the bottom half of the diagram). There were
more requests to review, but still only one platform team to
review it all, creating a major bottleneck that slowed deployment
speed further.

4. https://www.terraform.io/ - a popular infrastructure-as-code choice for orchestrating public cloud APIs

Figure 5. 15 year old fintech enterprise with the right
idea of business value driven platform layers

Pl
at

O
ps

 (S
RE

)

Platform engineering

App teams

AWS

https://www.terraform.io/

19

Infrastructure as product

Finally, because each request was being created by an
individual dev team to meet their specific needs, the approved
outputs weren’t always reusable or useful for other dev teams.
They weren’t creating reusable products that others could
consume. So, every time a new team needed infrastructure,
the whole process had to be repeated, ensuring that the
review and feedback bottleneck grew with the number
of teams and services.

Contention

4 x waste
(minimum)

Platform engineering team

Dev team 1

Dev team 2

Time lost
handing over

Time consuming loop

Review code,
send feedback

Platform engineering team

Dev team 1

Learn new infra
thing / review

feedback

Write infra code
raise / update PR
against platform

Dev team 4

Dev team 3

Learn new infra
thing / review

feedback

Write infra code
raise / update PR
against platform

Review code,
send feedback

Figure 6. Cross-backlog dependencies on new platform

20

Infrastructure as product

How cross-backlog dependencies will slow you down up to 12x
One of the underpinning tenets of agile software delivery is the
drive for autonomous teams. Having the required skills to design,
develop, and deliver a product in the same team minimizes
communication overheads and context switching, and ultimately
reduces the potential for waste.

During a study at a large Australian telco, we measured stories
with dependencies on other teams cycled 12 times slower than
those that had no dependencies and were accomplished within
the team. A self-service approach aims to reduce the likelihood
of cross-backlog dependencies on a team like Platform
Engineering.

Cards that leave
the team (1 in 6)

Cards that don’t leave
the team (1 in 6)

Wait 0 days
Cycle 2 days

Wait 8 daysWait
Cycle 23 days

12 x slower!

Cross-backlog dependencies

Figure 7. Cross-backlog dependencies at large Australian Telco
GOTO 2015 How I Finally Stopped Worrying and Learnt to Love Conway’s Law - James Lewis

The measures of success in place at the fintech were around
how many services had been deployed to the cloud, regardless
of whether they were receiving production traffic.

Rather than writing a simple self-service interface to
accommodate developers and best serve them as customers,
the Platform Engineering team were more likely to write the
code themselves. The success of this pattern required all

21

Infrastructure as product

developers to be curious polyglots, and even then the limit
reusability would restrict the scalability of the pattern.

The initial organizational positioning looked good: a Platform
Engineering team was put in place to harness the cloud.
However, moving to the cloud was seen as a Platform
Engineering concern instead of being communicated as
a developer, product, or business concern.

The boundaries of ownership were confusing from the
beginning, making it difficult for developers to drive the final
steps of the transition. An absence of value-driven product
thinking and delivery coordination meant that migration
activities stalled as soon as tasks spanned multiple teams.

The initial outcomes didn’t match anybody’s definition of
success. Which begs the simple question: What was missing?

Embedding key software delivery roles in an
infrastructure team
If we want to help infrastructure teams function as software
delivery teams, we must ensure that all of the roles traditionally
held in a software delivery team are also held within the
infrastructure team.

Based on the example we’ve just explored, there are two
main software delivery skills missing from the picture: product
thinking and delivery management.

Product
Putting your product and marketing hats on for a moment,
you can see the issue above: customers had to change their
behaviors in order to make the product (the cloud platform)
successful. If behaviors didn’t change, product value diminished.

22

Infrastructure as product

When building a new product, a product manager will always
be looking at the customer, whether they’re current or
prospective, to understand and map their needs to ensure
that what’s delivered meets those needs directly.

That’s where our young fintech enterprise went wrong.
The absence of any product thinking gave rise to a mismatch
between purpose and need.

Delivery
Product thinking wasn’t the only cause of such a small amount
of product uptake. An absence of delivery management meant
that a plan with someone to coordinate, publish, and drive it
was a shared responsibility and therefore often a lower priority
for the people involved.

Although only 2% had been migrated and was receiving
production traffic, more than 40% was almost ready but missing
crucial developer input for testing and transition. So, not only
was the interface tricky to use for most developers, but the
benefits of moving to the cloud were not understood, and
the work wasn’t being prioritized by the business.

In summary: The challenges of trying to fit square pegs
into round holes
Hopefully, what you’ve taken away from this scenario so far is
that, in practice, it’s extremely challenging to turn a traditional
data center infrastructure team into a cloud-ready infrastructure
or Platform Engineering team.

The measures of success are different. The skills required
are different. The outlook and need for a strong customer
focus are different. If these challenges presented themselves

23

Infrastructure as product

alone, perhaps retraining or re-education could do the job. But
together, they make a very compelling case against repeating
this scenario for yourself.

However, that’s not to say it’s impossible. It can be done
effectively, but the business must be committed to the change
– an essential characteristic for any modern digital business.
And not just superficially either – teams must truly want
and be ready to adapt what they do and who they do it for.

https://www.thoughtworks.com/perspectives/edition8-modern-digital-business

Dev teams run their own infrastructure

Scenario 2 :

25

Infrastructure as product

Scenario 2: Dev teams run
their own infrastructure

Of course, this pattern of pushing a square data center
infrastructure team peg into a round cloud platform hole isn’t
representative of what every company will try to do when faced
with this challenge.

An alternative infrastructure team pattern exists, more
commonly seen in smaller organizations, occasionally referred
to as “noops”, whereby no team is dedicated to the company’s
infrastructure at all.

Here we see the simplicity of cloud return once more, enabling
developers to provision and manage cloud infrastructure
themselves. The range of products and services they access
might not be straightforward, but their means of accessing
them certainly are.

Scenario #2 in action: Small full-stack dev team at
a high-street gym company
I recently had the pleasure of working with a 10-person
full-stack team who built, deployed, and managed a new
web-based membership platform for a popular high-street
gym. In the beginning, everyone was happy to contribute to
both infrastructure and website (Java) code, creating a very
resilient team, arguably a DevOps utopia.

On first inspection, this may appear to represent a perfect
pattern of shared ownership and low-latency change. The code
wasn’t monolithic and was intelligently organized into separate
repos: one for each application or infrastructure component.

26

Infrastructure as product

However, as one service became two, and two became seven,
it began to get cumbersome to add new services and adjust
the infrastructure. As more people joined the team to support
the increasing workload, it also became harder to maintain the
proficiency and desire to build expertise across all areas of
the platform.

Getting production-ready became the primary concern,
which in turn led to people deepening their skills rather than
broadening them. A decision was made to split the teams into
two: one focusing on application and API development, and the
other on everything else: the Kubernetes cluster, CI/CD setup,
identity management, logging and monitoring infrastructure.

Who owns platform services when they don’t belong
in any existing domain?
Even if we had managed to refactor the codebase and upskill
people to overcome these challenges, the question still remains
of who should own these platform services that don’t quite
belong in an existing domain or team, but are depended on
by multiple teams.

Take secrets management for example. It’s pretty common these
days to configure a secret store, such as HashiCorp Vault, first

Figure 8. Scenario 2: An all-the-things platform layer may
look efficient, but risks blurring important boundaries

API dev and Infra bits and bobs:

AWS

Kubernetes cluster

CI/CD setup, patterns

Logging, monitoring Spring boot API development

IDPProd Ops Event streams

27

Infrastructure as product

setting up a trust system between application, secret store,
and interactive user, and then maintaining this system over
a long period of time.

But since this is a common resource that multiple teams will
consume, it’s not immediately clear who should own it as a
service. Here, you’ve got a couple of options for how to
manage that:

Option 1: developer team independence
Everyone has their own secret store. This leads to an obvious
case of duplication, but there are a lot of benefits to be gained,
including clear ownership and decoupled architecture.
However, as the number of teams scales so does the cost
of maintenance, linearly. n teams, n secret stores, n systems
to maintain.

Option 2: Delegating one team as system owner
Here, one team is the delegated owner of the system and
maintains it for the purposes of all other teams. The service
becomes an internal product for internal customers, and with
that should come service availability expectations, channels for
feedback, and ideally a support and modernization roadmap.

Option 2 sees the service treated like any other, except the
consumers are internal developer teams, just as if it were an
internal core API. As the number of developer teams increases,
the load on the service will certainly increase, and so might the
complexity of use cases for the service.

This must be managed carefully to avoid the same linear
scaling of complexity as seen in Option 1. Many organizations
are attempting to solve these problems by folding such internal
services into a Platform Engineering team.

28

Infrastructure as product

In summary: Why direct self-service isn’t the answer
It follows from Conway’s Law that having a team (or collection
of teams) responsible for a domain will help keep boundaries
well defined and areas of ownership clear, making it easier to
maintain and make changes over time.

This is what you sacrifice by enabling a dev team to entirely help
itself to infrastructure services in the cloud, with no team taking
direct control and responsibility for shared services.

What should be becoming clear now is that neither of the
scenarios outlined offer a perfect approach to cloud-based
infrastructure transformation and Platform Engineering. The
teams in each of the examples explored had their own issues
and challenges, but in hindsight clear indicators of diminishing
value appeared early on.

In the case of the young fintech, boundaries of ownership
were unclear, creating lots of back and forth “chatter” between
developers and platform engineers, and slowing processes.
Things were slowed further by a large number of dependencies
that coupled developer team backlogs to Platform Engineering.

The organization in scenario 1 also lost sight of the business
value cloud was intended to deliver. The Platform Engineering
team in charge of migration was made up of engineers only,
which meant that business value was often overlooked, and
delivery commitments were repeatedly missed and had
to be reset.

With the 10-person full-stack dev team, frustration built quickly
as application developers struggled with infrastructure concepts.
Motivation to work across all domains declined as complexity
increased and demanded deeper levels of understanding.

Evolution of platform services

This is an example of some platform services that evolved over
2 years of platform engineering at the 15 year old fintech. We
didn’t get it right the first time: in the beginning we established
logging as an opt-in service before realising that every internal
customer wanted logging for everything they did. So it became
a baked-in component of every other platform service. These
services became the composable building blocks developers
would use to deliver new customer experiences.

Figure 9. Platform services

29

Infrastructure as product

Inefficiencies started to creep in quickly, and we saw domain
bleeding and manually-intensive changes when adding new
services. And as new teams were onboarded, we saw a need
for shared services emerge – which no individual team took
full responsibility for.

Ap
p

de
pl

oy
m

en
t

Pe
rs

is
te

nc
e

Lo
g

ag
gr

eg
at

io
n

Al
er

tin
g

St
at

ic
 w

eb
si

te

Pi
pe

lin
es

Se
cr

et
s

m
gm

t

...

App App App App

App App App AppBusiness services

Core services

Platform engineering
services, or products

The five pillars of
product-oriented
platform
engineering

31

Infrastructure as product

The five pillars of product-oriented
platform engineering

With the lessons of the shared examples learned, it’s clear that
there is no single ‘right’ path forward for organizations looking
to transform how they manage infrastructure services through
a cloud-based Platform Engineering approach.

However, there are five factors that we know contribute to the
long-term success of this approach:

1. Focus clearly on Developer Experience
Successful Platform Engineering teams must be able to think
like product marketing teams, carefully considering their go-to-
market – or rather go-to-developer – strategies.

Just as product and marketing teams maintain a laser focus
on delivering seamless, intuitive customer experiences, cloud
infrastructure teams must do the same for developers – putting
them at the heart of every decision to ensure high uptake and
long-term success.

If, for example, engaging with a platform requires a developer
to learn a new language just to continue doing the same work
they’re already doing, that doesn’t represent a good developer
experience. And, just like a customer who is being asked to jump
through too many hoops to buy a product on a new ecommerce
platform, they’ll simply walk away and revert to however they
were doing their job previously.

2. Define and build in measures of success
There’s currently a well-deserved buzz around the four key
metrics as defined in Accelerate by Nicole Forsgren, et al.
If your teams already have continuous delivery pipelines

32

Infrastructure as product

in place, a good monitoring system, and well-bounded services
relating to business capabilities, then it may not take too much
effort to start measuring these high performance indicators
across all of your developer teams.

But regardless of the stage your teams are at, it always helps
to put some leading indicators in place to ensure your project
is making a positive impact and having the desired effect on
the organization at large.

Even if those indicators show you that adoption is low, for
example, having them in place enables you to identify that
and take the right actions at the right time to remedy any
issues and get the project back on track.

3. Enable self-service and unlock scalability
The key to high platform scalability is to give developers
the ability to serve themselves and access the infrastructure
services they need without direct intervention from the
infrastructure team.

In the example of the young fintech, we started this off small.
By using simple existing features (labels in JIRA, in our case),
we asked developer teams to flag any user stories where they
felt Platform Engineering would need to be engaged to build or
modify a supporting capability. We held weekly meetings with
developer teams to review upcoming dependency candidates,
pointing teams to existing tools, services, or documentation that
would help them self-serve, removing Platform Engineering from
the equation.

Figure 10 shows that as new teams were onboarded to the
platform, we gradually saw the number of these flags fall. Teams
learned quickly that much of what they needed already existed

33

Infrastructure as product

within the platform, and by the time the fourth and fifth teams
were onboarded, they were able to bootstrap and deliver a
service to a production staging environment without a single
request to the Platform Engineering team. Even without any
financial data to back this up, the huge business benefits of
that were clear to the organization.

4. Agree on what’s most valuable and important to
the people you’re serving
It’s worth noting that while measuring impact (among other
metrics) is important, what’s more important is for everyone
to understand what the customer of Platform Engineering –
primarily developers5 – want to get from it.

By clearly defining what developers, infrastructure teams,
and the organization as a whole want to achieve through the
platform approach, you’ll have the best chance of actually
delivering those outputs.

It’s the same principle as customer-centric design. By building
products around what you know customers want and want to

Indicators: cross-backlog dependencies

De
pe

nd
en

ci
es

 o
n

pl
at

fo
rm

 e
ng

in
ee

rin
g

March April May June July

Team 1

8

3

6

1 1 1
1
1

1
10

4

1 1

Team 2

Team 3

Team 4

Team 5

August September

Only 1 initial
dependency

for team 3
Teams 4 and 5

deliver requiring no
new functionality

Figure 10. Indicators: cross-backlog dependencies

5. Other customers exist depending on the organization e.g Security, QA, SRE, Operations

34

Infrastructure as product

achieve, you can deliver the best outputs and outcomes for
them – as well as your organization.

5. Assign a product owner
All modern infrastructure is now predominantly configured
by code. Yet we continue to see infrastructure-based teams
lacking all the usual roles (and in many cases, disciplines)
of a typical agile software delivery team.

Appointing a delivery lead and product owner can yield value
in even the most modestly sized internal platform team. I also
hope that quality and testing specialists will lean into this space,
as there is a huge opportunity for contract testing, for example,
at this level of the platform. And there’s arguably a stronger
need, since this is the foundation for everything else in the
organization.

Having a product owner in particular though, reinforces the
idea of the internal customer and the desire to understand their
needs. It immediately inspires the concept of a business aligned
roadmap, and hopefully encourages feedback loops with
customers, with early success metrics.

There’s enough work involved to warrant a person full time
in the role, so don’t give in to the temptation to share the
responsibilities across the team. Dedicating a person to the
role creates a stronger sense of accountability than simply
assigning additional tasks to existing team members.

It will help draw attention, and at the same time send a
message of intent to change, commitment to improve,
and ultimately, your intention to start viewing and treating
infrastructure as a product.

Key takeaways

36

Infrastructure as product

Key takeaways

In summary, I’ll leave you with the following key pieces of advice
to use when reviewing your cloud infrastructure capabilities,
the teams involved, and how well these are accelerating your
internal developer teams:

•	 Understand your skill gaps – Put processes in place to help 	
	 solve them. Set the right expectations. Hire in experts to help 	
	 deliver, upskill, and increase the pace of the infrastructure 	
	 team’s transformation.

•	 Be product-centric – An infrastructure team is a product
	 team. Introducing a dedicated technical product owner
	 immediately refocuses purpose and helps map customer
	 value back to the specific services the team provides.

•	 Look for early, cheap measures – If the four key metrics take 	
	 time for the rest of the organization to prioritize, don’t give up 	
	 trying to measure your progress and set flags for when you’re 	
	 off track. Think small, cheap, and effective.

•	 Domain boundaries matter – Loosely coupling infrastructure 	
	 is hard, but you can usually spot when it’s not going well. 	
	 Keep reviewing your domain boundaries, between platform 	
	 products, and between teams and other parts of the
	 architecture. You’re building the foundation of your stack;
	 mistakes will cost more, so architect with evolution in mind
	 and optimize for change.

•	 A single platform team may not be enough – As your suite
	 of internal products grows, your team will need to diversify
	 and specialize appropriately. Just like with the small team at

37

Infrastructure as product

	 the high-street gym company, let the domain boundaries
	 form and note how each product and associated roadmap
	 evolves. It’s good practice to separate a large team into
	 different sub-teams to support these changes.

•	 Be customer-focused – Developer experience and
	 productivity impacts delivery efficiency in terms of quality
	 and speed. Happy, productive developers are a key (if not
	 the key) to any successful organization, and this is achieved 	
	 by powerful, self-service platform capabilities that get the
	 job done without introducing productivity friction.
	 Remember: if developers (customers) don’t want to use
	 your stuff, you failed. It doesn’t matter how neat your
	 product or service may be.

38

8pt Inter 360 50% Black Title of ebook from front cover

About the author

Max Griffiths
Principal Infrastructure Consultant, Thoughtworks UK
Max is a leader of Infrastructure and Platform Engineering for
Thoughtworks UK. In 16+ years he’s worked across almost every
industry sector which has provided both breadth and depth
of experience in solving problems in very different contexts.
The key constant has been a focus where technology meets
the business, helping modernize and drive value through a
combination of engineering, product leadership, and continuous
delivery practices. Max started as a shell scripter in the early
2000s, fulfilling an urge to automate everything. Since then
he’s been a Java developer, infrastructure developer, business
analyst, project manager, a Platform Engineering SME, and
enjoys the people and technology challenges alike. Having
lived and worked in Europe, Philippines, Australia, North
America, Singapore, you might be forgiven for thinking he
likes to move. He’d say it’s all led by food. (And a passion for
the world, people, and variety therein). More recently he’s been
working with our client CxOs to help build technology strategy,
delivered via digital platforms, that helps accelerate growth and
innovation across the organization.

Get in touch with us
contact-uk@thoughtworks.com

Thoughtworks Ltd.
First Floor, 76-78 Wardour Street
London, W1F 0UR, UK
+44 (0)20 3437 0990
thoughtworks.com

mailto:contact-uk%40thoughtworks.com%20?subject=
http://thoughtworks.com
http://thoughtworks.com

	Infrastructure as product
	Contents
	Introduction
	On-premise infrastructure isn’t the problem
	What happens if your team doesn’t change?
	Scenario 1 in action
	Scenario 2
	The five pillars of product-oriented platform engineering
	Key takeaways
	About the author

