
A strategic framework for
evaluating third-party solutions

Build vs. buy

http://thoughtworks.com

Introduction	 3

Defining your needs	 5

Evaluating with a
cross-functional approach	 12

Covering your technical needs	 17

Vendor assessment	 24

Proving concepts and value	 28

Conclusion	 33

Build vs. buy

3

Introduction

When your organization needs new software capabilities,
the process begins with a deceptively simple question:
should we build the new capabilities in-house, or should
we buy a ready-made solution?

When you buy third-party software, you gain proven
capabilities quickly, at the cost of customization and control.
When you build, you get the opposite: exactly what you want,
but at greater expense and effort.

When your need is clear, immediate and has a relatively low
potential impact on the organization, it makes sense to answer
this question quickly, and get started along whichever path you
choose. But for larger impact areas or capabilities that are likely
to have a far-reaching and long-term impact on the organization,
build vs. buy becomes a far more nuanced decision. It demands
significant evaluation and carries serious risks if you don’t make
it with the right level of care and diligence.

When you make a build vs. buy decision, you are really asking
the question, ‘is what I need available as a pre-built solution,
or do I need to build these capabilities myself?’. That opens
up a number of further questions, such as:

•	 Is the capability we’re looking for a key differentiator for
	 our business? Do we risk yielding competitive advantage or
	 control by using a third party to acquire it? How will we need
	 that capability to evolve over the next three to five years?

Build vs. buy

4

•	 Can a third-party solution meet our specific technical
	 needs? For example, does it offer the level of security our
	 organization, its customers and local regulators demand?

•	 Which vendor(s) can realistically deliver the level of capability
	 and service we need? For how long are they likely to support 	
	 the solution?

That’s the dilemma with build vs. buy. It looks like a binary
decision, but in reality it’s a multifaceted decision with
radically different outcomes depending on your needs
and current situation.

In this paper, we’ll break down the third-party evaluation
process, examining what it really takes to select the right
partner and vendors. We’ll also take an in-depth look at
the questions you need to ask to determine whether building
or buying is right for your business.

Build vs. buy

Defining
your needs

6

Defining your needs

Before you even consider evaluating third-party solutions,
you need to ask a few important questions to determine
if going with a third-party provider is the right choice for
the capabilities you want to gain.

Generally, capabilities can be organized into one of two groups:

•	 Commodity capabilities are required by your company
	 but aren’t unique to you. Common examples include 		
	 payment and payroll tools. These capabilities offer little
	 to no competitive advantage, so it makes sense to follow 		
	 established best practice and adopt the industry standard

•	 Differentiator capabilities are how your company
	 differentiates itself in the market. In competitive markets,
	 higher investments into these capabilities are justified,
	 as they directly help a company stand out and operate
	 in unique ways

When considering what is a differentiator or a commodity,
it is important to have a clear idea of your own business
context and what this means.

A commodity capability will be provided under the assumption
that you will adapt your processes to that particular vendor’s
definition of industry ‘best practice’. From a strategic perspective
this can alter your ability to deliver value to your customers.
Often commodity capabilities are chosen when following
the same process as the rest of your industry does no harm.

Build vs. buy

7

There can be other aspects beyond the traditional value drivers
which make the capability a differentiator in your context. This
can include your operating model and your culture. These areas
can be harder to identify as they need to take into consideration
the way you organize and get work done and what behaviors
you wish to encourage or dampen. Commodity capabilities will
force you to follow their version of these best practices too.

Another consideration is around granularity. A common
mistake is to scope at the level of the package resulting
in capabilities which are too broadly defined. For example,
a Customer Relationship Management system or an HR
system needs to be mapped at a more granular level, closer
to the value chain. When organizations do this, they often
discover a mix of smaller commodity and differentiator
capabilities within the larger solution itself.

For example, at Thoughtworks, our strategic capability is
based (in part) on our consultants’ ability to flex their schedule
to meet the client’s needs. If the people team’s recruiting system
requires interviewers to register a consistent block of availability
each week, that impacts the strategic value in both directions
because it puts client needs and the recruiting scheduling
process needs in direct opposition. Quickly hiring quality
candidates is also a strategic capability; realizing the impact
on our strategic value ultimately drove additional investment
in the HR recruiting tool.

Understanding the full impact of a buy decision is key
to avoiding unintended impact upon the key strategic
differentiators which drive your business. While it is typically
obvious how the vendor’s best practices will affect your ability
to differentiate your strategic capability within the market,

Build vs. buy

8

it is not always so clear how your operating model and culture
may be subtly affected. For normal cost-of-business processes
it may not matter at all, but when your operating model
and culture directly support your differentiated capabilities,
it becomes critical.

Wardley Mapping
A good exercise to help you understand whether the capabilities
you need can be categorized as commodities or differentiators
is Wardley Mapping.

Wardley introduces the idea of evolution, the movement
from novel to commonplace. Capabilities begin life as novel
differentiators. They’re new, there are few third-party options
available and best practice around them is still in the process
of being defined.

Over time, as that best practice becomes clearer, demand
rises and third-party solutions mature, they become
commodities. Those are the capabilities where it makes
the most sense to go with a third-party provider, and the
ones that are worth spending the time evaluating in detail.

Wardley Mapping encourages mapping at the value chain
level. Armed with this information, it is possible to draw a clear
boundary around which specific capabilities the vendor should
and should not provide. This enables the Bounded Buy strategy
which prevents the Vendor King anti-pattern.

Build vs. buy

https://learnwardleymapping.com/
https://www.thoughtworks.com/radar/techniques/bounded-buy
https://www.oreilly.com/library/view/evolutionary-architecture-fundamentals/9781492027089/video319432.html

9

Replacing or extending existing solutions
On a regular basis we should re-evaluate our landscape to see
if there is a third-party solution that makes sense. The industry
moves quickly. An evaluation you did a year ago might have
changed with new features and different competitors. Your
company may have also changed or business priorities shifted,
and that unique functionality you thought you had to build didn’t
become a reality. It also could be that pricing has changed,
making it more appealing to use a third party.

There is always a tendency to want to throw out the older
legacy solution in favor of something new and shiny. That
can be a valid choice, but before you can make a pragmatic
decision, you should also consider whether you could extend
the life of what you already have in place by:

Va
lu

e
ch

ai
n

Vi
sib

le
In

vi
sib

le

Evolution

Recommendation API

Customer

Find a table that
fits my room

Historical domain
event store

Behaviour
data store

Metadata
API

Cloud
provider

Advanced search

Search API

Genesis Custom Product (+rent) Commodity (+utility)

1

1

Figure 1. Example of Wardley Mapping

Build vs. buy

10

Build vs. buy

•	 Bringing your solution up to a modern standard, so that it
	 can work in your DevOps workflow. This might involve putting
	 it in a container, automating deployments or figuring out how
	 to horizontally scale

•	 Customizing or extending the solution if there is a way
	 of adding behavior that might negate the need for a new
	 solution. For example, if there is an API from which we extend
	 new functionality, or if the solution has customization abilities.
	 This has to be traded off with the maintenance expense
	 of the new code

If you’ve determined that a third party can provide the
capabilities you’re looking for, that acquiring them as a
commodity makes sense for your organization and that
extending the life or functionality of existing solutions
isn’t the right choice for you, then you’re ready to plan
your third-party evaluation.

Planning a balanced third-party evaluation
Evaluating third-party solutions is an extremely challenging
task. There’s far more to it than simply comparing offerings
and weighing out benefits. In practice, a thorough evaluation
requires you to do three difficult things at once:

•	 Predict the future: You’re not just looking at how well
	 a solution can meet your needs today. You must also consider
	 how well it will meet your evolving demands over the next
	 three to five years, and factor in the provider’s own roadmap
	 for the solution

11

•	 Balance the needs of a huge number of people: Chances
	 are, a third-party solution will encroach on (and ultimately
	 replace) a few products that people across your team 	
	 currently like using. Considering your team’s needs as
	 a whole against the experiences of those that won’t
	 welcome the change is a tricky balancing act

•	 Forecast long-term costs and ROI: Acquiring new third-party 	
	 solutions typically involves getting tied into long-term
	 contracts. Financial evaluation needs to consider how the
	 value delivered by a solution may shift over time and how
	 that may impact your budgets and bottom line

It’s a complex and time-consuming process, but it’s well worth
investing the time and resources to get right.

Build vs. buy

Evaluating with a
cross-functional
approach

13

Evaluating with a
cross-functional approach

Once you’ve identified buying a third-party solution as the
right path forward, it’s time to assemble your evaluation team.
Building a representative cross-functional team is essential
for ensuring that the solution you choose meets the critical
needs of many different stakeholder groups.

Which stakeholders are involved in the evaluation will
depend on the capability being evaluated. But cross-functional
teams are typically comprised of stakeholders from
the following groups:

•	 Finance: Ensures the cost of the tool aligns with budgets

•	 Product managers: Give detailed input on the specific
	 requirements for the tool

•	 End users (or proxy for end users): Explain how they want
	 to engage with the tool

•	 Engineers: Offer perspectives from those who will have
	 to integrate and customize the software

•	 Infrastructure and IT operations: Responsible for deploying
	 and supporting the tool

•	 Back-office operations: The team who will have
	 to administer the tool

•	 Compliance and security groups: Ensure the tool
	 doesn’t expose the organization to increased risk

Build vs. buy

14

Mapping features against functional needs
Feature analysis is one of the biggest traps in software
evaluation. Organizations get caught up comparing huge lists
of features, spending hours looking at capabilities they don’t
even need and ultimately selecting tools that offer the most
features, instead of the ones that best meet their core needs.

Instead, your cross-functional team should work together
to define a short, clear list of must-haves for your new solution.
That list will shape feature analysis and keep it centered
on the most important capabilities.

At this stage, your team must also consider the roadmaps
of the products they’re evaluating. What will you need your
chosen solution to be able to do in the future? Which vendors
have the best plan to effectively enable and support those
things? Of course, the future won’t always be clear, but good
vendors should be able to give you a clear view of their roadmap
for the features and capabilities that matter most to you.

Make developer experience a key area of focus
Another common evaluation mistake is failing to realize the
importance of developer experience when selecting a third-
party solution. Your developers will ultimately be responsible
for deploying, integrating and maintaining your chosen solution.
So if it doesn’t meet their needs, it’s irrelevant how well it meets
the needs of end users and lines of business.

Here is a list of important things to look out for that can make
a solution easier, more intuitive and ultimately, more engaging
for development teams to work with:

Build vs. buy

15

Web API Don’t consider software without it.
Ideally, the product should be built
in an API-first manner.

Push /
streaming API

The ability to subscribe to changes in
data is particularly important for caching
and for integrations between systems,
to avoid performance and availability risk.

Data
accessibility

All stored data should be available
via automated methods to simplify
management and integration.

Batch API For systems dealing with large data sets,
e.g. analytics, you may want a way to
periodically get a snapshot of the data.

Technical
documentation

Up-to-date documentation
(ideally with code examples).

Querying Good options for filtering,
sorting and paging data.

Versioning Releases managed by a sensible versioning
scheme. How long is the software going to
be backwards-compatible?

Backwards
compatibility

Can the solution easily work alongside
your existing software and platforms
without negatively impacting maintenance
and upgrade costs?

Command line
interface

To control the application, particularly
for provisioning and adjusting resources.

Client library Multiple languages, for easy developer use.

Build vs. buy

16

Experiment
support

Does the software lend itself to an
experiment-driven approach? Are we
able to show multiple different experiences
to different users to support development
and test processes?

Integration Can the software easily be incorporated
into the current environment and rolled
out incrementally in an agile manner?

Upgrade
strategy

How often are releases made?
How are they delivered?

Environment
options

Does the third party provide QA and
staging environments, and a method
to test in production with a test account?

Multitenancy If the system is going to be used by multiple
teams, is there a way to segment data so
they can work autonomously?

Open
standards

Being based on an open standard is a
good sign of the technical maturity of
the company. Relying on Open Source
standards may also increase the willingness
of engineers to work with and contribute
to the product.

Community Is there a large community of users,
and can we easily search answers
to questions? Can you hire engineers
with skills in the solution?

Optionality Can the product or service be easily
used to create new capabilities in
the future that address new business
requirements as they emerge?

Build vs. buy

Covering your
technical needs

18

Covering your technical needs

When you’re evaluating a third-party solution, every function
has their own needs to consider. That’s why you created your
cross-functional team.

Typically, technical needs such as security, infrastructure
requirements and operational IT demands tend to fall
through the cracks because functional needs are evaluated
first. To avoid serious challenges once implementation begins,
it’s important to map out these technical requirements as
part of your evaluation and ensure that the solution you
choose ultimately meets as many of them as possible.

Listed below are some of the most common ones. Ideally,
you’ll want to assign metrics and service levels to each one
as part of your evaluation and selection process.

Availability What level of availability does the solution
need to maintain? How can you verify that
before selection?

Performance What does the performance profile look
like during normal operation? How does
load from other customers affect your
throughput? How well can the solution
scale and adapt to increased load?

Accessibility Does the solution’s UI meet
your accessibility requirements?

Compliance Does the solution meet all relevant
security and data protection requirements?

Build vs. buy

19

User
experience

Run user testing in the evaluation and
get feedback. How hard is it to extend
and customize the user interface?

Disaster
recovery

How does the system recover from
a disaster? How is data preserved?

Support
availability

If something goes wrong, who can help?
How quickly can they get you up and
running again?

Evaluating security and compliance
Security can be one of the biggest reasons to buy third-party
solutions. As general resistance to the cloud has fallen and IT
teams have accepted that on-premises doesn’t mean ‘more
secure’, many teams have come to love off-the-shelf solutions
for the security advantages they deliver.

First, when you buy a ready-made solution, you get proven
tools with an established security footprint. Most of the work
to secure these tools is done and the efficacy of their security
is well known and documented. Second, when you work with
a third party, you have additional bodies on your side if things
go wrong. If a SaaS solution goes down, the vendor’s team
can jump in to bring it back up and remedy any potential
security issues.

From a risk management perspective, using third-party
vendors can be a form of risk offload. In the case of open
source software and standards, you get the benefit of the
community’s investments in threat modeling and vulnerability
remediation. Leveraging these can help you demonstrate due
care and due diligence to auditors and other interested parties.

Build vs. buy

20

But that doesn’t necessarily mean all third-party solutions
will meet your security needs right off the shelf. As part
of your evaluation, it’s important to follow these steps:

•	 Analyze the sensitivity level of the application you need
	 and its data. By following a concept like NIST’s Impact
	 Level model, you can determine the right security control 		
	 baseline that you’ll need to assure and uphold. That will help
	 inform your infrastructure decisions too. For example, if your
	 application’s impact level is classified as high, you’ll need
	 to use an IaaS provider’s public sector certified environment, 	
	 like AWS GovCloud

•	 Ask for security content and accreditations. Start by 		
	 asking the vendor for their security whitepaper. This should 	
	 include discussion of their threat model and other security 	
	 considerations. For SaaS providers, you will want to review 	
	 relevant attestations such as PCI AoC/RoC, or SOC 2
	 Type 2 reports

•	 Make sure your contracts meet regulatory demands
	 by building in relevant pass-through language as required
	 by regulators

•	 Be aware of potential security showstoppers. The most
	 common examples are when a vendor does not support
	 appropriate standards-based single sign-on, federation
	 and security in transit technologies

Build vs. buy

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.199.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.199.pdf

21

Evaluating infrastructure requirements
The range of infrastructure concerns varies significantly
depending on the build vs. buy decision, as well as the type
of product considered for purchase. At one end of the spectrum,
SaaS products typically encapsulate all infrastructure concerns
within the product offering. At the other end, should you
choose to build you will be responsible for the infrastructure
for supporting the capabilities.

There are two key points to keep in mind as the build vs. buy
decision is contemplated. The first is to evaluate the various
solutions (whether SaaS, a product deployed on-premise
or a custom-developed solution) over a consistent set of
criteria including (but not limited to) availability, resiliency,
recoverability, service-level agreements (SLAs) and cost.

The second is that the actual usage patterns of the capability
in question will have non-linear effects on the outcome of these
evaluations. While initially the decision is rightly made based
on estimates of usage, understanding the breakpoints which tip
the balance toward one solution or another will guide when the
decision should be revisited at an appropriate time in the future.

Operating the service
It is also important to consider the ongoing management of an
application, and understand what the administration experience
will be like. Unfortunately, we see a lot of applications that
focus on richness of user-facing features, only to fall down in
this area, putting additional pressure on already overburdened
IT functions. This is also something that can be underserved in
the prioritization queues for custom applications, and it is worth
ensuring stakeholder groups include operations team members
in both cases.

Build vs. buy

22

User account
management

How are provisioning, deprovisioning
and archiving handled? Can this be
readily automated? Are there circumstances
when a user external to the organization
may need access and how is that
accommodated?

Teams and
groups

How easy is it to set up and maintain
structures for teams and groups within
the tools? Is this flexible enough to
represent the various ways your business
units are organized? To what extent can
management be delegated or shared?

Settings
management

Is there a flexible model for the various
controls that are provided, allowing settings
to be enabled or disabled at various levels
according to the team structure? Does
this cascade, and does it also allow for
cross-organization sets? Do admins have
the ability to find and fix all end-user
settings? What data can they see and
what protections are there to help avoid
unintentional overexposure?

Audit Clear auditability also has a role in support
of end users, helping admins confirm which
actions led to which results.

Build vs. buy

Beyond the compliance and security concerns mentioned
above, this includes things like:

23

When it comes to vendor support for building on top of an
application, there is an intersection of operations and developer
experience. Key things to look out for include the approach
to providing sandbox or sub-accounts for development and
testing, and the model for API authentication. Using an OAuth
model, where an extension acts on behalf of a user, often
makes it easier to attribute actions during an audit. Those that
require administrator-level ‘god account’ access can make it
harder to see who did what, as well as introduce a weak point
from a security perspective. Products that rely on third-party
application integration systems to provide connectors can
readily advertise integrations across a wide selection of other
applications, but this can also result in even more complexity
from an operations perspective. Unless you already use
and manage the same platform within your ecosystem,
we recommend approaching these kinds of integrations
with caution.

Build vs. buy

Reporting Be cautious of applications that share
vanity metrics, highlighting only the
most active users or the most successful
content. Reporting needs to be in the
service of making adjustments to improve
the application, and robust reports should
include all aspects of usage, highlighting
both immediate issues and errors as well
as longer-term trends that require action.

Vendor
assessment

25

Vendor assessment

When you choose a third-party solution, you’re not just selecting
new software, you’re picking a partner that you’ll have to work
with for years to come. It’s just as important to evaluate vendors
as it is to evaluate the software and capabilities they can offer.

During that assessment, it’s important to look beyond the status
quo. It’s not just about who can offer you the most predictable,
proven solution and consistent service. It’s also about identifying
who’s innovating, whose capabilities are actively improving,
and who has the strongest roadmap — both for their solutions,
and as a company.

Most assessments are built around a combination of these
nine criteria:

Trajectory Ideally, you want to pick a vendor that
you can form a long relationship with,
even over the lifetime of a relatively short
contract. You want to pick a company
that’s actively investing in their product,
innovating and responding to changing
market demands.

Influence Seek a partner that will listen to your
feedback, where you can influence the
future of their solutions and feed into
their development roadmap. This is an
area where it can be advantageous to
work with smaller, growing providers.

Build vs. buy

26

Financial
stability

You need to be sure that your partner
will continue supporting the solutions
you buy. Checking their financial position
and stability can help you ensure they’ll
still be around when you need them.

Size Being small and nimble may be an asset
in some situations, if you’re looking at an
experimental technology that you want
to try out. In other situations, a larger,
more stable partner may be preferable.

Technology
culture
alignment

It’s a good idea to choose a partner that
views and approaches technology the
same way your business does. Do they
share the same technical values? What
are their QA processes? Do they practice
continuous improvement and continuous
delivery? Are your engineers excited by
the company?

Culture Does the partner share your core cultural
values? Do they value sustainability,
diversity, humility and any other quality
that’s important to you?

Transparency How open are they about their technology
and their weaknesses? Will they let you
see their internal systems?

Access Will they provide a technology partner or
architect to help you access the services
you need?

Quality of
support

What is their support model, and what
SLAs do they commit to upholding?

Build vs. buy

27

A common mistake companies make when conducting vendor
assessments is relying too heavily on industry surveys or analyst
reports. While useful, they often aren’t published frequently
enough to give you a complete view of the market — missing
emerging innovators and not reflecting the latest developments
in the space.

In other words, when conducting your own assessment,
it’s important to combine expert viewpoints with your own.

Build vs. buy

Proving
concepts
and value

29

Proving concepts and value

Like anything else, when you’re evaluating software, there’s
no substitute for getting hands-on experience with the product
and trying it out for yourself. A proof of concept (POC) gives
you the chance to deploy software in your environment,
try out its features, test its APIs and gather opinions about
it from end users.

As part of the POC process, there are a few key things
to look out for:

•	 Development philosophy: Engineers from both sides
	 should engage with each other to get a feel for the
	 vendor’s philosophies. How responsive are they to
	 developer experience and functional improvements?

•	 Functional and non-functional assessment: Pick some
	 real current and future integration use cases, plus some
	 of the non-functional cases. Then, turn some of the criteria 	
	 into a list of experiments to run against the system. This will 	
	 tell you more about the technical capabilities of the solution 	
	 than reading the documentation

•	 Development Total Cost of Ownership (TCO): A lot of
	 tools are not built for a DevOps culture and your development
	 team will have to do a lot of 	work to integrate them into their
	 software life cycle. That doesn’t mean you should write the
	 solution off, but you should consider the investment required

Build vs. buy

30

Forecasting ROI and TCO
The final step in a comprehensive evaluation process is
calculating projected costs to buy and implement the solution,
and how quickly you expect your investment to return value.

Calculating both ROI and TCO can be complex, imprecise
processes, often based on incomplete information and best
guesses. Here are a few tips that can help ensure your analysis
generates the most reliable outputs:

•	 Own the process: Vendors are usually happy to help
	 you define the total cost of ownership for any system 		
	 replacement. They often provide tools and templates
	 to help you calculate the ROI, especially for commoditized 	
	 products. However, the true costs are often obfuscated
	 by the vendor’s package pricing practices. Customers
	 need to own the model, all the key assumptions within
	 the model and the decision-making process

•	 Consider how strategy may shift: The ROI model is 		
	 predicated on the need for the specific capability for
	 a period of time in alignment with the business model
	 and strategy. It’s worth considering how that need may 		
	 change, in line with emerging tech and customer
	 megatrends. A safe approach is to plan for strategic 		
	 obsolescence and reduce the expected lifetime

•	 Get a complete view of acquisition costs: License fees 	
	 are usually the attention-grabbing headline, but they don’t
	 represent the full acquisition costs. The ROI model should
	 include any additional acquisition costs such as new software,
	 hardware or expertise needed to implement the solution

Build vs. buy

31

•	 Factor in ongoing support and maintenance: If significant
	 changes are required to maintain the system over its lifetime,
	 support costs can quickly add up, so it’s important to factor
	 them into TCO calculations. Vendors and their implementation
	 partners often provide extended support agreements, but you
	 may decide to invest in your own capabilities to maintain
	 the system and implement changes. Whichever route you 		
	 choose, those maintenance costs need to be part of your
	 ROI and TCO analysis

A note on implementation
At this stage, with your full evaluation completed, you’ll naturally
start thinking about implementation. A full exploration of how
to implement third-party solutions is out of the scope of this
article. But it’s worth thinking about how you can balance the
risk associated with implementing third-party solutions, and
keep your options open if you end up wanting to change your
capabilities in the future.

Firstly, it’s important to consider how you’re going to couple
and decouple the technology. Your development team will likely
have experience with modernizing legacy technology and
understand the challenges with removing embedded solutions.

This is why there are still so many businesses powered
by legacy monoliths. You can avoid that by only loosely
coupling your third-party solution. Limit the number of
dependencies on the vendor product and put it behind
an API to limit direct exposure.

Build vs. buy

https://www.thoughtworks.com/perspectives/edition14-enterprise-modernization

32

Second, take flexible pricing options where they’re available.
Pricing flexibility allows you to experiment with a solution
without a big financial commitment, reducing costly vendor
lock-in. But be aware that flexible pricing can lead to increased
spend as your use of the solution grows.

Finally, check whether your chosen solution supports open
networks, and can easily integrate with other solutions as your
needs evolve. Many of the most successful third-party software
solutions are built on an open architecture that allows plug-in
components, enabling you to customize the solution and take
advantage of expertise within the user community.

Build vs. buy

Conclusion

34

Conclusion

Selecting the right third-party solutions for your business
is rarely a simple task. The capabilities you choose and deploy
will impact and shape the future of your organization, your
IT estate and the way your people work, so your evaluation
process can’t be rushed.

The process itself will always vary depending on the capabilities
you’re looking for and the gaps you’re trying to fill. But broadly,
a thorough evaluation process should incorporate all of the
major steps covered in this paper:

1.	Carefully map out your needs and establish whether
	 a third-party solution is likely to be able to meet them
	 or whether you need differentiated capabilities

2.	Work with diverse stakeholders to understand what
	 they need and build a cross-functional team to help support
	 your evaluation process, providing as many perspectives
	 on potential solutions as possible

3.	Define your technical must-haves and ensure that your 	
	 organization’s overall technical, security and compliance
	 needs are factored into the evaluation process — helping
	 you spot clear deal-breakers

4.	Conduct deep vendor assessments and look at their
	 general roadmap, as well as the roadmap for the solution(s) 	
	 you’re evaluating, to determine whether they’re the right
	 long-term partner for your team

Build vs. buy

35

5.	Carefully forecast TCO and ROI to help you gain a complete 	
	 picture of the costs associated with your shortlisted solutions, 	
	 and determine how quickly they might be able to return value 	
	 for your organization

By following those steps, you can ensure that the solutions
you choose are right for your business, your developers
and the customers you serve, and focus your development
resources where they’re needed most.

The final thing to keep in mind is that capability evaluation
isn’t a one-off, closed process. It shouldn’t end when you’ve
selected and implemented a third-party solution. Today,
frequent re-evaluation of capabilities and services helps leading
organizations ensure that everything they’ve deployed is truly
fit for purpose.

By looking back at everything you’ve deployed and reassessing
its value and viability, you can ensure that all the needs you’ve
identified are still being met by your chosen solution months
and years down the line. If you’ve chosen well and built flexibility
into your implementation model, you’ll be strongly positioned
to make changes wherever and whenever they’re needed.

Build vs. buy

36

About the authors

Tim Cochran
Technical Director
North America
Connect on
LinkedIn

Prashant Gandhi
Principal Consultant
United Kingdom
Connect on
LinkedIn

Carl Nygard
Technical Principal
North America
Connect on
LinkedIn

Contributions

Build vs. buy

Peter Gillard-Moss
Head of Technology
TechOps
United Kingdom
Connect on
Linkedin

Andy Yates
Head of Strategy
TechOps
United Kingdom
Connect on
Linkedin

https://www.linkedin.com/in/timcochran/
https://www.linkedin.com/in/timcochran/
https://www.linkedin.com/in/pmgandhi/
https://www.linkedin.com/in/pmgandhi/
https://www.linkedin.com/in/carl-nygard/
https://www.linkedin.com/in/carl-nygard/
https://www.linkedin.com/in/petergillardmoss/?originalSubdomain=uk
https://www.linkedin.com/in/petergillardmoss/?originalSubdomain=uk
https://www.linkedin.com/in/yrnclndymn/?originalSubdomain=uk
https://www.linkedin.com/in/yrnclndymn/?originalSubdomain=uk

Get in touch with us
thoughtworks.com/contact-us

Thoughtworks Ltd.
First Floor, 76-78 Wardour Street
London, W1F 0UR, UK
+44 (0)20 3437 0990
contact-uk@thoughtworks.com

Thoughtworks, Inc.
200 E Randolph St
25th Floor
Chicago, IL 60601-6501
+1 312 373 1000
contact-us@thoughtworks.com

https://www.thoughtworks.com/contact-us
mailto:contact-uk%40thoughtworks.com%20?subject=
mailto:contact-us%40thoughtworks.com%20?subject=
http://thoughtworks.com

	Contents
	Introduction
	Defining your needs
	Evaluating with a cross-functional approach
	Covering your technical needs
	Vendor assessment
	Proving concepts and value
	Conclusion
	About the authors

