Engineering
Intelligence Platform

A guiding compass for digital leaders

/thoughtworks

Strategy. Design. Engineering.

https://thoughtworks.com

Introduction

Challenges faced by engineering teams
and leaders

What is an Engineering Intelligence platform?

Engineering platform to maximize
developer effectiveness

Gotchas and anti-patterns
Resources

Author

20
25
29
30

Introduction

The IT expense boom is real, with enterprise software dominating

the budget. But what if you could do more with less? Enter the
Engineering Intelligence Platform (EIP). This guide explores how

EIPs empower developers to eliminate waste and friction in the
development cycle, boosting their effectiveness and maximizing your
return on investment.

In today’s world, most enterprises depend heavily on software, spanning
industries from automotive to oil and gas. The distinctive value offered
by software has become a growth driver for many industries from

banks to automobiles to airlines. Executives are not only grappling

with competitive pricing dynamics but are also keenly aware of the
intense market rivalry for their products. In this scenario, Information
Technology (IT) organizations, particularly those specializing in
software engineering, have evolved into significant cost centers for
most companies. This shift has prompted executives to scrutinize the
effectiveness and return on investment (ROI) of their IT organizations.

Let’s start with first understanding different challenges faced by digital
leaders and engineering teams in software development.

Engineering Intelligence Platform

Challenges faced by engineering teams
and leaders

o

Innovation stalled: Leaders struggle to introduce new
offerings with speed and agility, potentially missing
market opportunities

Scaling without sinking: Expanding operations while
controlling costs proves elusive, hindering growth
and profitability

Tech tangle: Fragmented IT systems riddled with
redundancies create roadblocks and inefficiencies

Types of friction an engineering team
goes through

ejaf -

Delivery friction: Not having the required infrastructure and
tools for development and deployment

Access friction: Getting access to required systems to
get things done

Cognitive friction: Operational complexity and large volumes
of information cause cognitive overload

Engineering Intelligence Platform

The entire engineering team, from leaders to developers, faces
numerous challenges from scaling to dealing with frictions that must be
addressed in order to meet their objectives of accelerating time-to-
market while maintaining high-quality software. Additionally, there is a
growing emphasis on fostering effective collaboration among
engineering teams across different departments within organizations.
What they seek is a highly motivated engineering team working
effectively to tackle these issues within the engineering organization.

Faster time to market and Highly motivated engineering
releasing high quality software team working effectively
with confidence

What is an Engineering Intelligence
platform?

To solve challenging problems in the business domain we use a data-
driven approach, or business intelligence, to analyze and understand
patterns and trends to create actionable insights. The same approach
can be applied to achieve engineering goals and objectives of faster
time to market with releasing quality software frequently and highly
motivated engineering teams working effectively. With that, the first
thing to look at is what are the right metrics to measure, which will lead
to achieving engineering objectives. Look at both the leading and
lagging indicators which can help drive the team in the right direction.

Business intelligence Engineering intelligence

Engineering Intelligence Platform

Data driven approach to measure metrics

Adhoc, periodic Identify patterns, Optimize and
or continuous analyze trends predict with
actionable insights

Data-driven decision-making involves collecting, analyzing, and
interpreting data to identify trends, patterns, and insights that can be
used to make better decisions. Collecting data can happen in multiple
forms: ad-hoc, such as surveys and flow analysis using value stream
mapping of SDLC, periodic with retrospectives, and continuous such as
collecting data from different systems, like JIRA, Jenkins (CI/CD), Github
(version control), and Sonarqube (cod quality tool). Many tools available
in the market seamlessly integrate with the engineering tool stack to
collect real-time data. These tools analyze data over time across various
projects to generate valuable insights and trends.

“Engineering Intelligence platform enables
engineering teams with data-driven intelligence,

leading to improved productivity, better developer
experience, operational efficiency with predictable
software delivery and better decisioning.”

Engineering Intelligence Platform

Four categories of engineering metrics

To begin with first let’s look at what all engineering metrics we would
like to measure and track. | recommend dividing metrics into
four categories.

Delivery Quality DevEx Operational
metrics metrics metrics metrics

E> Delivery Metrics

These metrics revolve around understanding our performance in
software delivery. In the book ‘Accelerate, the topic of delivery metrics
is thoroughly explored, introducing four key metrics known as DORA
4km for measuring software delivery efficiency. Research conducted by
DORA indicates that organizations excelling in these metrics are more
likely to achieve success in the market. For instance, organizations
boasting high deployment frequency tend to experience greater
profitability and receive higher customer satisfaction ratings. The

DORA 4 key metrics encompass: Deployment Frequency, Lead Time for
Changes, Change Failure Rate, Mean Time to Recover (MTTR)

By focusing on these metrics, organizations can gain valuable
insights into their software delivery process and enhance their
overall performance.

https://dora.dev/quickcheck/
https://dora.dev/quickcheck/

Engineering Intelligence Platform

W Quality Metrics

These metrics help us to measure the quality of the software we are
releasing. Releasing frequently is important, however software that is
easy to use, resilient and defect-free also matters for the users of the
system. Examples of good quality metrics are code complexity, build
failure rate, tech debt, test coverage, security and compliance incidents,
and error rate. Tech debt talked a lot about but most likely not measured
and tracked due to subjectiveness. If we start recording the effort and
impact of tech debt along with every tech decision as part of ADRs, we
can create trends over a period of time for tech debt.

@ Developer Experience (DevEx) metrics
These metrics helps to understand developer effectiveness.

In addition to delivering quality software to end customers on a regular
basis, it is crucial for an organization to empower developers to create
cutting-edge software at a sustainable pace. DevEx metrics are
qualitative in nature and involve conducting surveys and retrospectives.
These metrics aim to maximize developers’ effectiveness by identifying
and improving feedback loops and flow states, ultimately reducing
overall cognitive load. Examples of DevEx metrics are related to flow
state and feedback loops - onboarding time, code review cycle time,
build time, service resolution time, developer happiness index.

{o; Operational metrics

These metrics help run software efficiently in production and keep
the lights on. These include metrics for System Level Indicators
(SLI) which are committed to users of the system like uptime/
availability, performance, durability, incident response time also
known as SRE metrics. It also includes ROl metrics such as Cloud
cost per customer (as suggested in Finops) and utilization such as
infrastructure and licenses

https://www.finops.org/assets/calculating-cost-of-service-driven-by-customer-cloud-unit-economics/
https://adr.github.io/

Engineering Intelligence Platform

All of the above metrics in any of the 4 categories can be future looked
at from the lens of leading and lagging indicators. Leading indicators
for software development are metrics that predict future performance.
They can be used to identify and address potential problems early

on, before they have a negative impact on the project. Examples are
Cyclomatic complexity, Test coverage, Build failure rate. Lagging
indicators for software development are metrics that measure past
performance. They can be used to track progress over time and to
identify areas where improvement is needed. Examples are Time to
market, Defect density, and Mean time to recover (MTTR).

Let’s take an example, To improve Time to market business objective,
first metric to start measuring and tracking is Deployment frequency

as lagging delivery metric, with objective to improve it from quarterly
releases to every sprint releases, couple of ways to improve deployment
frequency is by 1) good automated test coverage which allows to
reduce testing cycle 2) quick turn around on security and compliance
cycles for releases... So we need to start measuring “Testing cycle time”
and “Security & compliance cycle time” as leading metrics and start
implementing automation in functional, security and compliance testing
which helps improve Deployment frequency (lagging indicator) and
eventually Time to market for product.

“Monitor lagging metrics you want to change and
identify leading metrics that the team should focus

on to action that change.”

Technical Director, Thoughtworks

Engineering Intelligence Platform

Example of metrics to measure and track across
four categories with business outcomes

>

Delivery
metrics

4

Quality
metrics

S

g

DevEx
metrics

&

Operational
metrics

Business outcomes

Metrics to measure

Improve time to market
Improve customer NPS
Better predictability

Reduce cost

Better predictability
Improve resiliency
Improve customer NPS

Employee retention
Improve developer NPS
Better predictability
Improve time to market

Reduce cost
Improve resiliency

DORA 4 key metrics:
Change lead time,
Deployment frequency,
Mean time to recover,
Change fail percentage

Code complexity,
Build failure rate,
Tech debt,

Test coverage,
Security and
compliance incidents,
Production issues

Onboarding time,

Code review cycle time,
Commit to deploy time
(SAST & DAST checks,
tests, build & deploy time),
Ticket resolution time,
Developer happiness
index (Dev NPS)

SRE metrics

—SLA, SLO, SLI,

Cloud cost per customer
Resource utilization
(infrastructure

and licenses)

Engineering Intelligence Platform

The above is a suggested list and not exhaustive. Choose ideally 3 and
max upto 5 metrics in each category with clear engineering goals in
mind. Drive metric improvement through actionable measures, linked to
clear ways to confirm whether engineering goals have been achieved.

“Measure what matters. Choose metrics to measure

with clear engineering goals and objectives.”

Here are some tips for using metrics effectively:

» Choose metrics that are specific, measurable, achievable,
relevant, and long term.

« Don’t overload a single metric with multiple purposes.

» Set realistic goals for each metric with clear engineering objectives
leading to business outcomes.

« Track your progress over time and make adjustments as needed.

« Use metrics to identify waste and find areas for improvement. Don’t
use them to punish or judge people.

Establishing a line of sight to business outcomes

One of the recurring challenges faced by engineering leaders is
bridging the gap between high-performing engineering metrics and
desired business outcomes. EEBO (Engineering Excellence to Business
Outcomes) Metrics offer a framework for a systematic approach

to establishing a correlation between engineering excellence and
business outcomes. EEBO Metrics provides a method to draw statistical
correlations between metrics that reflect excellence in software and
those indicating superior production deployment, with progress toward
achieving desired business outcomes.

12

https://www.eebo.org/

Engineering Intelligence Platform

Structure Of EEBO Metrics

cls)e

Metrics reflecting Metrics reflecting Metrics categories
excellence in excellence reflecting progress
software in production towards desired

development deployment business outcomes

EEBO Metrics essentially measure a team’s deviations from their
agreed-upon goals over time. This trend is then checked for correction
with the trend of business outcomes to establish the presence or
absence of correlation. Absence or negative correlation may indicate
misalignment or wrong prioritizations for which the framework proposes
next best actions.

Let’s explore a few examples to understand how we can collect,
measure and track metrics linking to engineering objectives and
eventually business outcomes.

Engineering Intelligence Platform

a) Analyzing git commit logs to identify patterns for best practices as
well as waste in the software development

Git commit logs can be a valuable source of information for analyzing
software development practices and identifying waste. By analyzing

these logs, teams can identify patterns in their development process
that can lead to improvements in efficiency and quality.

Best practices in software development include practices like making
small and frequent commits, while wasteful or anti-pattern practices
include maintaining long-lived branches and enduring lengthy pull-
request approval cycles.

To analyze your team’s development process, key metrics derived

from git commit logs are invaluable. These metrics encompass factors
such as commit size, commit frequency, and code review time. By
consistently monitoring and analyzing these metrics over time, you can
pinpoint trends within your team’s development workflow. This enables
you to recognize areas of improvement as well as potential regressions.

Commit-driven metrics fuel efficient coding practices, enhancing code
quality, developer experience, and ultimately, customer satisfaction.

Engineering Intelligence Platform

b) Analyze Service request ticket data to identify patterns for service
requests and opportunities for self-service

o) J
A’

By analyzing IT tickets system data of engineering team requests
such as creating git repo or network firewall changes etc, you can
identify patterns for service requests and areas of improvement. This
information can be used to improve the efficiency and quality of your
service delivery. Some common metrics include the most common
service requests, and average time to resolution.

Through this analysis of service tickets, we can identify which service
requests are suitable for self-service. Implementing self-service options
not only enhances user experience and expedites task completion but
also reduces costs and boosts developer efficiency.

There are a number of different ways to transfer service requests to
self-service. One common approach is to create a knowledge base

that contains articles and tutorials that customers can use to resolve
common issues. Another approach is to develop self-service tools, such
as chatbots or virtual assistants, that can help customers to resolve
issues without having to contact a human support representative.

By transferring these types of service requests to self-service
platforms, you can free up your support team to focus on more complex
issues and improve the overall customer experience.

15

Engineering Intelligence Platform

c) Flow analysis using value stream mapping (VSM) to identify
bottlenecks and eliminate waste in SDLC

Waiting time
and handoffs
(B> 0> 9 =)=
E switching
and rework
Design Code Testing

@ Bottlenecks
and blockers

Value stream mapping (VSM) is a lean technique that can be used

to visualize and improve the flow of materials and information in

any process. In the context of software development, VSM can be
used to map the entire software development life cycle (SDLC),

from requirements gathering to deployment. VSM can help software
development teams to identify and eliminate waste, which is anything
that does not add value to the customer.

In the context of software development, waste can include things like
rework, waiting time, and handoffs. VSM can help teams identify and
eliminate waste by visualizing the entire SDLC and identifying areas
where there are bottlenecks or inefficiencies, such as a long queue
for code reviews or a slow build & deployment process. Once the
bottlenecks have been identified, the team can take steps to address
them, such as pair programming as a continuous review process or
automating the deployment process.

Using VSM, we can capture metrics, such as timing for each step in the
software development flow, and track cycle times over time.

Engineering Intelligence Platform

By implementing improvements focused on waste reduction and
bottleneck elimination, we aim to enhance overall efficiency.

d) Predicting delivery timeline with data from JIRA,
Git repository and CI/CD

T Jira

) GitHub

JICH

@ Jenkins

Let’s look at some futuristic use cases of the engineering platform.
Predicting software delivery time is challenging. Once we start
capturing historical data from Jira, Git repository, and CI/CD, we can
use a variety of machine learning and statistical techniques to predict
delivery timeline with data. The approach is an extension of the
“Yesterday’s weather” technique, with large amounts of data.

One approach is to use a supervised learning technique, such as

a regression model. To train the model, you would need to collect
historical data on delivery timelines, as well as data on the features
that you believe influence delivery timelines, such as the number of Jira
tickets, the size of the Git repository, and the number of CI/CD builds.
Once the model is trained, you can use it to predict delivery timelines
for new projects or features.

Another approach is to use an unsupervised learning technique, such
as clustering. This approach can be used to identify groups of projects
with similar delivery timelines. Once the projects have been clustered,
you can use the average delivery timeline for each cluster to predict the
delivery timeline for new projects.

Finally, we can also use a combination of supervised and unsupervised
learning techniques. For example, you could use a clustering algorithm

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Regression_analysis

Engineering Intelligence Platform

to identify groups of projects with similar delivery timelines, and then
use a regression model to predict the delivery timeline for each cluster.

Predicting software delivery is based on many contextual parameters
such as project complexity, organization ecosystem, team capability,
etc. and needs to be applied with care and not generalized too much.

Now that we’ve gained insights into what to measure, how to measure
it effectively, and various tracking techniques, let’s explore the available
tools for implementation.

Tools available in the market

In this space, numerous players offer a wide array of capabilities
focused on continuous data collection,real time analysis and the
provision of insights & trends including alerts for threshold crossings.
Many of these tools integrate seamlessly with your existing engineering
toolstack. While it is difficult to find one single tool that covers all
engineering metrics,, the space is maturing and tools are improving with
every new release. It’s crucial not to begin by selecting tools and then
determining what to measure. Instead, start with identifying objectives
and problems to solve.Then, decide what metrics to measure, focusing
on areas for improvement. Afterwards, choose the appropriate tool that
aligns with your objectives.

Faros.Al empowers you to measure performance across various
lenses, providing a holistic view. Whereas, DevEx 360 stands out for
measuring Developer experience and Code Climate is leading in code
quality metrics.

https://www.faros.ai/
https://getdx.com/products/devex360
https://codeclimate.com/

Engineering Intelligence Platform

PLURALSIGHT e 4 . "?’
FAR“S EFfilow §'swarmia DX L

(O codescene g Allstacks Ml waydev AN cobecumate 't Athenian

@ Hatica MUELLYFISH #aLinearB [hooeseva Acumehio

Disclaimer: Please note that the list of tools provided above is the result of a brief
research effort aimed at illustrating the diverse range of options available, not a personal
recommendation. Additionally, comparing these tools can be challenging due to the
continual evolution of their features.

To look for tools available in the market, you can use the search terms,
“Engineering intelligence platform”, “Software Development Analytics
platform”, and/or “Software Delivery intelligence platform” You can also
find a list of tools curated on the Gartner website here.

At Thoughtworks, we have built our own internal tool called “Polaris” for
measuring engineering effectiveness and helping our customers by

bringing insights and showcasing how engineering practices help to
achieve business goals.

/7

4

Polaris

Engineering platform to maximize
developer effectiveness

An engineering platform minimizes friction by simplifying and concealing
non-essential complexities that do not directly contribute to business
value. Utilizing an engineering platform, particularly one equipped with a
self-serving internal developer platform, is crucial for reducing obstacles
and optimizing developer productivity.

Although the sources of friction vary for an engineering team, they
can all be characterized in the same way; they require time and energy
but do not create end-user value. For instance, product teams might
find themselves engaged in tasks such as supporting infrastructure

or configuring CI/CD pipelines/environments.While these activities are
required, they don’t contribute directly to customer value. Excessive
non-value adding tasks result in frequent context-switching, which
significantly increases the cognitive load on developers. This reduces
developers’ ability to achieve flow and maximize value delivery.

20

Your teams are caught up Treat your product teams as a Removing friction so your teams can
on building a lot of things that are customer of the platform and aligning focus 100% on the customer facing
non-essential to business value. their focus on the customer product. product.

O, O O, O, O O, O, O O,
020 00 00 00 o0 00 00 o0 00
(g} M (g} (g} M (g (g M (g
50% 40% 55% 80% 70% 85% 95% 90% 95%

Customer

Value

Supporting

Infrastructure, Build

& CI/cD,

Environment setup

and Cross-cutting .

concerns

v v v

90 Self service
fy Platform Platform

How can an engineering platform help?

In general, platforms are technology foundations that accelerate an
enterprise’s ability to deliver customer value. An engineering platform
does the same thing for its software development teams, who are, in
effect, its customers. A good engineering platform consists of three
core components: a delivery infrastructure hub, a service hub and

a knowledge hub. The platform should be supported by lightweight
governance and a frictionless developer experience portal.

Engineering Intelligence Platform

Building blocks of an engineering platform

Q

Developer Experience portal

Single pane of glass and a self service Portal for product teams leading to

elevated developer experience

Governance

Real time dashboards of metrics such as 4km, SLI/SLO, Cloud cost insights,

Team productivity, Sprint status etc.

A

B>

Delivery
Infra Hub:
Self service

« Ondemand
higher order
infrastructure

Infra as code
with envs
provisioning
pipelines
Pipelines as code
with paved path
to production

Quality and
security pipelines

Monitoring
and observability

A

A

il

Servives Hub:
Discoverability

Publish
and discover

API gateway
Event hub
Data models
API sdks

On demand
integration
service

Engineering platform

22

Knowledge Hub:
Learn

Knowledge sharing
hub with unified
search across all
resources, space
for collaboration

On-boarding
and off-boarding,

Sensible defaults,

Tutorials,
Guides, Recipes
for architecture,
security

and comolance

A technical product or platform which allows a product team member
to function more effectively resulting into business agility with faster
time to market

E> The Delivery Infrastructure (DI) hub

The Delivery Infrastructure (DI) hub provides product teams with
self-service and automated ‘golden paths’ that go from development to
production with quality and security checks baked in. The hub includes
common cross-platform tools such as continuous integration setup,
observability and monitoring capabilities. It also accelerates building
higher-order infrastructure products and environments using
Infrastructure-As-Code (laC) on top of existing cloud services.

[] The services hub

The services hub offers an on-demand ability to publish and discover
APIs and events along with documentation and Software Development
Kits (SDKs). It helps product teams reuse and compose digital assets
which limits dependencies and accelerates delivery.

&) The knowledge hub

The knowledge hub breaks organizational silos by making it easy to
publish project documentation, org-level tutorials, guides, recipes for
on-boarding/off-boarding, architecture, sensible defaults and security
and compliance information and policies. The unified search also
helps developers discover solutions faster. With proper documentation
and automation, we have seen onboarding times reduced from
months/weeks to days.

[I] Automated governance

Automated governance leveraging observability stack provides
real-time dashboards and insights of operational metrics that are
related to software delivery and production systems such as DORA
four key metrics (4KM), availability, cloud cost alongside continuous
monitoring and tracking of metrics and compliance requirements.
Gartner breaks it down into two categories - the engineering
intelligence platform and the engineering value stream
management platform.

9 A developer experience portal

A developer experience portal provides a single point for self-
service capabilities for product teams, leading to elevated developer
experience. For example, Spotify developed an open-source platform
for building developer portals called Backstage. While it provides out-
of-the-box core features, organizations still need to tailor it to their
needs. We used Backstage to build a portal for TELUS called Simplify,
improving developer experience for their 8,000 engineers. Learn more
about that, here.

At Thoughtworks, we built our own award winning engineering platform
called NEO to enable effective software development. NEO has sped

up the application development process, from idea to outcome by an
average of 30%.

An engineering platform helps with improving Developer experience
and Delivery metrics by reducing friction and associated waste in the
system eventually leading to happy and motivated engineering teams.

https://www.thoughtworks.com/en-in/insights/podcasts/pragmatism-in-practice/backstage-spotify-developer-effectiveness
https://backstage.spotify.com/blog/building-for-simplicity-TELUS/
https://www.thoughtworks.com/about-us/news/2022/thoughtworks-announced-as-2022-cio-100-award-winner
https://www.thoughtworks.com/en-in/clients/thoughtworks-neo

Gotchas and anti-patterns

Metrics are a double edged sword. Executives often rely on numbers
as the primary means of gauging progress. While metrics, when
employed with good intentions, can assist in goal attainment, they
can also be easily manipulated when used to evaluate individuals

and their performance.Hence, it's essential to be wary of pitfalls and
negative patterns associated with excessive reliance on metrics.
Additionally, assigning multiple purposes to a single metric can lead to
numerous complications.

Measure and collect metrics at the team level and not at
the individual level

Measuring metrics at an individual level might not help to achieve the
overarching goals we have set. For example, a senior developer may
be more involved in reviewing pull requests and helping other team
members resolve blockers and dependencies.

25

Engineering Intelligence Platform

Whilst their individual metrics may be impacted this, the benefit to the
team, and collective goal, is high.

Focus on trend analysis within a specific team over time,
rather than comparing across different teams

5

R

£ 3

AN

(OXOXOJO]

Comparing metrics across teams can be counterproductive.

For instance, if we compare the deployment frequency of the “WebApp”
and “MobileApp” teams, it's not always meaningful. The WebApp

team might deploy multiple times a day, while the MobileApp team’s
deployments are constrained by processes like the AppStore approval
cycle. Similarly, comparing metrics between teams working on different
types of projects, such as core banking software versus marketing
corporate websites, can lead to misleading conclusions.

26

Engineering Intelligence Platform

Do not use metrics to judge individuals or
teams performance

'

While metrics can be a valuable tool for tracking progress and
identifying areas for improvement, it is important to use them carefully
and avoid using them to judge individuals or teams. Doing so can lead
to a culture of fear and blame, people focusing on the wrong things, can
be unfair. E.g Individuals can start focusing on their performance over
team outcomes, eventually leading to a blame game. Use metrics to
identify areas where people need help. Don't use them to punish people.

Overloading a single metric with multiple purposes
causes many problems

0
R

27

Engineering Intelligence Platform

While it may be tempting to use a single metric to simplify reporting or
to make it easier to compare performance across different teams or
products, this can lead to a number of problems. It can be confusing
and lead to suboptimal decision-making. Choose metrics that are
specific, measurable, achievable, relevant, and time-bound.

Collecting metrics should not become a burden to
the team

While metrics serve as valuable instruments for monitoring progress
and pinpointing areas in need of enhancement, it’s crucial to exercise
caution against excessive metric collection. Overloading the team with
too many metrics can impose a burden, wasting time and resources,
and potentially leading to “paralysis by analysis,” ultimately demoralizing
the team. It's advisable to select metrics aligned with engineering goals
and, where possible, automate their collection and analysis processes.

28

Resources

Sunit Parekh’s Talk at XConf India 2023 in Hyderabad:
Engineering intelligence, data-driven visibility into the engineering
effectiveness by Sunit Parekh

To learn more about engineering intelligence and metrics to measure,
here is a list of articles for your reference:

« An Appropriate Use of Metrics by Patrick Kua

« Maximizing Developer Effectiveness by Tim Cochran

» Cannot Measure Productivity by Martin Fowler

« Engineering platform: key to maximizing software development
effectiveness by Sunit Parekh

« DevEx: What Actually Drives Productivity on ACM

« Outcome Over Output by Martin Fowler

» The Worst Programmer | Know by Dan North

» Measuring Developer Productivity via Humans
by Tim Cochran & Abi Noda

https://www.youtube.com/watch?v=NB1CwRNqVao&list=PL8f-F_Zx8XA-NaqBH-RU1V9Qy46issm00
https://www.youtube.com/watch?v=NB1CwRNqVao&list=PL8f-F_Zx8XA-NaqBH-RU1V9Qy46issm00
https://martinfowler.com/articles/useOfMetrics.html
https://martinfowler.com/articles/developer-effectiveness.html
https://martinfowler.com/bliki/CannotMeasureProductivity.html
https://www.thoughtworks.com/insights/blog/platforms/engineering-platform-key-to-maximizing-software-development-effectiveness
https://www.thoughtworks.com/insights/blog/platforms/engineering-platform-key-to-maximizing-software-development-effectiveness
https://queue.acm.org/detail.cfm?id=3595878
https://martinfowler.com/bliki/OutcomeOverOutput.html
https://dannorth.net/the-worst-programmer/
https://martinfowler.com/articles/measuring-developer-productivity-humans.html

Engineering Intelligence Platform

Author

With over 20 years of experience,
I'm a seasoned technology
strategist passionate about
helping clients achieve their digital
goals. | specialize in guiding large
enterprises through complex
distributed projects, from global
solutions to digital transformations.
My expertise lies in crafting
impactful technology strategies
and implementing cutting-edge
cloud-native solutions across
Sunit Parekh ambitious projects.

Head of Digital . Modern Engineering Advocate

Platforms Practice, India and Cloud-Native Champion
I'm a firm believer in leveraging
the power of cloud ecosystems
and embracing cloud-native
approaches to build modern,
scalable infrastructure. I'm equally
passionate about collaborating
with clients who share my
commitment to adopting modern
engineering practices for achieving
technical excellence.

Open Source Contributor
Beyond my client work, | actively
contribute to the open-source
community. I've built a valuable
tool, Data Anonymization,

that helps developers safely
anonymize production data for
testing purposes.

30

Thoughtworks is a global technology consultancy that
integrates strategy, design and engineering to drive
digital innovation. We are over 11,500 Thoughtworkers
strong across 51 offices in 18 countries. For 30 years,
we've delivered extraordinary impact together with our
clients by helping them solve complex business
problems with technology as the differentiator.

thoughtworks.com

/thoughtworks

Strategy. Design. Engineering. © Thoughtworks, Inc. Al Rights Reserved.

https://thoughtworks.com
https://thoughtworks.com

	Introduction
	Challenges faced by engineering teams
and leaders
Types of friction an engineering team
goes through
	What is an Engineering Intelligence platform?
	Engineering platform to maximize developer effectiveness
	Gotchas and anti-patterns
	Resources
	Author

