O'REILLY"

Infrastructure
as Code

Designing and Delivering Dynamic Systems
for the Cloud Age

- A A\
¥4] / : : 1 L U‘&
IR LR RE LSS

Chapter

,;"r:.a,ﬂi:unnlliiﬁ(-" <
."‘ \
\

Kief Morris

THIRD EDITION

Infrastructure as Code
Designing and Delivering Dynamic
Systems for the Cloud Age

This excerpt contains Chapter 1. The complete book is
available on the O’Reilly Online Learning Platform and
through other retailers.

Kief Morris

O'REILLY"

Infrastructure as Code
by Kief Morris

Copyright © 2025 Kief Morris. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins Indexer: Potomac Indexing, LLC
Development Editor: Jill Leonard Interior Designer: David Futato
Production Editor: Beth Kelly Cover Designer: Karen Montgomery
Copyeditor: Sharon Wilkey lllustrator: Kate Dullea

Proofreader: Kim Cofer

June 2016: First Edition
December 2020: Second Edition
March 2025: Third Edition

Revision History for the Third Edition
2025-03-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098150358 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Infrastructure as Code, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’'Reilly and Thoughtworks. See our statement of editorial
independence.

978-1-098-15035-8
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098150358
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Infrastructure as Code
From the Iron Age to the Cloud Age
Cloud Age Approaches to Change Management
The Path to the Cloud Age
Strategic Goals and Infrastructure as Code
System Architecture Goals and Infrastructure as Code
Use Infrastructure as Code to Optimize for Change
Myth: Infrastructure Doesn’t Change Very Often
Myth: We Can Build the Infrastructure First and Automate It Later
Myth: Speed and Quality Are Trade-Offs
The Four Key Metrics
Core Practices for Infrastructure as Code
Define Everything as Code
Continually Test and Deliver All Work in Progress
Build Small, Simple Pieces That Can Change Independently
Conclusion

CHAPTER1
What Is Infrastructure as Code?

If you work in a team that builds and runs IT infrastructure, cloud and infrastructure
automation tools should help you deliver more value in less time and do it more reli-
ably. In practice, however, they drive ever-increasing size, complexity, and diversity of
things to manage.

These technologies have become especially relevant over the past decade as organi-
zations have brought digital technology deeper into the core of what they do. Previ-
ously, many leaders had treated the IT function as an unfortunate distraction that
should be outsourced and ignored. But digitally sophisticated competitors, users, and
staff drove more processes and products online, creating entirely new categories of
services like streaming media, social media, and machine learning.

The cloud and automation have helped by making it far easier for organizations to
add and change digital services. However, many teams have struggled to manage
the proliferation of cloud-hosted products, applications, services, and platforms. As
one of my clients told me, “Moving from the data center, where we were limited to
the capacity of our hardware, to the cloud, where capacity is effectively unlimited,
knocked down the walls that kept our tire fire contained.

Using code to define and build infrastructure creates the opportunity to bring a wide
set of tools, practices, and patterns to bear on the problem of designing and imple-
menting systems. This book explores ways of doing this. I describe the problems that
Infrastructure as Code can help with, the challenges of various approaches to using
infrastructure code, and patterns and practices that have proven useful.

1 According to Wikipedia, a tire fire has two forms: “Fast-burning events, leading to almost immediate loss of
control, and slow-burning pyrolysis which can continue for over a decade” Both of these seem relevant to
digital infrastructure.

https://oreil.ly/IkDu_

This chapter provides context for the rest of the book. It starts by defining Infra-
structure as Code. Next, it discusses the trends affecting the spread and evolution
of using code to manage infrastructure and how infrastructure architecture fits an
organization’s needs and technology strategy.

The central theme of this book is the need to build infrastructure that can continually
evolve to meet changing requirements.

In the past few years, the terms “infrastructure delivery lifecycle” and “day two
requirements” have gained popularity among vendors. In other words, it’s not enough
to build infrastructure; we need to be able to continually fix, update, upgrade,
expand, reshape, and adapt it. The second half of this chapter expands on this thesis,
including common myths people believe about infrastructure in general and cloud
infrastructure in particular.

The context provided in this chapter shapes everything else in this book. If you've
been working with infrastructure code and the cloud for a while, you’ll probably skim
over it, hopefully nodding your head. If youre new to them, this content may help
clarify the approaches advocated throughout the rest of the book.

Infrastructure as Code

A literal definition of Infrastructure as Code is the practice of provisioning and
managing infrastructure using code rather than command-line tools or ClickOps
GUIs.

Interactive infrastructure management doesn’t help us do things consistently or
repeatably since we decide how to implement each change as we work. This leads
to inconsistent implementations and mistakes. Chapter 2 talks about some of the
principles and goals that using code helps to achieve, most of which are nearly
impossible with interactive infrastructure management.

No-code automation tools typically provide a GUI to define the infrastructure we
want—for example, by choosing options from drop-down menus. These tools usually
have ways to save configurations that we build (for example, creating templates),
which means we can build multiple instances consistently. They may also have ways
to update existing infrastructure to maintain consistency over time.

However, no-code tools store the definitions for infrastructure in closed systems
rather than in open files. With these systems, we can’t exploit the vast ecosystem of
tools for working with code, such as source control repositories, code scanning tools,
automated testing, and automated delivery, to name just a few.

Chapter 4 details infrastructure coding tools and languages.

2 | Chapter 1: What Is Infrastructure as Code?

No-code and low-code infrastructure automation may have a place in building and
managing infrastructure but generally work best at higher levels of abstraction, such
as assembling components. The components themselves, however, are likely to be
built using code. Read more about infrastructure componentization in Chapter 6.

Infrastructure as Code is about more than the mechanics of how infrastructure is
defined and provisioned. It is about applying the principles, practices, and tools of
software engineering to infrastructure.

This book explains how to use modern software development practices such as test-
driven development (TDD), continuous integration (CI), and continuous delivery
(CD) to make changing infrastructure fast and safe. It also describes how software
design principles help create resilient, well-maintained infrastructure. These practices
and design approaches reinforce one another. Well-designed infrastructure is easier
to test and deliver. Automated testing and delivery drive simpler and cleaner designs.

From the Iron Age to the Cloud Age

Modern technologies like the cloud and virtualization, and tools to automate infra-
structure, deployment, and testing can help us carry out tasks much more quickly
than we can by managing physical hardware and manually typing commands or
clicking on GUISs, as seen in Table 1-1. However, as many organizations have discov-
ered, adopting these tools doesn’t automatically bring visible benefits.

Table 1-1. Technology changes in the Cloud Age

Iron Age Cloud Age

Types of resources Physical hardware Virtualized resources
Provisioning Takes days or weeks Takes minutes or seconds
Processes Manual (runbooks) Automated (code)

The ability to provision new infrastructure in moments and to set up systems that
provision it without direct human involvement can lead to uncontrolled sprawl.
If we don’t have good processes for ensuring that systems are well managed and
maintained, the unbounded nature of cloud technology leads to spiraling technical

debt.

Cloud Age Approaches to Change Management

Many organizations try to control the potential chaos by using older, traditional IT
governance models. These models focus on throttling the speed of change, requiring
decisions on implementation details before work begins, high-effort process gates,
and strictly siloed responsibilities for teams.

From the Iron Age to the Cloud Age | 3

https://oreil.ly/3AqHB
https://oreil.ly/3AqHB

However, these models were designed for the Iron Age, when we changed physical
infrastructure manually. Changes were slow and expensive, making it difficult to
correct mistakes. If a task would take two weeks, and a mistake could take a week
or more to fix afterward, then it seemed reasonable to add an extra week up front
in hopes of preventing a mistake from happening. With cloud technology, these
processes add weeks to tasks that may take less than an hour to implement and a few
minutes to correct, destroying the advantages of the technology.

Moreover, research suggests that these heavyweight processes were never very effec-
tive in preventing errors in the first place.”> They can make things worse by dividing
knowledge and accountability across silos and long periods.

Fortunately, the emergence of Cloud Age technologies has coincided with the growth
of Cloud Age approaches to work, including Lean, Agile, and DevOps. These
approaches encourage close collaboration across roles, short feedback loops with
users, and a minimalist, quality-first approach to technical implementation. Automa-
tion fundamentally shifts thinking about change and risk, resulting in faster delivery
and higher quality (see Table 1-2).

Table 1-2. Ways of working in the Iron Age and the Cloud Age

Iron Age Cloud Age

Cost of change High Low

Changes are Risks to be minimized Essential to improve quality

A change of plan means Failure of planning Success in learning and improving
Optimize to Reduce opportunities to fail Maximize speed of improvement
Delivery approach Large batches, test at the end Small changes, test continually
Architectures Monolithic (fewer, larger moving parts) ~Microservices (more, smaller parts)

This ability to make changes more quickly to improve quality starts with cloud
technology, which creates the capability to provision and change infrastructure on
demand. Automation gives us a way to exploit this capability. We can automate not
only to deploy a change quickly, but also to validate the change for correctness,
quality, and governance. And by defining changes as code, we create a detailed
history that can be used to audit, troubleshoot, and reverse changes.

So another definition of Infrastructure as Code is a Cloud Age approach to automat-
ing cloud infrastructure in a way that embraces continual change to achieve high
reliability and quality.

2 The 2019 Accelerate State of DevOps Report specifically researched the effectiveness of governance approaches,
and includes a discussion of findings on pages 48-52.

4 | Chapter 1: What s Infrastructure as Code?

https://oreil.ly/gdOVy

DevOps and Infrastructure as Code

People define DevOps in different ways. The fundamental idea of
DevOps is collaboration across all the people involved in building
and running software. This includes not only developers and oper-
ations people, but also testers, security specialists, architects, and
even managers. There is no one way to implement DevOps.

Many people look at DevOps and notice only the technology that
people use to collaborate across software delivery. All too often
this leads to reducing DevOps to tooling. 've seen DevOps defined
as using an application deployment tool (usually Jenkins), often
with a separate DevOps team that adds an extra barrier across the
software delivery path, which contradicts the meaning of the term.

DevOps is, first and foremost, about people, culture, and ways of
working. Tools and practices like Infrastructure as Code are valua-
ble to the extent that they bridge gaps and improve collaboration,
but they aren’t enough.

The Path to the Cloud Age

DevOps, Infrastructure as Code (the name, at least), and the cloud all emerged
between 2005 and 2010. In the early years, these were largely experimental, dismissed
by larger organizations that considered themselves too serious to need to change the
way they approached IT. The first edition of this book, published in 2016, included
arguments for why readers should consider using the cloud even for critical domains
like finance and health care.

The mid-2010s could be considered the Shadow Age of IT. The cloud, DevOps, con-
tinuous delivery, and Infrastructure as Code were mainly used by startups or skunk-
works digital departments of larger organizations. These departments were usually
set up outside the remit of the existing organization, partly to protect them from
the main organization’s cultural norms and formal policies, which people sometimes
call “antibodies” In some cases, they were used quietly within existing departments
without involving the IT department, as shadow IT.

The mantra of the Shadow Age was “move fast and break things”® People saw casting
aside the shackles of Iron Age governance as the key to explosive growth. In the view
of digital hipsters, it was time to leave the crusty old-timers to their change advisory
board (CAB) meetings, mainframes, and bankruptcies (“Say hello to Blockbuster and
Kodak!”).

3 Meta (then Facebook) CEO Mark Zuckerberg said, “Unless you are breaking stuff, you are not moving fast
enough”

From the Iron Age to the Cloud Age | 5

https://oreil.ly/dFlcz
https://oreil.ly/9j-Ko
https://oreil.ly/anZUc

Cavalier attitudes toward governance made it easier for traditionalists to dismiss the
newer technologies and related ideas as irresponsible and doomed to failure. At the
same time, new technology enthusiasts have often ignored the real concerns and risks
underpinning what may seem like legacy mindsets.

We need to learn how to leverage newer technologies and ways of working to address
fundamental issues rather than either rejecting the new ways or dismissing the issues
as legacy. The progression of cloud adoption is shown in Figure 1-1.

Iron Age Shadow IT Scale and sprawl Cloud Age
o IT IT @ .
S I R
Grow fast by accumulating Zﬂ:g{f{; \;3’[;1;
" technical dept, proliferation
gﬁggﬁ):?;ﬁggd of platforms, and tech less waste

Figure 1-1. The path from the Iron Age to the Cloud Age

As the decade wore on and digital businesses overtook slower businesses in more and
more markets, digital technologies and approaches were pulled closer to the center
of even older businesses. Digital departments were assimilated, and boards asked
for strategies to migrate core business systems into the cloud. This trend accelerated
when the COVID-19 pandemic led to a dramatic rise in consumers and workers
moving to online services. Many organizations found that their digital services were
not ready for the unexpected level of demand they faced. As a result, they increased
their investment and efforts in cloud technologies.

This period when cloud technology has been shifting from the periphery of business
to the center can be called the Age of Sprawl. Although breaking things had gone
out of fashion, moving fast was still the priority. As a result of the haste to adopt
new technologies and practices, larger organizations have seen a proliferation of
initiatives. Larger organizations typically have multiple, disconnected teams building
platforms using various technologies, multiple cloud vendors, and varying levels of
maturity and quality.

6 | Chapter1: What s Infrastructure as Code?

The variety of options available for building digital infrastructure and platforms*
and the rapid pace of change within them have made it difficult to keep up to date.
Platforms built on the latest technology two years ago may already be legacy.

The drivers that led to this sprawl are real. Organizations must evolve rapidly to
survive and prosper in the modern digital economy. However, as I write this in late
2024, the economic landscape has changed, meaning most organizations need to be
more careful with investments. Not only do we need to be choosy about which new
systems and initiatives to invest in, but we also need to consider how to manage
the cost of running and evolving what we already have in place. The need to grow,
improve, and exploit emerging technologies has not disappeared, so the next age is
not simply about cutting back and staying in place. Instead, organizations need to
find sustainable ways to grow and evolve. Call it the Age of Sustainable Growth.

What does this have to do with Infrastructure as Code? Those involved in designing
and building the foundational layers of our organizations’ business systems must
be aware of the strategic drivers those foundations must support. A key driver is
rationalizing systems to sustain growth with less waste. In the years to come, our
organizations’ needs will shift again.

The Future Is Not Evenly Distributed

The tidy linear narrative described here as “the path to the Cloud
Age” is, as with any tidy linear narrative, simplistic. Many people
and organizations have experienced the trends it describes. How-
ever, none of its “ages” have ended entirely, and many drivers of
different ways of thinking and working are still valid. It's essential
to recognize that contexts differ. A Silicon Valley startup has differ-
ent needs and constraints than a transnational financial institution.
New technologies and methodologies create opportunities to han-
dle old risks and new opportunities differently. The path to the
Cloud Age is uneven and far from over. Understanding how it has
unfolded so far can help us navigate what comes next.

Strategic Goals and Infrastructure as Code

Figure 1-2 shows the gap between organizational strategy and infrastructure strategy.
Customer value should drive the organization’s strategy, which then drives strategy to
infrastructure via product and technology strategy. Each strategic layer supports the
layers above it.

4 The Cloud Native Landscape diagram is a popular one for illustrating how many products, tools, and projects
are available for building platforms. One of my favorite memes extends this into a CNCF conspiracy chart.

Strategic Goals and Infrastructure as Code | 7

https://oreil.ly/E27ZB
https://oreil.ly/6tE-6

Value to customer

Organizational strategy

>

Drives Product strategy Supports

Technology strategy

<
N
I_J_d

Infrastructure strategy

Figure 1-2. Customer value driving strategy down to infrastructure

When talking to organizations about their strategy for cloud infrastructure, I'm often
struck by the gap between people responsible for the infrastructure and those respon-
sible for organizational strategy. Engineering people are puzzled when I ask questions
about the product and commercial strategy. Organizational leaders are dismissive of
the need to spend time planning infrastructure capability, assuming that selecting a
cloud vendor is the end of that story. Even when their infrastructure architecture
creates problems with growth, stability, or security, the instinct is to demand a quick
fix and move on.

The gap is not one-sided. Engineering folks tend to focus on implementing the
solutions that seem obvious to them, sometimes assuming it doesn't matter what will
run on it. One example of how this turns out is a company whose engineers built a
multiregion cloud hosting solution with iron-clad separation between regions. The
team wanted to segregate user data to avoid conflicts with various privacy regulations,
so this requirement was baked deep into the architecture of their systems.

However, because neither the product nor engineering teams believed they needed
close communication during development, the service was nearly ready for produc-
tion rollout when it surfaced that the commercial strategy assumed that users would
be able to use their accounts while traveling and working in different countries. It
took considerable effort, expense, and delay to rearchitect the system to ensure that
each region’s privacy laws could be respected while giving users international roaming
access.

So, although infrastructure can seem distant from strategic goals discussed in the
boardroom, it’s essential to ensure that everyone, from strategic leaders to engineer-
ing teams, understands how they are related. Table 1-3 describes a few common
organizational concerns where infrastructure architecture can make a considerable
difference in either enabling success or creating drag.

8 | (Chapter 1: What s Infrastructure as Code?

Table 1-3. How Infrastructure as Code is relevant to an organization’s strategic goals

Business goal Infrastructure capabilities Measures of success

to support
Deliver increasing value to customers Provide infrastructure needed to High performance on the four key metrics
quickly and reliably through new develop, test, and host new and (“The Four Key Metrics” on page 16). Low
products and features. existing digital services. effort and dependency on platform and

infrastructure teams for common software
delivery use cases.

Grow revenues by adding new Add hosting for new regions, Time to add new hosting. Incremental cost of
markets, products, and customers. instances of our products, and ownership for each region, instance, product,
capacity. and user.
Provide reliable, performant Handle scaling, recovery, Availability and performance metrics.
services to users. monitoring, and performance
management services.

Throughout this book, I illustrate concepts using the fictitious company FoodSpin, an
online restaurant menu service. The following sidebar provides a high-level view of
the company’s strategy.

Introduction to FoodSpin and Its Strategy

FoodSpin is a digital service that allows restaurants to provide searchable menus for
customers to order and pay for their meals. The main service is multitenancy, with
multiple restaurants’ menus hosted on a shared instance of the company’s software.
It runs separate instances in several countries, including the US, UK, Germany,
and South Korea. The company also partners with large food chains, providing a
dedicated, single-tenancy hosted service with customized features.

The main FoodSpin systems are Jakarta EE applications running on JBoss on virtual
servers in the cloud. Some services have been rebuilt more recently as containerized
applications, so their workloads are a mix of servers and containers with some
serverless code.

Until recently, growth was the FoodSpin board’s primary goal. The board’s strategy
was to spend to grow and worry about efficiency later. “Later” has arrived. The
economic situation has changed, and the cost of running and developing FoodSpin’s
existing systems is unsustainable.

However, the company can’t afford to miss opportunities to grow market share and
enter new markets. So, it needs to find efficient ways to grow its footprint. An added
factor is that some of the systems in place now have issues with performance and
reliability, and these need to be addressed to rebuild the confidence of customers and
partners.

Strategic Goals and Infrastructure as Code | 9

Key organizational goals for FoodSpin include the following:

« Grow its customer base, revenue, and profits by bringing new services to market.

o Grow its customer base, revenue, and profits by expanding services to new
regions.

o Retain and grow its customer base by continually improving existing services.

« Improve profitability and service quality by rationalizing its systems.

System Architecture Goals and Infrastructure as Code

An organization’s strategic goals typically filter down into goals for services
and technology, which can cross teams such as product development, software
engineering, platform engineering, and IT operations. These groups will have their
own goals, objectives, and initiatives that infrastructure architecture needs to support.

Figure 1-3 shows an example of how organizational goals, such as those described
in “Introduction to FoodSpin and Its Strategy” on page 9, drive goals for an engi-
neering organization, which in turn drive goals for the infrastructure architecture.
Infrastructure as Code can ensure that environments are consistent across the path to
production and multiple production instances. Read about types of environments in
Chapter 12.

r

Grow value Improve value
i Reduce
Eturzlt"eess ‘ @ Improve and incremental
8Y Bring new services| [Expand tonew evolve existing cost of regions
to market regions services and services

\ !

Supports /

Streamline the

Improve software Integrate Rationalize and
Te¢t:hr;0|0gy delivery F;E)?/cigsosnfi%r operational consolidate
strategy effectiveness P e g quality control systems
Supports
Infrastructure Environment Self-service AL:L%?\?:rg;ed St%?;jt?g?:ffd
strategy consistency provisioning testing products

Figure 1-3. Example of infrastructure goals driven by organizational goals

10 | Chapter 1: What Is Infrastructure as Code?

Consistency across environments supports the engineering goal of improving soft-
ware delivery effectiveness by ensuring that test environments accurately reflect
production environments. Consistency also reduces the customization needed to
provision new environments for adding products or expanding into new regions.

When infrastructure is built consistently, it’s easier to automate operational capabili-
ties like security, compliance, and recovery. Less variation among environments also
makes it easier to consolidate and simplify overall system architecture. So this one
goal for infrastructure architecture can support multiple higher-level goals for the
organization.

Use Infrastructure as Code to Optimize for Change

One of the most fundamental reasons for adopting Infrastructure as Code, although
not universally understood in our industry, is to optimize the process for making
changes to IT systems. If an organization fails to see benefits from adopting the cloud
and automation, the most common cause is not approaching them as enablers for
change.

Operations teams know that the biggest risk to a production system is changing
it.> The Iron Age approach to managing this risk, as mentioned earlier, is to add
heavyweight processes to make changes more slowly and carefully. However, adding
barriers to making changes impedes fixing and improving the quality of a system.

Research from the Accelerate State of DevOps Report backs this up. Making changes
frequently and reliably is correlated to organizational success.®

Rather than resisting commercial pressures to make changes frequently and quickly,
modern methods of change management, from Lean to Agile, lean into the idea that
this is a good thing. The ability to deliver changes both rapidly and reliably is the
secret sauce for resilient, highly available, valuable systems in the digital age.

People raise several common objections when considering change as a goal for
automation. These come from misunderstandings of how to use automation.

Myth: Infrastructure Doesn’t Change Very Often

We want to think that we build an environment, and then it’s done. In this view, we
won’t make many changes, so automating the process of making changes, especially
testing, is a waste of time.

5 According to Gene Kim et al. in The Visible Ops Handbook (IT Process Institute), changes cause 80% of
unplanned outages.

6 Reports from the Accelerate research are available in the annual State of DevOps Report and in the book
Accelerate by Dr. Nicole Forsgren et al. (IT Revolution Press).

Use Infrastructure as Code to Optimize for Change | 11

https://dora.dev

In reality, few systems stop changing before they are retired. Some people assume
that a fast pace of change is temporary. Others create heavyweight change-request
processes designed to discourage people from asking for changes. However, high-
performing teams handle a continual stream of changes quickly and effectively.
Consider these common examples of infrastructure changes:

o An essential new application feature requires a new data processing service.

o A new application feature needs the messaging service upgraded to a newer
version.

o Profiling shows that the current application deployment architecture is limiting
performance. We can address this by redeploying the applications across mul-
tiple clusters globally, which requires changing cloud accounts and network
architecture.

o We discover a security vulnerability in our container cluster software. We must
patch clusters across multiple regions and in our development and testing
systems.

» The API gateway experiences intermittent failures. To diagnose and resolve the
problem, we need to make a series of configuration changes.

» We find a configuration change that improves the performance of the database.

An infrastructure team with heavyweight change processes accumulates a backlog
of outdated, unpatched systems, hindering the organization’s ability to adapt to chal-
lenges and opportunities.

Myth: We Can Build the Infrastructure First and Automate It Later

Getting started with infrastructure automation is a steep curve. Setting up the tools,
services, and working practices to automate infrastructure delivery is loads of work,
especially when migrating simultaneously to a new cloud platform or technology
stack. The value of this work is hard to demonstrate before starting to build and
deploy services with it. Even then, the value may not be apparent to people who don’t
work directly with the infrastructure.

Stakeholders may pressure infrastructure teams to build new cloud-hosted systems by
hand, thinking it will be quicker and can be automated later. However, automating
afterward is impractical for several reasons:

» Automation can enable a new system to be delivered more quickly. Automating
after the system is in place sacrifices this opportunity.

+ Automation makes it easier to write automated tests for what we build. It also
facilitates fixing and rebuilding when we find problems quickly. Doing this as
part of the build process helps us build a more robust infrastructure.

12 | Chapter 1: What Is Infrastructure as Code?

 Automation is integral to a system’s design and implementation, so adding auto-
mation to a system built without it involves significant rework.

Cloud infrastructure built without automation becomes a write-off sooner than wed
like. The cost of manually maintaining and fixing the system can escalate quickly.
If the service is successful, stakeholders will prioritize expanding and adding new
features over going back to add automation.

The same is true when building a system as an experiment. Once a proof of concept
is up and running, people want to move on to the next thing rather than go back
and build it right. And in truth, automation should be a part of the experiment. If we
intend to use automation to manage our infrastructure, we need to understand how it
will work, so it should be part of our proof of concept.

The solution is to build the system incrementally, automating as we go. The trick is
to start with the bare minimum of automation needed to deliver the first increment
of the system rather than building a complete automation system first. Starting
with ready-made solutions can help, even if we intend to adopt something more
sophisticated later.

For example, a team wanted to use an advanced, packaged secrets management
solution but knew it would take several weeks to implement it properly. The team
members chose to use the cloud platform’s built-in secrets storage service initially,
so the development team could start working to get the first increment of business
functionality in place. They deployed the packaged solution later while the developers
were working, rather than making them wait.

Myth: Speed and Quality Are Trade-Offs

It’s natural to think that we can move fast only by skimping on quality and that we
can get quality only by moving slowly. Many people see this as a continuum, as shown
in Figure 1-4.

Reliable Fast

Slow Unreliable

Figure 1-4. The idea that speed and quality are opposite ends of a spectrum is a false
dichotomy

Use Infrastructure as Code to Optimize for Change | 13

However, the Accelerate research shows otherwise:”

These results demonstrate that there is no trade-off between improving performance
and achieving higher levels of stability and quality. Rather, high performers do better
at all of these measures. This is precisely what the Agile and Lean movements predict,
but much dogma in our industry still rests on the false assumption that moving
faster means trading off against other performance goals, rather than enabling and
reinforcing them.

—Dir. Nicole Forsgren, Accelerate

In short, organizations can’t choose between being good at change or being good at
stability. They tend to either be good at both or bad at both.

Here’s a fundamental truth of the Cloud Age: Stability comes from making changes.
The longer it takes to make a change, the slower we are to fix things. The flow of
changes needed, like those listed previously to rebut the myth that infrastructure
doesn't change often, will outpace the capacity to make them. Systems are left
unpatched and with quick-fix workarounds to “known issues”

If our systems aren't fully patched, they are not stable; they are vulnerable. If we can’t
fix issues as soon as we discover them, the system is not stable. If we can’t recover
from failure quickly, the system is not stable. If making changes involves considerable
downtime, the system is not stable. If changes frequently fail, the system is not stable.

Quality and speed should be seen as a quadrant rather than a continuum, as shown in
Figure 1-5.

. . Prioritize Prioritize speed
High Quality quality over speed and quality
Low Qualit Fragi Prioritize speed
y a5 = over quality
Slow Fast

Figure 1-5. Speed and quality are not trade-offs and can be combined

7 Accelerate by Dr. Nicole Forsgren et al. Also see the Accelerate State of DevOps Report.

14 | Chapter 1: What Is Infrastructure as Code?

https://oreil.ly/ysk9n

This quadrant model shows how trying to choose between speed and quality leads to
doing poorly at both:

Lower-right quadrant: prioritize speed over quality

This is the “move fast and break things” philosophy. Teams that optimize for
speed and sacrifice quality build messy, fragile systems. They slide into the lower-
left quadrant because their shoddy systems slow them down. A common pattern
for startups is seeing development slow after a year or two, leading founders to
despair that their team has lost their mojo. Simple changes that the team would
have whipped out quickly in the old days now take days or weeks because the
system is a tangled mess. This is a consequence of a system built in a rush,
without treating quality as a priority.

Upper-left quadrant: prioritize quality over speed

Also known as “We’re doing serious and important things, so we have to do
things properly” Then deadline pressures drive “workarounds” Heavyweight
processes create barriers to improvement, so technical debt grows along with
lists of “known issues” These teams slump into the lower-left quadrant. They
end up with low-quality systems because improving them is too hard. They add
more processes in response to failures. These processes make it harder to make
improvements and increase fragility and risk. This leads to more failures and
more process. Many people working in organizations that work this way assume
this is normal, especially those who work in risk-sensitive industries.®

The upper-right quadrant is the goal of modern approaches like Lean, Agile, and
DevOps. Being able to move quickly while also maintaining a high level of quality
may seem like a fantasy. However, the Accelerate research proves that many teams do
achieve this. So this quadrant is where high performers are found.

Antifragility

Nassim Nicholas Taleb coined the term “antifragile” in his book
of the same title to describe systems that actually grow stronger
when stressed. Taleb’s book is not IT-specific—his main focus is on
financial systems—but his ideas are relevant to IT architecture.

8 This is an example of “normalization of deviance,” which means people get used to working in ways that
increase risk. Diane Vaughan defined this term in The Challenger Launch Decision (University of Chicago
Press). It’s ironic (and scary) that so many people in industries like finance, government, and health care
consider fragile IT systems—and processes that obstruct improving them—to be normal and even desirable.

Use Infrastructure as Code to Optimize for Change | 15

The Four Key Metrics

Navigating into the high-performing quadrant is challenging. The DevOps Research
and Assessment (DORA) Accelerate team identifies four key metrics for software
delivery and operational performance that can help keep a team on track’® Its
research surveys various measures and has found that these four have the strongest
correlation to how well an organization meets its goals:

Delivery lead time
The elapsed time it takes to implement, test, and deliver changes to the produc-
tion system

Deployment frequency
How often changes are deployed to production systems

Change fail percentage
The percentage of changes that either cause an impaired service or need immedi-
ate correction, such as a rollback or emergency fix

Mean time to restore (MTTR)
The amount of time it takes to restore service after there is an unplanned outage
or impairment

The research shows that organizations that perform well against their goals—whether
that’s revenue, share price, or other criteria—also perform well against these four
metrics. The ideas in this book aim to help teams perform well on these metrics.
Three core practices for Infrastructure as Code can help achieve this.

Core Practices for Infrastructure as Code

We can build and maintain highly effective systems by using Infrastructure as Code
to deliver changes continually, quickly, and reliably. The various principles, practices,
and techniques described throughout this book can help to achieve this. Underlying
all this are a few core practices:

o Define everything as code.
o Continually test and deliver all work in progress.

o Build small, simple pieces that can be changed independently.

Each of these core practices is worth examining in more detail.

9 DORA, now part of Google, is the team behind the Accelerate State of DevOps Report I cited earlier.

16 | Chapter 1: What Is Infrastructure as Code?

https://oreil.ly/ysk9n

Define Everything as Code

Defining everything “as code” is a core practice for making changes rapidly and
reliably. There are a few reasons that this helps:

Reusability
If we define a thing as code, we can create many instances of it. We can repair
and rebuild things quickly, and other people can build identical instances of the
thing.

Consistency
Things built from code are built the same way every time. This makes system
behavior predictable, makes testing more reliable, and enables continual testing
and delivery.

Visibility
Everyone can see how the thing is built by looking at the code. People can
review the code and suggest improvements. They can learn techniques to use in
other code, gain insight to use when troubleshooting, and review and audit for
compliance.

Continually Test and Deliver All Work in Progress

Effective infrastructure teams are rigorous about testing. They use automation to
deploy and test each component of their system and integrate all the work everyone
has in progress. They test as they work rather than waiting until they’ve finished.

The idea is to build quality in rather than trying to test quality in.

One part of this practice that people often overlook is that it involves integrating
and testing all work in progress. On many teams, people work on code in separate
branches and integrate when they finish. According to the Accelerate research,
however, teams get better results when everyone integrates their work at least daily.
CI involves merging and testing everyone’s code throughout development. CD takes
this further, keeping the merged code always production-ready.

I go into more detail on how to continually test and deliver infrastructure code
throughout the chapters of Part III.

Build Small, Simple Pieces That Can Change Independently

Teams struggle when their systems are large and tightly coupled. The larger a system
is, the harder it is to change, and the easier it is to break.

The codebase of a high-performing team is visibly different from other codebases.
The system is composed of small, simple pieces. Each piece is easy to understand and

Core Practices for Infrastructure as Code | 17

has clearly defined interfaces. The team can easily change each component on its own
and can deploy and test each component in isolation.

I dig more deeply into design principles and techniques in Part II.

Conclusion

Traditional Iron Age approaches to software and system design were based on the
belief that, if we are sufficiently skilled, knowledgeable, and diligent, we can come
up with the correct design for the systems needs before we start working on it.
In reality, we don’t know the correct design until the system is already being used.
Worse, changes to an organization’s situation, environment, and opportunities mean
the system’s needs are a moving target. Even if we do find and implement the correct
design, it won’t remain correct for very long.

The only thing we know for sure when designing a system is that it will need to
change after it’s in use, not once, but continually until the system is no longer needed.
The essence of Cloud Age, Lean, Agile, DevOps, and similar philosophies is designing
and implementing systems so that we can continually learn and evolve our systems.

With infrastructure, this means exploiting speed to improve quality and building
in quality to gain speed. Automating infrastructure takes work, especially when
people are learning the tools and techniques. But doing that work helps ensure
that the system can be kept relevant and useful throughout its lifespan. The next
chapter discusses more specific principles for using code to design and build cloud
infrastructure.

18 | Chapter 1: What Is Infrastructure as Code?

About the Author

Kief Morris (he/him) is a distinguished engineer at Thoughtworks. He drives conver-
sations across roles, regions, and industries at companies ranging from global enter-
prises to early-stage startups. He enjoys working and talking with people to explore
better engineering practices, architecture design principles, and delivery practices for
building systems on the cloud.

Kief ran his first online system, a bulletin board system (BBS) in Florida in the
early 1990s. He later enrolled in a master’s degree program in computer science
at the University of Tennessee because it seemed like the easiest way to get a real
internet connection. Joining the CS department’s system administration team gave
him exposure to managing hundreds of machines running a variety of Unix flavors.

When the dot-com bubble began to inflate, Kief moved to London, drawn by the
multicultural mixture of industries and people. He's still there, living with his wife,
son, and cat.

Most of the companies Kief worked for before Thoughtworks were post-startups,
looking to build and scale. The titles he’s been given, or self-applied, include soft-
ware developer, systems administrator, deputy technical director, R&D manager,
hosting manager, technical lead, technical architect, consultant, and director of cloud
engineering.

Colophon

The animal on the cover of Infrastructure as Code is Rippell’s vulture (Gyps rueppel-
lii), native to East Africa and the Sahel. It is named in honor of 19th-century German
explorer and zoologist Eduard Riippell.

This large bird has a wingspan of 7-8 feet and weighs 14-20 pounds. It has mottled
brown feathers and a yellowish-white neck and head. Like all vultures, this species is
carnivorous and feeds almost exclusively on carrion. They use their sharp talons and
beaks to rip meat from carcasses and have backward-facing spines on their tongue to
thoroughly scrape bones clean.

The Riippell’s vulture is monogamous and mates for life, which can be 40-50 years
long. Breeding pairs build their nests near cliffs out of sticks and lined with grass and
leaves. Only one egg is laid each year—by the time the next breeding season begins,
the chick is just becoming independent.

While normally silent, these are very social birds who will voice a loud squealing call
at colony nesting sites or when fighting over food. This vulture does not fly very fast
(about 22 mph), but it flies for 6-7 hours per day and ventures up to 90 miles from
the nest in search of food. Riippell’s vultures are the highest-flying birds on record;
there is evidence of one flying 37,000 feet above sea level, as high as commercial
aircraft. They have a hemoglobin variant in their blood that allows them to absorb
oxygen efficiently while at high altitudes.

The IUCN conservation status of Riippell’s vulture is critically endangered. Though
loss of habitat is one factor, the most serious threat is poisoning. The vulture is not
even the intended target: farmers often poison livestock carcasses to retaliate against
predators like lions and hyenas, and hundreds of birds can be killed at a time. The
total population is estimated to be 22,000 birds. Many of the animals on O'Reilly
covers are endangered; all of them are important to the world.

Color illustration by Karen Montgomery, based on a black and white engraving from
Cassell's Natural History. The series design is by Edie Freedman, Ellie Volckhausen,
and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Chapter 1. What Is Infrastructure as Code?
	Infrastructure as Code
	From the Iron Age to the Cloud Age
	Cloud Age Approaches to Change Management
	The Path to the Cloud Age

	Strategic Goals and Infrastructure as Code
	System Architecture Goals and Infrastructure as Code
	Use Infrastructure as Code to Optimize for Change
	Myth: Infrastructure Doesn’t Change Very Often
	Myth: We Can Build the Infrastructure First and Automate It Later
	Myth: Speed and Quality Are Trade-Offs

	The Four Key Metrics
	Core Practices for Infrastructure as Code
	Define Everything as Code
	Continually Test and Deliver All Work in Progress
	Build Small, Simple Pieces That Can Change Independently

	Conclusion

	About the Author
	Colophon

