

.5”

Software
Architecture
A Learner’s Guide to
Architectural Thinking

Raju Gandhi,
Mark Richards
& Neal Ford

.5”

AA Brain-Friendly GuideBrain-Friendly Guide

this is a new chapter 1

Software architecture is fundamental to the success of your
system. This chapter demystifies software architecture. You’ll gain an understanding

of architectural dimensions and the differences between architecture and design. Why

is this important? Because understanding and applying architectural practices helps

you build more effective and correct software systems—systems that not only function

better, but also meet the needs and concerns of the business and continue to operate

as your business and technical environments undergo constant change. So, without

further delay, let’s get started.

Let’s Get Started!
 software architecture demystified1

2 Chapter 1

software architecture basics

Building your understanding of
software architecture
To better understand software architecture, think about a typical home in your
neighborhood. The structure of the home is its architecture—things like its
shape, how many rooms and floors it has, its dimensions, and so on. A house
is usually represented through a building plan, which contains all the lines and
boxes necessary to know how to build the house. Structural things like those
shown below are hard and expensive to change later and are the important stuff
about the house.

Not only is this house
ugly, it’s not very
functional either.

Architecture is essential for building a house. Can you imagine building one without
an architecture? It might turn out looking something like the house on the right.

Architecture is also essential for building software systems. Have you ever come
across a system that doesn’t scale, or is unreliable or difficult to maintain? It’s likely
not enough emphasis was placed on that system’s architecture.

Load-bearing
column

ChimneyRoof

Dimensions

Load-bearing wall

The building metaphor is a very popular one for understanding software architecture.

This house has a
nice architecture.

Gardening is another useful metaphor for describing software architecture. Using the space below, can you describe
how planning a garden might relate to software architecture? You can see what we came up with at the end of this
chapter.

Exercise

Solution on page 29

you are here 4 3

software architecture demystified

What features of your home can you list that are structural and related
to its architecture? You can find our thoughts at the end of this chapter.

Sharpen your pencil

Building plans and software architecture
You might be wondering how the building plans of your home relate to software
architecture. Each is a representation of the thing being built. So what does the

“building plan” of a software system look like? Lines and boxes, of course.

A building plan specifies the structure of your home—the rooms, walls, stairs, and
so on—in the same way a software architecture diagram specifies its structure (user
interfaces, services, databases, and communication protocols). Both artifacts provide
guidelines and constraints, as well as a vision of the final result.

Use this space to write down your ideas.

Both of these diagrams
represent building plans.

Fun fact—a building plan used
to be called a “blueprint,” but that term is now obsolete (at least within building architecture).

Did you notice that the floor plan for
the house above doesn’t specify the
details of the rooms—things like the
type of flooring (carpet or hardwood),
the color of the walls, and where a bed
might go in a bedroom? That’s because
those things aren’t structural. In other
words, they don’t specify something
about the architecture of the house,
but rather about its design.

Don’t worry—you’ll learn a lot more about this distinction later in this chapter. Right now, just focus on the structure of something—in other words, its architecture.
Solution on page 29

4 Chapter 1

software architecture dimensions

 Architectural characteristics1

The dimensions of software architecture

This dimension describes what aspects of the
system the architecture needs to support—things
like scalability, testability, availability, and so on.

 Architectural decisions2
This dimension includes important decisions that
have long-term or significant implications for
the system—for example, the kind of database it
uses, the number of services it has, and how those
services communicate with each other.

 Logical components3
This dimension describes the building blocks of the system’s
functionality and how they interact with each other. For
example, an ecommerce system might have components for
inventory management, payment processing, and so on.

 Architectural style4
This dimension defines the overall physical shape and structure of a
software system in the same way a building plan defines the overall shape
and structure of your home.

architectural characteristics

logical components

architectural decisions

architectural style

You’ll learn about five of the
most common architectural styles later in this book.

Most things around us are multidimensional.
For example, you might describe a particular
room in your home by saying it is 5 meters long
and 4 meters wide, with a ceiling height of 2.5
meters. Notice that to properly describe the room
you needed to specify all three dimensions—its
height, length, and width.

You can describe software architecture by its
dimensions, too. The difference is that software
architecture has four dimensions.

Length

Height

Width

you are here 4 5

software architecture demystified

Puzzling out the dimensions

You can think of software architecture as a puzzle, with each dimension representing a
separate puzzle piece. While each piece has its own unique shape and properties, they must
all fit together and interact to build a complete picture.

We’re going to help you take the puzzle pieces and build a complete picture of what software architecture is all about.

Did you notice how the pieces of this puzzle are joined in the
middle? That’s exactly how software architecture works: each
dimension must align.

The architectural style must align with the architectural
characteristics you choose as well as the architectural decisions
you make. Similarly, the logical components you define must
align with the characteristics and the architectural style as well
as the decisions you make.

Everything is interconnected.

Q: Do you need all four dimensions when creating an architecture, or can you skip some if you don’t have time?

A: Unfortunately, you can’t skip any of these dimensions—they are all required to create and describe an architecture. One common
mistake software architects make is using only one or two of these dimensions when describing their architecture. “Our architecture is
microservices” describes a single dimension—the architectural style—but leaves too many unanswered questions. For example, what
architectural characteristics are critical to the success of the system? What are its logical components (functional building blocks)? What
major decisions have you made about how you’ll implement the architecture?

there are no Dumb Questions

6 Chapter 1

architectural characteristics

Architectural characteristics form the foundation of the architecture
in a software system. Without them, you cannot make architectural
decisions or analyze important trade-offs.

Imagine you’re trying to choose between two homes. One home is
roomy but is next to a busy, noisy motorway. The other home is in a

nice, quiet neighborhood, but is much smaller. Which characteristic is more important to you—
home size or the level of noise and traffic? Without knowing that, you can’t make the right choice.

The first dimension: Architectural characteristics

Exercise

Here are some of the more common architectural
characteristics. You’ll be learning all about these
in Chapter 2.

Check the things you think might be considered architectural characteristics—something that the structure of the
software system supports.

Changing the font size in a window on the user interface screen

scalability

The system’s ability to maintain

a consistent response time and

error rate as the number of users

or requests increases

performance

The amount of time it takes

for the system to process a

business request

availabilityThe amount of uptime of a system; usually measured in “nines” (so 99.9% would be three “nines”)

Handling thousands of concurrent users

Encrypting user passwords stored in the database

Interacting with many external systems to complete a business request

The same is true with software architecture. Let’s say you need to decide what kind of database to use
for your new system. Should it be a relational database, a simple key/value database, or a complex
graph database? The answer will be based on what architectural characteristics are critical to you. For
example, you might choose a graph database if you need high-speed search capability (we’ll call that
performance), whereas a traditional relational database might be better if you need to preserve data
relationships (we’ll call that data integrity).

Making changes quickly

Solution on page 30

you are here 4 7

software architecture demystified

To architect software you must first address:
Capabilities key to the new app’s success

Make it
Stick

Who Does What

Extensibility

Feasibility

Fault tolerance

Agility

Here’s your chance to see how much you already know about many common architectural characteristics. Can you
match up each architectural characteristic on the left with its definition on the right? You’ll notice there are more
definitions than characteristics, so be careful—not all of the definitions have matches.

Taking into account time frames, budgets, and
developer skills when making architectural choices

The system’s ability to keep its other parts
functioning when fatal errors occur

The ease with which the system can be enhanced to
support additional features and functionality

The amount of time it takes to get a response to the
user

The system’s ability to respond quickly to change
(a function of maintainability, testability, and
deployability)

The system’s ability to interface and interact with
other systems to complete a business request

We did this
one for you.

Interoperability

The term architectural characteristics might not be familiar
to you, but that doesn’t mean you haven’t heard of them before.
Collectively, things like performance, scalability, reliability, and
availability are also known as nonfunctional requirements, system
quality attributes, and simply “the -ilities” because most end with
the suffix -ility. We like the term architectural characteristics because
these qualities help define the character of the architecture and
what it needs to support.

Architectural characteristics
are

capabilities that are critical
or

important to the success of th
e system.

Solution on page 30

8 Chapter 1

architectural decisions

The second dimension: Architectural decisions
Architectural decisions are choices you make about structural
aspects of the system that have long-term or significant
implications. As constraints, they’ll guide your development team
in planning and building the system.

Should your new home have one floor or two? Should the roof
be flat or peaked? Should you build a big, sprawling ranch house?
These are good examples of architectural decisions because they
involve the structural aspect of your home.

X

You’ll be learning a lot
about architectural
decisions in Chapter 3.

Architectural
decision
The user interface must
go through the data
access service to read
or write data; it cannot
communicate directly with
the database.

You might decide that your system’s user interface should not
communicate directly with the database, but instead must go through
the underlying services to retrieve and update data. This architectural
decision places a particular constraint on the development of the user
interface, and also guides the development team about how other
components should access and update data in the database.

? ?

What should your home look like? This kind of decision is an architectural one.

This image
represents a
service. You’ll be
seeing it a lot in
the book. This is the

database.

Data
Access
Service

Here’s an example
of an architectural
decision.

This architectural
decision imposes
a constraint and
acts as a guide.

you are here 4 9

software architecture demystified

Decisions are structural guides for dev

teams.

They often focus on significant themes.

Make it
Stick

It’s not uncommon to have several dozen or more
documented architectural decisions within any system.
Generally, the larger and more complicated the
system, the more architectural decisions it will have.

BE the architect
Your job is to be the architect and identify

as many architectural decisions as you
can in the diagram below. Draw a circle
around anything that you think might be
an architectural decision and write what
that decision might be.

Order
Placement

Payment
Mediator

Reward
Points

Payment

Gift
Card

Payment

Credit
Card

Payment

Inventory
Adjuster

Here’s a hint—do you have questions
about why certain things are done
the way they are?

Payment
Database

Inventory
Database

Order
Database

Reporting
Database

Solution on page 31

10 Chapter 1

logical components

Logical components are the
building blocks of a system,
much in the same way rooms are
the building blocks of your home.
A logical component performs
some sort of function, such as
processing the payment for an

order, managing item inventory, or tracking orders.

Logical components in a system are usually represented through a
directory or namespace. For example, the directory app/order/
payment with the corresponding namespace app.order.
payment identifies a logical component named Payment Processing.
The source code that allows users to pay for an order is stored in this
directory and uses this namespace.

The third dimension: Logical components

We dive into the details of logical components and how to create them in Chapter 4.The Payment Processing
logical component is
identified through this
directory structure and is
implemented through these
three source code files.

All of these boxes
represent logical components.

These rooms make up the building blocks of your home.

Order
Tracking

Order
Placement

Payment
Processing

Order
Shipping

Inventory
Management

app
order

payment

pay_with_creditcard.py

pay_with_giftcard.py

process_refund.py

Architectural
components are
language-agnostic. We just happen to be using Python
here.

you are here 4 11

software architecture demystified

Q: What is the difference between the system functionality and the domain?

A: The domain is the problem you are trying to solve, and the system functionality is how you are solving that problem. In other
words, the domain is the “what,” and the system’s functionality is the “how.”

there are no Dumb Questions

Logical components are blocks in
conjunction.

They hold the source code for each
business function.

Make it
Stick

You’ve just created the following two components for a
new system, and your development team wants to start
writing class files to implement them. Can you create
a directory structure for them so they can start coding?
Flip to the end of the chapter for our solution.

Sharpen your pencil

Use this space to write down your answer.

Customer
Profile

Customer
Preferences

A logical component should always have a well-
defined role and responsibility in the system—in
other words, a clear definition of what it does.

Order
Fulfillment

This component is responsible
for “pick and pack.” It locates
items in a warehouse (that’s the
“pick” part), then determines
the correct box size for the
items so they can be shipped
(that’s the “pack” part).

This is the role and
responsibility statement
for the Order
Fulfillment component.

Solution on page 32

12 Chapter 1

architectural styles

The fourth dimension: Architectural styles

Homes come in all shapes, sizes, and styles. While there
are some wild-looking houses out there, most conform to a
particular style, such as Victorian, ranch, or Tudor. The style
of a home says a lot about its overall structure. For example,
ranch homes typically have only one floor; colonial and
Tudor homes typically have chimneys; contemporary homes
typically have flat roofs.

event-driven architecture

microservices

Don’t worry—you’ll be learning all about these architectural styles later in the book. We’ve devoted chapters to each of them.

Architectural styles define the overall shape and structure of a software system,
each with its own unique set of characteristics. For example, the microservices
architectural style scales very well and provides a high level of agility—the ability
to respond quickly to change—whereas the layered architectural style is less
complex and less costly. The event-driven architectural style provides high levels
of scalability and is very fast and responsive.

layered architecture

Each region of the world has its own set of home styles—check ’em out at https://en.wikipedia.org/wiki/List_of_house_styles.

What sty
le home do

you live
 in?

There are a number of different
architectural styles, but fortunately
not as many as there are house styles.

you are here 4 13

software architecture demystified

Styles shape the system and help serve
its purposes.

You might choose a monolith or
microservices.

Make it
Stick

Brain
Power

The tightly wound tendons and muscles in a lion’s legs enable it to reach
speeds as fast as reach speeds as fast as 50 miles (80 kilometers) per hour
and leap up to 36 feet (11 meters) in a single bound. This characteristic
allows lions to survive by catching fast prey.

Look around you—what else has a structure or shape that defines its
characteristics and capabilities?

Fun fact: A lion doesn’t have much stamina and can only run fast in short bursts. If you can last longer than the lion chasing you, then you just might survive.

Because the architectural style defines the overall shape and
characteristics of the system, it’s important to get it right the
first time. Why? Can you imagine starting construction on
a one-story ranch home, and in the middle of construction
changing your mind and deciding you’re going to build a
three-story Victorian house instead? That would be a major
undertaking, and likely exceed your budget and affect when you
can move into the house.

Software architecture is no different. It’s not easy changing
from a monolithic layered architecture to microservices. Like
the house example, this would be quite an undertaking.

Converting from a sprawling ranch house to a multi-story Victorian would be very difficult because the structures are so different.

Later in the book, we’ll show you how to
properly select an architectural style based
on characteristics that are important to you.

Which brings us back to an earlier
point—all of the dimensions of software
architecture are interconnected. You
can’t select an architectural style without
knowing what’s important to you.

14 Chapter 1

putting the pieces together

Who Does What

We need to support up to 300,000 concurrent users in
this system.

This system must be available for our overseas customers.

We are going to start offering reward points as a new
payment option when paying for an order.

The single payment service will be broken apart into
separate services, one for each payment type we accept.

Our system uses an event-driven architecture.

The product owner insists that we get new features and
bug fixes out to our customers as fast as possible.

Customers are complaining about the background color
of the new user interface.

The user interface shall not communicate directly with
the database.

We are breaking up the orderPlacement class into
three smaller class files.

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out
which dimension does what by matching the statements on the left with the software architecture dimensions on
the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

We did this
one for you.

This is about availability.

Solution on page 33

you are here 4 15

software architecture demystified

No, architecture and design are different.
You see, architecture is less about appearance and more about structure,
while design is less about structure and more about appearance.

The color of a room’s walls, the placement of furniture, and the type of
flooring (carpet or wood) are all aspects of design, whereas the physical
size of the room and the placement of doors and windows are part of
architecture—in other words, the structure of the room.

Think about a typical business application. The architecture, or structure,
is all about how the web pages communicate with backend services and
databases to retrieve and save data, whereas the design is all about what
each page looks like: the colors, the placement of the fields, which design
patterns you use, and so on. Again, it becomes a matter of structure versus
appearance.

Your question is a good one, because sometimes it gets confusing trying to
tell what is considered architecture and what is considered design. Let’s
investigate these differences.

If I’m responsible for the
design of a software system,
does that mean I’m responsible

for its architecture as well?
Aren’t those the same thing?

16 Chapter 1

design vs. architecture

A design perspective
Suppose your company wants to replace its outdated order processing system with a new
custom-built one that better suits its specific needs. Customers can place orders and can
view or cancel orders once they have been placed. They can pay for an order using a
credit card, a gift card, or both payment methods.

The CreditCard and GiftCard classes inherit behavior from the PaymentMethod class.

Orders can have one or
two payment types, and
payment types can be
associated with zero or
more orders.

From a design perspective, you might build a Unified Modeling Language (UML) class diagram like the
one below to show how the classes interact with each other to implement the payment functionality.
While you could write source code to implement these class files, this design says nothing about the
physical structure of the source code—in other words, how these class files would be organized and deployed.

Lucky you. You’ve been put in charge of building the new order processing system. This is the big break you’ve been looking for, and you’re anxious to get started.

you are here 4 17

software architecture demystified

An architectural perspective
Unlike design, architecture is about the structure of the system—things like services, databases,
and how services communicate with each other and the user interface.

Let’s think about that new order processing system again. What would the system look like?
From an architectural perspective, you might decide to create separate services for each payment
type within the order payment process and have an orchestrator service to manage the
payment processing part of the system, like in the diagram below.

The Payment Mediator service allows you to pay for your order with a credit card, gift card, or both.

Payment
Mediator
Service

Order
Placement

Service

Credit
Card

Service

Gift
Card

Service
Each service would have
its own class diagram
representing the design
of the service.

Exercise
Check all of the things that should be included in a diagram from an architectural perspective.

How services communicate with each other

Which services can access which databases

How many services and databases there are

The platform and language in which the services are implemented

As a gentle reminder,
each of these boxes
represents a “service.”

Solution on page 34

18 Chapter 1

architecture–design spectrum

The spectrum between architecture and design
Some decisions are certainly architectural (such as deciding which architectural style to use),
and others are clearly design-related (such as changing the position of a field on a screen or
changing the type of a field within a class). In reality, most decisions you encounter will fall
between these two examples, within a spectrum of architecture and design.

Things on this side are
more about architecture.

Things on this side are
more about design.

Architecture Design

Yes, it matters a lot. You see, knowing where along the spectrum
between architecture and design your decision lies helps determine who
should be responsible for ultimately making that decision. There are some
decisions that the development team should make (such as designing the
classes to implement a certain feature), some decisions that an architect
should make (such as choosing the most appropriate architectural style for
a system), and others that should be made together (such as breaking apart
services or putting them back together).

You’ll find most of your decisions fall
within the spectrum right about here.

Sharpen your pencil
Circle all of the things that you think fall somewhere in the middle of the spectrum between
architecture and design.

Deciding to use a graph database Migrating to microservices
Breaking apart a
service

Selecting a user interface framework

Choosing an XML parsing library

Breaking up a class file

Choosing a persistence framework

Redesigning a web page

Don’t worry if you
don’t know all the
answers to this
exercise—you’ll
learn more about
this topic on the
next page.

Why should I care
where in the spectrum

between architecture and
design my decision lies?

Does it really matter that
much?

Solution on page 34

you are here 4 19

software architecture demystified

Where along the spectrum does your decision fall?

Strategic decisions are long term and influence future actions or
decisions. Tactical decisions are short term and generally stand
independent of other actions or decisions (but may be made in the
context of a particular strategy). For example, deciding how big your
new home will be influences the number of rooms and the sizes of those
rooms, whereas deciding on a particular lighting fixture won’t affect
decisions about the size of your dining room table. The more strategic
the decision, the more it sits toward the architecture side of the spectrum.

Is it strategic or tactical?

Architectural decisions require more effort to construct or
change, while design decisions require relatively less. For
example, building an addition to your home generally requires
a high level of effort and would therefore be more on the
architecture side of the spectrum, whereas adding an area rug
to a room requires much less effort and would therefore be more
on the design side.

How much effort will it take to construct or change?

Trade-offs are the pros and cons you evaluate as you are making a
decision. Decisions that involve significant trade-offs require much more
time and analysis to make and tend to be more architectural in nature.
Decisions that have less-significant trade-offs can be made quicker, with
less analysis, and therefore tend to be more on the design side.

Does it have significant trade-offs?

Sometimes waking

up in the morning

requires a lot
of

effort—we’ll call

those “archite
cture”

mornings.

Can you think of a decision that doesn’t involve a trade-off, no matter how small or insignificant? Here’s a hint:
if you think you’ve found a decision that doesn’t involve a trade-off, keep looking.

Brain
Power

We’re going to walk you through
the details of all three of these
factors in the next several pages.

20 Chapter 1

level of planning

Strategic versus tactical
The more strategic a decision is, the more architectural it becomes. This is an important
distinction, because decisions that are strategic require more thought and planning and
are generally long term.

Architecture Design

Strategic Tactical

How much thought and planning do you need to
put into the decision?
If making the decision takes a couple of minutes to an hour, it’s more
tactical in nature. If thought and planning require several days or weeks,
it’s likely more strategic (hence more architectural).

How many people are involved in the decision?
The more people involved, the more strategic the decision. A decision
you can make by yourself or with a colleague is likely to be tactical.
A decision that requires many meetings with lots of stakeholders is
probably more strategic.

Does your decision involve a long-term vision or a
short-term action?
If you are making a quick decision about something that is temporary
or likely to change soon, it’s more tactical and hence more about design.
Conversely, if this is a decision you’ll be living with for a very long time,
it’s more strategic and more about architecture.

Good question. You can use these three questions to help
determine if something is more strategic or tactical. Remember, the
more strategic something is, the more it’s about architecture.

1.

2.

3.

How
can I determine

whether a decision
is more strategic or

more tactical?

you are here 4 21

software architecture demystified

Oh dear. We’ve lost all of our marbles and we need your help collecting them and putting them
back in the right spot. Using the three questions on the previous page as a guide, can you figure
out which jar each marble should go in?

Sharpen your pencil

Strategic TacticalSomewhere in
between

Deploying in the
cloud or on premises

Choosing a
parsing library

Deciding to get
your first dog

Using a design
pattern

Picking a
programming

language for your
new project

Migrating
your system to
microservices

Redesigning your
user interface

Solution on page 35

22 Chapter 1

level of effort

High versus low levels of effort

Renowned software architect and author Martin Fowler once wrote that “software
architecture is the stuff that’s hard to change.” You can use Martin’s definition
to help determine where along the spectrum your decision lies. The harder
something is to change later, the further it falls toward the architecture side of the
spectrum. Conversely, the easier it is to change later, the more it’s probably related
to design.

Architecture Design

High effort Low effort

Suppose you are planning on moving from one architectural style to another; say, from a
traditional n-tiered layered architecture to microservices. This migration effort is rather
difficult and will take a lot of time. Because the level of effort is high, this would be on
the far end of the architecture side of the spectrum.

Now suppose you’re rearranging fields on a user interface screen. This
task takes relatively less effort, so it resides on the far end of the design
side of the spectrum.

Changing the layout

of the fields on a
web page is more
about appearance
than structure—yet
another reason
why this would be
considered design.

Martin Fowler’s website (https://martinfowler.com/architecture) has lots of useful stuff about architecture.

Oh dear, this is going to take a lot of effort. Changing things that are architectural is difficult.

you are here 4 23

software architecture demystified

Code Magnets
We had all of these magnets from our to-do list arranged from high effort to low effort, and somehow
they all fell on the floor and got mixed up. Can you help us put them back in the right order based on the
amount of effort it would take to make each change?

Draw arrows to put the high-
effort

tasks at the top o
f the page, and th

e

lower-effort ones toward the bottom of

the page.

High effort

Low effort

Replacing
 your use

r

interface
 framewor

k

Resolving a merge conflict in Git

Renaming a method or
function

Breaking
apart a s

ingle

service i
nto separ

ate ones

Migrating your system to a cloud environment

Breaking apart a class file

Moving from a relational
to a graph database

Deciding
which mus

tard

to buy

Solution on page 36

24 Chapter 1

significant trade-offs

Significant versus less-significant trade-offs
Some decisions you make might involve significant trade-offs, such as choosing which city
to live in. Others might involve less significant trade-offs, like deciding on the color of
your living room rug. You can use the level of significance of the trade-offs in a particular
decision to help determine whether that decision is more about architecture or design. The
more significant the trade-offs, the more it’s about architecture; the less significant the trade-
offs, the more it’s about design.

Architecture Design

More-significant
trade-offs

Less-significant
Trade-offs

+ Scalability
+ Agility

+ Elasticity
+ Fault tolerance

- Cost

- Complexity

- Performance
- Workflow

+ Maintainability

+ Readability

- More classes

Wow—these are some
serious trade-offs to
consider. This is more

about architecture.

This trade-off is not so significant, making this decision more about design.

Should I break
my class file

apart?

I wonder
if microservices
might be a good fit

for this project.

you are here 4 25

software architecture demystified

Exercise

Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might
help is to identify the decisions that involve significant trade-offs, since those will require more thinking and
will take longer. Can you help us by identifying which decisions have significant trade-offs and which don’t?

Picking out what clothes to wear to work today

Is this a significant trade-off?

Yes No

Choosing to deploy in the cloud or on premisesYes No

Selecting a user interface frameworkYes No

Naming a variable in a class fileYes No

Choosing between vanilla and chocolate ice creamYes No

Deciding which architectural style to useYes No

Choosing between REST and messagingYes No

Using full data or only keys for the message payloadYes No

Selecting an XML parsing library Yes No

Deciding whether or not to break apart a serviceYes No

Choosing between atomic or distributed transactions Yes No

Deciding whether or not to go out to dinner tonightYes No

Solution on page 37

26 Chapter 1

chapter summary

Putting it all together

Now it’s time to put all three of these factors to use to figure out whether a decision is
more about architecture or more about design. This tells development teams when to
collaborate with an architect and when to make a decision on their own.

Let’s say you decide to use asynchronous messaging between the Order Placement
service and the Inventory Management service to increase the system’s responsiveness
when customers place orders. After all, why should the customer have to wait for the
business to adjust and process inventory? Let’s see if we can determine where in the
spectrum this decision lies.

Architecture Design

Inventory adjustments are sent to

the Inventory Management service

through this queue.

Significance of trade-offs

Level of effort

Strategic or tactical

Inventory
Management

Service

Order
Placement

Service
Queue

Not many people need to be

involved in this decision, and

it doesn’t involve long-term

planning, so it’s more tactical.

It doesn’t take a whole lot

of effort to send a message

to another service. This is

pretty standard stuff.

Using a queue will increase responsiveness when

placing an order, but inventory may not be updated

in a timely manner, likely creating back-order

conditions. These are pretty significant trade-offs.

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably
be consulted or involved. We needed all three factors
to determine whether this decision was more about
architecture or design.

The significant
trade-offs push this
decision closer to
architecture.

you are here 4 27

software architecture demystified

True or False

You made it!
Congratulations—you made it through the first part of your journey to understanding
software architecture. But before you roll up your sleeves to dig into further chapters, here’s
a little quiz for you to test your knowledge so far. For each of the statements below, circle
whether it is true or false.

Design is like the structure of a house (walls, roof, layout, and so on), and
software architecture is like the furniture and decoration.

True False

Most decisions are purely about architecture or design. Very few
exist along a spectrum between architecture and design.

True False

The more strategic your decision, the more it’s about architecture;
the more tactical, the more it’s about design.

True False

The more effort it takes to implement or change your decision, the more
it’s about design; the less effort, the more it’s about architecture.

True False

Trade-offs are the pros and cons of a given decision or task. The more
significant the trade-offs become, the more it’s about architecture.

True False

 � Software architecture is less about appearance and
more about structure, whereas design is more about
appearance and less about structure.

 � You need to use four dimensions to understand
and describe software architecture: architectural
characteristics, architectural decisions, logical
components, and architectural style.

 � Architectural characteristics form the foundational
aspects of software architecture. You must know
which architectural characteristics are most important
to your specific system, so you can analyze trade-offs
and make the right architectural decisions.

 � Architectural decisions serve as guideposts to help
development teams understand the constraints and
conditions of the architecture.

 � The logical components of a software architecture
solution make up the building blocks of the system.
They represent things the system does and are
implemented through class files or source code.

 � Like with houses, with software there are many
different architectural styles you can use. Each style
supports a specific set of architectural characteristics,
so it’s important to make sure you select the right one
(or combination of them) for your system.

 � It’s important to know if a decision is about
architecture or design, because that helps determine
who should be responsible for the decision and how
important it is.

Bullet Points

Solution on page 38

28 Chapter 1

software architecture crossword

Software Architecture Crossword
Congratulations! You made it through the first chapter and learned
about what software architecture is (and isn’t). Now, why don’t you
try architecting the solution to this crossword?

Across
2. An architectural style determings the system’s overall

4. _____-driven is an architectural style
5. Architectural characteristics are sometimes called this
10. Architectural decisions are usually _____ term
12. If something takes a lot of _____ to implement, it’s
probably architectural
13. You’re learning about software _____
15. You’ll make lots of architectural _____
16. A system’s _____ components are its building blocks
18. The number of rooms in your home is part of its

19. Architecture and design exist on a _____

Down
1. Strategic decisions typically involve a lot of these
3. Building this can be a great metaphor
6. Decisions can be strategic of _____
7. How many dimensions it takes to describe a software
architecture
8. A website’s user _____ involves lots of design decisions
9. The overall shape of a house or a system, like Victorian
or microservices
11. It’s important to know whether a decision is about
architecture or this
13. You might want to become one after reading this book
14. You analyze these when making an architectural
decision
17. Trade-offs are about the _____ and cons

Solution on page 39

you are here 4 29

software architecture demystified

What features of your home can you list that are structural and related to its architecture?

Sharpen your pencil
Solution

From page 3

The size and
 shape of

your kitch
en (who doesn’t

complain about
 how small

their kitch
en is?)

The height of your ceilings
(especially if you happen t

o
be very tall)

How many floors it has (as you get older, stairs might be a problem)

Outside deck or patio (unless you live in the Arctic, of course)

Where the front door is
and if the entranceway is
wheelchair accessible

How many bathrooms it has (adding a new bathroom is really hard to do)
An attic for storing all of the stuff you never use

The size of
 your

bedroom closet (if
 you

have lots o
f clothes)

From page 2Exercise
Solution

Gardening is another useful metaphor for describing software architecture. Using the space below, can you
describe how a garden might relate to software architecture?

The overall layout of a garden can be compared to the architectural style, whereas each grouping of
like plants (either by type or color) can represent the architectural components. Individual plants
within a group represent the class files implementing those components.
Gardens are influenced by weather in the same way a software architecture is influenced by changes
in technology, platforms, the deploymnent environment, and so on. Also, if you don’t pay attention
to the garden, weeds grow-just like structural decay within your architecture.

30 Chapter 1

exercise solutions

Who Does What
Solution

Extensibility

Feasibility

Fault tolerance

Agility

Here’s your chance to see how much you already know about many common architectural characteristics. Can you
match up each architectural characteristic on the left with its definition on the right? You’ll notice there are more
definitions than characteristics, so be careful—not all of the definitions have matches.

Taking into account time frames, budgets, and
developer skills when making architectural choices

The system’s ability to keep its other parts
functioning when fatal errors occur

The ease with which the system can be enhanced to
support additional features and functionality

The amount of time it takes to get a response to the
user

The system’s ability to respond quickly to change
(a function of maintainability, testability, and
deployability)

The system’s ability to interface and interact with
other systems to complete a business request

We did this
one for you.

Interoperability

From page 7

Check the things you think might be considered architectural characteristics—something that the structure of the
software system supports.

Changing the font size in a window on the user interface screen

Making changes quickly

Handling thousands of concurrent users

Encrypting user passwords stored in the database

From page 6

This is known as agility in
architecture.

This is known as elasticity.

This is known as
interoperability.

Interacting with many external systems to complete a business request

Exercise
Solution

you are here 4 31

software architecture demystified

BE the architect

Your job is to be the architect and identify
as many architectural decisions as you
can in the diagram below. Draw a circle
around anything that you think might be
an architectural decision and write what
that decision might be.

Order
Placement

Payment
Mediator

Reward
Points

Payment

Gift
Card

Payment

Credit
Card

Payment

Inventory
Adjuster

Payment
Database

Inventory
Database

Order
Database

Reporting
Database

From page 9

Solution

You decided to break up the payment services. Why?

All of the pa
yment services

 are

sharing a d
atabase. Why not have

a separate
database fo

r each

service?

The Inventory service is communicating with the payment service. Why not the Order Placement service?

The Order

Placement servi
ce

is writing to

the repo
rting

database
. Why?

The Order Placement service
is directly communicating with
the payment database. Why?

Why does the Inventory service have its own database?

32 Chapter 1

exercise solutions

Customer
Profile

Customer
Preferences

From page 11

Solution
Sharpen your pencil

You’ve just created the following two components for a new system, and your development team
wants to start writing class files to implement them. Can you create a directory structure for them
so they can start coding?

buy_from_us

 customer

 profile

 source_code_files

 preferences

 source_code_files

you are here 4 33

software architecture demystified

We need to support up to 300,000 concurrent users in
this system.

This system must be available for our overseas customers.

We are going to start offering reward points as a new
payment option when paying for an order.

The single payment service will be broken apart into
separate services, one for each payment type we accept.

Our system uses an event-driven architecture.

The product owner insists that we get new features and
bug fixes out to our customers as fast as possible.

Customers are complaining about the background color
of the new user interface.

The user interface shall not communicate directly with
the database.

We are breaking up the orderPlacement class into
three smaller class files.

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out
which dimension does what by matching the statements on the left with the software architecture dimensions on
the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

From page 14

This is about availability.

This is about agility.

This is about scalability.

This is about adding a new logical
component to the architecture.

We did this
one for you.

Who Does What
Solution

34 Chapter 1

Check all of the things that should be included in a diagram from an architectural perspective.

How services communicate with each other

Which services can access which databases

How many services and databases there are

The platform and language in which the services are implemented

From page 17Exercise
Solution

How something should
be implemented is a

design perspective.

Circle all of the things that you think fall somewhere in the middle of the spectrum between
architecture and design.

Deciding to use a graph database
Migrating to microservicesBreaking apart a

service

Selecting a user interface framework

Choosing an XML parsing library

Breaking up a class file

Choosing a persistence framework

Redesigning a web page

Solution
Sharpen your pencil From page 18

This is architecture.

These are design.

This is design.

exercise solutions

you are here 4 35

software architecture demystified

From page 21

You can usually make
these decisions alone.

This decision involves

the entire family.
This requires a lot of planning, is
more visionary, and involves a lot
of people.

Strategic TacticalSomewhere in
between

Deploying in the
cloud or on premises

Choosing a
parsing library

Deciding to get
your first dog

Using a design
pattern

Picking a
programming

language for your
new project

Migrating
your system to
microservices

Redesigning your
user interface

Th
ese

 re
quir

e so
me

plan
ning

 an
d

usu
ally

 inv
olve

 a
few

 ot
her

 pe
ople

.

Good luck.

Solution
Sharpen your pencil

Oh dear. We’ve lost all of our marbles and we need your help collecting them and putting them back in the right spot.
Using the three questions on page 20 as a guide, can you figure out which jar each marble should go in?

36 Chapter 1

exercise solutions

Code Magnets

Don’t believe us? Plug “paradox of ch
oice”

into your favorite
search engine.

High effort

Low effort

Replacing your user
interface framework

Resolving a merge
conflict in Git

Renaming a method or
function

Breaking apart a single
service into separate ones

Migrating your system to a cloud environment

Breaking apart a class file

Moving from a relational to a graph database

Deciding
which mus

tard

to buy

From page 23

These take a lot of
 effort and would

therefore reside o
n the architecture

side of the spectr
um.

These take relatively less effort and would therefore reside more on the design side of the spectrum.

This would fall right about in the middle
of the spectrum between architecture
and design.

We had all of these magnets from our to-do list arranged from high effort to low effort, and
somehow they all fell on the floor and got mixed up. Can you help us put them back in the
right order based on the amount of effort it would take to make each change?

Solution

you are here 4 37

software architecture demystified

Exercise From page 25

Solution
Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might help
is to identify the decisions that involve significant trade-offs, since those will require more thinking and will
take longer. Can you help us by identifying which decisions have significant trade-offs and which ones don’t?

Picking out what clothes to wear to work today

Significant Tradeoffs?

Yes No

Choosing to deploy in the cloud or on premisisYes No

Selecting a user interface frameworkYes No

Deciding on the name of a variable in a class fileYes No

Choosing between vanilla and chocolate ice creamYes No

Deciding which architectural style to useYes No

Choosing between REST and messagingYes No

Using full data or only keys for the message payloadYes No

Selecting an XML parsing library Yes No

Deciding whether or not to break apart a serviceYes No

Choosing between atomic or distributed transactions Yes No

Deciding whether or not to go out to dinner tonightYes No

Okay, so maybe this is a difficult decision sometimes.

There are certainly tr
ade-

offs here, so this on
e could go

either way.

These can impact scalability,

performance, and overall

maintainability.

Are you getting hungry yet? This can impact data integrity
and data consistency, but also
scalability and performance.

38 Chapter 1

exercise solutions

True or False From page 27

Solution
This is backwards.

Most decisions lie within the spectrum between architecture and design.

This is backwards.

Design is like the structure of a house (walls, roof, layout, and so on), and
software architecture is like the furniture and decoration.

True False

Most decisions are purely about architecture or design. Very few
exist along a spectrum between architecture and design.

True False

The more strategic your decision, the more it’s about architecture;
the more tactical, the more it’s about design.

True False

The more effort it takes to implement or change your decision, the more
it’s about design; the less effort, the more it’s about architecture.

True False

Trade-offs are the pros and cons of a given decision or task. The more
significant the trade-offs become, the more it’s about architecture.

True False

you are here 4 39

software architecture demystified

Software Architecture Crossword Solution

From page 23

	Cover
	Title Page
	Copyright
	About the Authors
	Table of Contents
	Intro
	Chapter 1: Software Architecture Demystified
	Building your understanding of software architecture
	Building plans and software architecture
	The dimensions of software architecture
	Puzzling out the dimensions
	The first dimension: Architectural characteristics
	The second dimension: Architectural decisions
	The third dimension: Logical components
	The fourth dimension: Architectural styles
	A design perspective
	An architectural perspective
	The spectrum between architecture and design
	Where along the spectrum does your decision fall?
	Strategic versus tactical
	High versus low levels of effort
	Significant versus less-significant trade-offs
	Putting it all together
	You made it!

	Chapter 2: Architectural Characteristics
	Causing Lafter
	What are architectural characteristics?
	Defining architectural characteristics
	Characteristics are nondomain design considerations
	Characteristics influence architectural structure
	Limit characteristics to prevent overengineering
	Consider explicit and implicit capabilities
	The International Zoo of “-ilities”
	Process architectural characteristics
	Structural architectural characteristics
	Operational architectural characteristics
	Cross-cutting architectural characteristics
	Sourcing architectural characteristics from the problem domain
	Sourcing architectural characteristics from environmental awareness
	Sourcing architectural characteristics from holistic domain knowledge
	Composite architectural characteristics
	Priorities are contextual
	Lost in translation
	Architectural characteristics and logical components
	Balancing domain considerations and architectural characteristics
	Limiting architectural characteristics

	Chapter 3: The Two Laws of Software Architecture
	It starts with a sneaker app
	What do we know so far?
	Communicating with downstream services
	Analyzing trade-offs
	Trade-off analysis: Queue edition
	Trade-off analysis: Topic edition
	The first law of software architecture
	It always comes back to trade-offs
	Making an architectural decision
	What else makes a decision architectural?
	The second law of software architecture
	Architectural decision records (ADRs)
	Writing ADRs: Getting the title right
	Writing ADRs: What’s your status?
	Writing ADRs: Establishing the context
	Writing ADRs: Communicating the decision
	Writing ADRs: Considering the consequences
	Writing ADRs: Ensuring governance
	Writing ADRs: Closing notes
	The benefits of ADRs
	Two Many Sneakers is a success

	Chapter 4: Logical Components
	Logical components revisited
	Name that component
	Adventurous Auctions goes online
	Logical versus physical architecture
	Creating a logical architecture
	Step 1: Identifying initial core components
	Workflow approach
	Actor/action approach
	The entity trap
	Step 2: Assign requirements
	Step 3: Analyze roles and responsibilities
	Sticking to cohesion
	Step 4: Analyze characteristics
	The Bid Capture component
	Component coupling
	Afferent coupling
	Efferent coupling
	Measuring coupling
	A tightly coupled system
	Applying the Law of Demeter
	A balancing act
	Some final words about components

	Chapter 5: Categorization and Philosophies
	There are lots of architectural styles
	The world of architectural styles
	Partitioning: Technical versus domain
	Deployment model: Monolithic versus distributed
	Monolithic deployment models: The pros
	Monolithic: The cons
	Distributed deployment models: The pros
	Distributed deployment models: The cons
	And that’s a wrap!

	Chapter 6: Layered Architecture
	Naan & Pop: Gathering requirements
	Design patterns redux
	Layering MVC
	Layering it on
	Translating layers into code
	Domains, components, and layers
	Drivers for layered architecture
	Layers, meet the real world: Physical architectures
	Physical architecture trade-offs
	One final caveat about domain changes
	Layered architecture superpowers
	Layered architecture kryptonite
	Layered architecture star ratings
	Wrapping it up

	Chapter 7: Driven by the Domain
	Modular monolith?
	Domain pains changes
	Why modular monoliths?
	Show me the code!
	Keeping modules modular
	Taking modularity all the way to the database
	Beware of joins
	Modular monolith superpowers
	Modular monolith kryptonite
	Modular monolith star ratings
	Naan & Pop is delivering pizza!

	Chapter 8: Microkernel Architecture
	The benefits of Going Green
	The two parts of microkernel architectures
	The spectrum of “microkern-ality”
	Device assessment service core
	Encapsulated versus distributed plugins
	Plugin communication
	Cubicle conversation
	Plugin contracts
	Going Green goes green
	Microkernel superpowers
	Microkernel kryptonite
	Microkernel star ratings
	Wrapping it up

	Chapter 9: Do It Yourself
	Making travel easier
	TripEZ’s user workflow
	Planning the architecture
	The architects’ roadmap
	Step 1: Identify architectural characteristics
	Step 2: Identify logical components
	Step 3: Choose an architectural style
	Step 4: Document your decision
	Step 5: Diagram your architecture
	There are no right (or wrong) answers

	Chapter 10: Microservices Architecture
	Are you feeling okay?
	What’s a microservice?
	It’s my data, not yours
	How micro is “micro”?
	Granularity disintegrators
	Why should you make microservices smaller?
	Granularity integrators
	Why should you make microservices bigger?
	It’s all about balance
	Sharing functionality
	Code reuse with a shared service
	Code reuse with a shared library
	Managing workflows
	Orchestration: Conducting microservices
	Choreography: Let’s dance
	Microservices architecture superpowers
	Microservices architecture kryptonite
	Microservices star ratings
	Wrapping it up

	Chapter 11: Event-Driven Architecture
	Too slow
	Speeding things up
	Der Nile flows faster than ever
	What is an event?
	Events versus messages
	Initiating and derived events
	Is anyone listening?
	Asynchronous communication
	Fire-and-forget
	Asynchronous for the win
	Synchronous for the win
	Database topologies
	Monolithic database
	Domain-partitioned databases
	Database-per-service
	EDA versus microservices
	Hybrids: Event-driven microservices
	Event-driven architecture superpowers
	Event-driven architecture kryptonite
	Event-driven architecture star ratings
	Putting it all together
	Wrapping up

	Chapter 12: Testing Your Knowledge
	Welcome to Make the Grade
	Student testing workflow
	Planning the architecture
	The architects’ roadmap
	Step 1: Identify architectural characteristics
	Step 2: Identify logical components
	Step 3: Choose an architectural style
	Step 4: Document your decision
	Step 5: Diagram your architecture
	There are no right (or wrong) answers!

	Appendix: Leftovers
	#1 The coding architect
	#2 Expectations for architects
	#3 The soft skills of architecture
	#4 Diagramming techniques
	#5 Knowledge depth versus breadth
	#6 Practicing architecture with katas

	Index

