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Preface

It was 9:25 p.m. and the soft glow of Dana’s computer screen glared into her bleary eyes as
she logged on to continue fixing an error, red pipelines and countless open tabs filling her
screen. She had eaten dinner and finished her everyday chores, but her mind wasn’t really
there—it was in a few places, in fact.
It had been an intense day, scattered between long training runs and back-and-forth mes‐
sages with the support team on customer queries about why the model denied their loan
applications. She was in and out of the depths of debugging why the model’s performance
just wouldn’t improve, despite various tweaks to the data and model architecture. The
occasional stack traces didn’t help, either.
She was tired, and the tangled heap of uncommitted code changes sitting on her local
machine added to the latent cognitive load that was bubbling over in her head. But she
had to keep going—her team had already missed the initial release date by four months
and the executives’ impatience was showing. What made things worse was a fear that her
job might be on the line. One in ten employees in her company—several of whom she
knew—were laid off in the latest round of cost-cutting measures.
Everyone on her team was well-meaning and capable, but they were getting bogged down
every day in a quagmire of tedious testing and anxiety-laden production deployments,
stepping through illegible and brittle code. After a few months of toil, they were all worn
down. She and her team were doing their level best, but sometimes it felt like they were
building a house without a foundation—things kept falling apart. She didn’t know it yet,
but they weren’t set up for success.

Many individuals begin their machine learning (ML) journey with great momentum
and gain confidence quickly, thanks to the growing ecosystem of tools, techniques,
tutorials, and community of ML practitioners. However, when we graduate beyond
the controlled environment of tutorial notebooks and Kaggle competitions into the
space of real-world problems, messy data, interconnected systems, and people with
varied objectives, many of us inevitably struggle to realize the potential of ML in
practice.

When we peel back the glamorous claims of data science being the sexiest job, we
often see ML practitioners mired in burdensome manual work, complex and brittle
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codebases, and frustration from Sisyphean ML experiments that never see the light of
day in production.

In 2019, it was reported that 87% of data science projects never make it to production
(https://oreil.ly/xy9Xi). According to Algorithmia’s 2021 Enterprise AI/ML Trends
(https://oreil.ly/HP6Qh), even among companies that have successfully deployed ML
models in production, 64% of survey respondents say it takes more than a month to
deploy a new model, an increase from 56% in 2020. Algorithmia also found that 38%
of organizations surveyed are spending more than 50% of their data scientists’ time
on model deployment.

These barriers impede—or, in some cases, even prevent—ML practitioners from
applying their expertise in ML to deliver on the value and promise of AI for custom‐
ers and businesses. But the good news is it doesn’t have to be this way. In the past
few years, we have had the privilege to work on various data and ML projects, and to
collaborate with ML practitioners from multiple industries. While there are barriers
and pains, as we have outlined above, there are also better paths, practices, and
systems of work that allow ML practitioners to reliably deliver ML-enabled products
into the hands of customers.

That’s what this book is all about. We’ll draw from our experience to distill a set of
enduring principles and practices that consistently help us to effectively deliver ML
solutions in the real world. These practices work because they’re based on taking a
holistic approach to building ML systems. They go beyond just ML to create essential
feedback loops in various subsystems (e.g., product, engineering, data, delivery pro‐
cesses) and enable teams to fail quickly and safely, experiment rapidly, and deliver
reliably.

Who This Book Is For
Whether you think you can, or you think you can’t—you’re right.

—Henry Ford

Whether you’re a ML practitioner in academia, an enterprise, a start-up, a scale-up,
or consulting, the principles and practices in this book can help you and your team
become more effective in delivering ML solutions. In line with the cross-functional
nature of ML delivery techniques that we detail in this book, we address the concerns
and aspirations of multiple roles in teams doing ML:

Data scientists and ML engineers
The job scope of a data scientist has evolved over the past few years. Instead
of purely focusing on modeling techniques and data analysis, we’re seeing
expectations (implicit or explicit) that one needs to possess the capabilities of
a full-stack data scientist (https://oreil.ly/jV7EP): data wrangling, ML engineering,
MLOps, and business case formulation, among others. This book elaborates on
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the capabilities necessary for data scientists and ML engineers to design and
deliver ML solutions in the real world.

In the past, we’ve presented the principles, practices, and hands-on exercises in
this book to data scientists, ML engineers, PhD students, software engineers,
quality analysts, and product managers, and we’ve consistently received positive
feedback. The ML practitioners we’ve worked with in the industry have said that
they benefited from improvement in feedback cycles, flow, and reliability that
comes from practices such as automated testing and refactoring. Our takeaway is
that there is a desire from the ML community to learn these skills and practices,
and this is our attempt to scale the sharing of this knowledge.

Software engineers, infrastructure and platform engineers, architects
When we run workshops on the topics we cover in this book, we often come
across software engineers, infrastructure and platform engineers, and architects
working in the ML space. While capabilities from the software world (e.g.,
infrastructure-as-code, deployment automation, automated testing) are necessary
in designing and delivering ML solutions in the real world, they are also insuffi‐
cient. To build reliable ML solutions, we need to widen the software lens and look
at other principles and practices—such as ML model tests, dual-track delivery,
continuous discovery, and ML governance—to handle challenges that are unique
to ML.

Product managers, delivery managers, engineering managers
We set ourselves up for failure if we think that we need only data scientists and
ML engineers to build an ML product. In contrast, our experience tells us that
teams are most effective when they are cross-functional and equipped with the
necessary ML, data, engineering, product, and delivery capabilities.

In this book, we elaborate on how you can apply Lean delivery practices and
systems thinking to create structures that help teams to focus on the voice of
the customer, shorten feedback loops, experiment rapidly and reliably, and iterate
toward building the right thing. As W. Edwards Deming (https://oreil.ly/eUxHc)
once said, “A bad system will beat a good person every time.” So, we share princi‐
ples and practices that will help teams create structures that optimize information
flow, reduce waste (e.g., handoffs, dependencies), and improve value.

If we’ve done our job right, this book will invite you to look closely at how things have
“always been done” in ML and in your teams, to reflect on how well they are working
for you, and to consider better alternatives. Read this book with an open mind, and—
for the engineering-focused chapters—with an open code editor. As Peter M. Senge
(https://oreil.ly/9HEwI) said in his book The Fifth Discipline (Doubleday), “Taking in
information is only distantly related to real learning. It would be nonsensical to say,
‘I just read a great book about bicycle riding—I’ve now learned that.’” We encourage
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you to try out the practices in your teams, and we hope you’ll experience firsthand
the value that they bring in real-world projects.

Approach this book with a continuous improvement mindset, not a perfectionist
mindset. There is no perfect project where everything works perfectly without chal‐
lenges. There will always be complexity and challenges (and we know a healthy
amount of challenge is essential for growth), but the practices in this book will help
you minimize accidental complexity so that you can focus on the essential complexity
of your ML solutions and on delivering value responsibly.

How This Book Is Organized
Chapter 1, “Challenges and Better Paths in Delivering ML Solutions”, is a distillation
of the entire book. We explore high-level and low-level reasons for why and how
ML projects fail. We then lay out a more reliable path for delivering value in ML
solutions by adopting Lean delivery practices across five key disciplines: product,
delivery, machine learning, engineering, and data.

In the remaining chapters, we describe practices of effective ML teams and ML
practitioners. In Part I, “Product and Delivery”, we elaborate on practices in other
subsystems that are necessary for delivering ML solutions, such as product thinking
and Lean delivery. In Part I, “Product and Delivery”, we cover practices that help ML
practitioners when implementing and delivering solutions (e.g., automated testing,
refactoring, using the code editor effectively, continuous delivery, and MLOps). In
Part I, “Product and Delivery”, we explore the dynamics that impact the effectiveness
of ML teams, such as trust, shared progress, diversity, and also engineering effective‐
ness techniques that help you build high-performing teams. We also address common
challenges that organizations face when scaling ML practices beyond one or two
teams, and share techniques on team topologies, interaction modes, and leadership to
help teams overcome these scaling challenges.

Part I: Product and Delivery
Chapter 2, “Product and Delivery Practices for ML Teams”

We discuss product discovery techniques that help us identify opportunities, test
market and technology hypotheses rapidly, and converge on viable solutions. By
starting with the most valuable problems and feasible solutions, we set ourselves
up for success during delivery. We also go through delivery practices that help
us shape, size, and sequence work to create a steady stream of value. We address
the unique challenges resulting from the experimental and high-uncertainty
nature of certain ML problems, and discuss techniques such as the dual-track
delivery model that help us learn more quickly in shorter cycles. Finally, we cover
techniques for measuring critical aspects of ML projects and share techniques for
identifying and managing project risks.
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Part II: Engineering
Chapters 3 and 4: Effective dependency management

Here, we describe principles and practices—along with a hands-on example
that you can code along with—for creating consistent, reproducible, secure, and
production-like runtime environments for running your code. When we hit the
ground running and start delivering solutions, you’ll see how the practices in this
chapter will enable you and your teammates to “check out and go” and create
consistent environments effortlessly, instead of getting trapped in dependency
hell.

Chapters 5 and 6: Automated testing for ML systems
These chapters provide you with a rubric for testing components of your ML
solution—be they software tests, model tests, or data tests. We demonstrate how
automated tests help us shorten our feedback cycles and reduce the tedious effort
of manual testing, or worse, fixing production defects that slipped through the
cracks of manual testing. We describe the limits of the software testing paradigm
on ML models, and how ML fitness functions and behavioral tests can help
us scale the automated testing of ML models. We also cover techniques for
comprehensively testing large language models (LLMs) and LLM applications.

Chapter 7, “Supercharging Your Code Editor with Simple Techniques”
We’ll show you how to configure your code editor (PyCharm or VS Code) to help
you code more effectively. After we’ve configured our IDE in a few steps, we’ll go
through a series of keyboard shortcuts that can help you to automate refactoring,
automatically detect and fix issues, and navigate your codebase without getting
lost in the weeds, among other things.

Chapter 8, “Refactoring and Technical Debt Management”
In this chapter, we draw from the wisdom of software design to help us design
readable, testable, maintainable, and evolvable code. In the spirit of “learning by
doing,” you’ll see how we can take a problematic, messy, and brittle notebook and
apply refactoring techniques to iteratively improve our codebase to a modular,
tested, and readable state. You’ll also learn techniques that can help you and your
team make technical debt visible and take actions to keep it at a healthy level.

Chapter 9, “MLOps and Continuous Delivery for ML (CD4ML)”
We’ll articulate an expansive view of what MLOps and CI/CD (continuous
integration and continuous delivery) really entails. Spoiler alert: It’s more than
automating model deployments and defining CI pipelines. We lay out a blueprint
for the unique shape of CI/CD for ML projects and walk through how you can
set up each component in this blueprint to create reliable ML solutions and free
up your teammates from repetitive and undifferentiated labor so that they can
focus on other higher-value problems. We’ll also look at how CD4ML serves as a
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risk-control mechanism to help teams uphold standards for ML governance and
Responsible AI.

Part III: Teams
Chapter 10, “Building Blocks of Effective ML Teams”

In this chapter, we go beyond the mechanics to understand the interpersonal
factors that enable good practices in effective teams. We’ll describe principles and
practices that help create a safe, human-centric, and growth-oriented team. We’ll
examine topics like trust, communication, shared goals, purposeful progress, and
diversity in teams. We’ll share some antipatterns to watch for and some tactics
that you can use to nurture a culture of collaboration, effective delivery, and
learning.

Chapter 11, “Effective ML Organizations”
This chapter introduces various shapes for ML teams and addresses the common
challenges that organizations face when scaling their ML practice to multiple
teams. We draw from and adapt strategies discussed in Team Topologies (IT
Revolution Press) and outline unique structures, principles, and practices that
help teams find a balance between flow of work and concentrated expertise,
collaboration, and autonomy. We evaluate the benefits and limits of these struc‐
tures and offer guidance for their evolution to meet the organization’s needs. We
conclude by discussing the importance of intentional leadership in shaping agile,
responsive ML organizations.

Additional Thoughts
We’d like to touch on four things before we wrap up the Preface.

First, we want to acknowledge that ML is more than just supervised learning. We
can also solve data-intensive (and even data-poor) problems using other optimization
techniques (e.g., reinforcement learning [https://oreil.ly/7PjY6], operations research
[https://oreil.ly/ZezrC], simulation [https://oreil.ly/UVhfB]). In addition, ML is not a
silver bullet and some problems can be solved without ML. Even though we’ve chosen
a supervised learning problem (loan default prediction) as an anchoring example in
the code samples throughout the book, the principles and practices are useful beyond
supervised learning. For example, the chapters on automated testing, dependency
management, and code editor productivity are useful even in reinforcement learning.
The product and delivery practices outlined in Chapter 2 are useful for exploratory
and delivery phases of any product or problem space.

Second, as Generative AI and LLMs entered the public consciousness and product
roadmaps of many organizations, we and our colleagues have had the opportunity
to work with organizations to ideate, shape, and deliver products that leverage
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Generative AI. While LLMs have led to a paradigm shift in how we steer or constrain
models toward their desired functionality, the fundamentals of Lean product delivery
and engineering haven’t changed. In fact, the fundamental tools and techniques
in this book have helped us to test assumptions early, iterate quickly, and deliver
reliably—thereby maintaining agility and reliability even when dealing with the com‐
plexities inherent in Generative AI and LLMs.

Third, on the role of culture: ML effectiveness and the practices in this book are
not—and cannot be—a solo effort. That’s why we’ve titled the book Effective Machine
Learning Teams. You can’t be the only person writing tests, for instance. In organi‐
zations that we’ve worked with, individuals become most effective when there is a
cultural alignment (within the team, department, and even organization) on these
Lean and Agile practices. This doesn’t mean that you need to boil the ocean with the
entire organization; it’s just not enough to go it alone. As Steve Jobs once said, “Great
things in business are never done by one person. They’re done by a team of people.”

Finally, this book is not about productivity (how to ship as many features, stories,
or code as possible), nor is it about efficiency (how to ship features, stories, or code
at the fastest possible rate). Rather, it’s about effectiveness—how to build the right
product rapidly, reliably, and responsibly. This book is about finding balance through
movement and moving in effective ways.

The principles and practices in this book have consistently helped us to successfully
deliver ML solutions, and we are confident that they will do the same for you.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Used to call attention to snippets of interest in code blocks.

This element signifies a general note.
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This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at:

• https://github.com/davified/loan-default-prediction
• https://github.com/davified/ide-productivity
• https://github.com/davified/refactoring-exercise

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Effective Machine Learn‐
ing Teams by David Tan, Ada Leung, and David Colls (O’Reilly). Copyright 2024
David Tan Rui Guan, Ada Leung Wing Man, and David Colls, 978-1-098-14463-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
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platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/effective-ml-teams.
For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://youtube.com/oreillymedia
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Thank you Nhung for being so patient and supportive through the late nights that I
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I see something, Jacob and Jonas—a tree! Stay curious always.

Special mention to Jeffrey Lau—your mentoring and duck noodles haven’t gone to
waste.

Thank you to colleagues at Thoughtworks past and present who have taught me so
much about the beauty of asking questions and showing me that it’s OK to tread
new paths. I tried to name you all, but the list will get too long. You know who you
are—a big thank you for being candid, kind, and just plain good at what you do.
Special thanks to Sue Visic, Dave Colls, and Peter Barnes for your encouragement
and support in writing this book.

Neal Ford: When I reached out to ask some logistical questions about writing a book,
you went above and beyond to share your writing process, how to test ideas, and
introduced me to Stephen King’s and Annie Dillard’s ideas on writing. You didn’t
have to but you did. Thank you for being a multiplier.

It almost goes without saying, but a massive thanks to my coconspirators Ada and
Dave. You’ve elevated the quality and breadth of this book beyond what I could’ve
imagined, and I’m excited to see this guidebook help ML teams and practitioners
through our collective experience.

From Ada Leung
I’d like to thank my partner, friends, and family. You know who you are. Your
endless encouragement and admiration that I actually coauthored a book (Yeah, I
know right?!) reminds me of how cool it is to belong among incredibly smart and
impressive technologists.

I’d like to thank my Thoughtworks colleagues I’ve met along the way, have been
inspired by from afar, and have been fortunate enough to be mentored by—your
passion and generosity toward knowledge sharing has set the bar high for what
good looks like. There isn’t a more fitting word to describe this community than the
philosophy of Ubuntu: I am because we are.

Finally, to my coauthors David and Dave: thank you for your unwavering support
throughout this journey. From sharing our ideas and discovering the breadth and
overlap of our collective knowledge, I’m reminded of how much I value teamwork
and camaraderie. It’s been a real joy and privilege.
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From David Colls
I’d like to thank my family for putting up with a husband and father writing, review‐
ing, and researching content for a few months straight, on weekends, during movie
nights, and on the basketball sidelines.

I’d like to thank the many Thoughtworks colleagues around the world who have gone
before us in writing books and creating transformative perspectives on technology,
stoking our determination to do the same, and showing us what good looks like.
Closer to home, I’d like to thank all the Australian Thoughtworkers I’ve worked
alongside over more than a decade for broadening my perspectives and enriching me
professionally and as a human being.

I’d especially like to thank all those members of the Thoughtworks Australia Data
& AI practice who I’ve had the privilege to work with as we built something new
together—there’s a little bit of each of you in this book. I’d also like to thank our
clients for the trust they place in us to develop new approaches to their biggest
opportunities and challenges.

Finally, I’d like to thank my coauthors David and Ada for their expertise and insight,
feedback on my ideas, and structured approach to distilling and sharing our knowl‐
edge in this book. It has been a pleasure working with you.
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