O'REILLY"

Head First

Software
Architecture

A Learner's Guide to
Architectural Thinking

7 ‘ "V‘/‘ ,:'/::: =S \
| (l ‘
i

AN — /“-~f- Chia
N\ \] i \ A

Raju Gandhi,
Mark Richards
& Neal Ford

L/

A Brain-Friendly Guide

software architecture demystitied

Let’s Get Started!

Software architecture is fundamental to the success of your
system. This chapter demystifies software architecture. You’ll gain an understanding
of architectural dimensions and the differences between architecture and design. Why
is this important? Because understanding and applying architectural practices helps
you build more effective and correct software systems—systems that not only function
better, but also meet the needs and concerns of the business and continue to operate
as your business and technical environments undergo constant change. So, without

further delay, let’s get started.

software architecture

Building your understanding of
software architecture

To better understand software architecture, think about a typical home in your

neighborhood. The structure of the home is its architecture—things like its The buifdin3 '"CfaPh or
shape, how many rooms and floors it has, its dimensions, and so on. A house ' 3 very popular one
1s usually represented through a building plan, which contains all the lines and o understandin
boxes necessary to know how to build the house. Structural things like those % tware architeeture
shown below are hard and expensive to change later and are the important stuff '
about the house.

This house has a ROO‘F Chimncy
nice avchitecture. — 4\/

Load—bearing

tolumn

Not only is +his house
ug\\/, it's not very
‘(:vmcﬁona\ either.

Architecture is essential for building a house. Can you imagine building one without
an architecture? It might turn out looking something like the house on the right.

Architecture 1s also essential for building software systems. Have you ever come
across a system that doesn’t scale, or is unreliable or difficult to maintain? It’s likely
not enough emphasis was placed on that system’s architecture.

Gardening is another useful metaphor for describing software architecture. Using the space below, can you describe

how planning a garden might relate to software architecture? You can see what we came up with at the end of this
chapter.

———— Solution on page 29

Building plans and software architecture

software architecture

You might be wondering how the building plans of your home relate to software
architecture. Each is a representation of the thing being built. So what does the

“building plan” of a software system look like? Lines and boxes, of course.

A building plan specifies the structure of your home—the rooms, walls, stairs, and Fun pacf\ 3 bui]
so on—in the same way a software architecture diagram specifies its structure (user :’o be Calleq , I:(Ibdlhﬂ Plan ys d
interfaces, services, databases, and communication protocols). Both artifacts provide uT that term : /“CPw}.f} ”
guidelines and constraints, as well as a vision of the final result. oosolet, € leg 'Z o
id; ST wi
ding 5 Chitee r-e')éhm

CLOSET

/\Bo{:h of these diagramij

vepresent building plans:

en your penci]

What features of your home can you list that are structural and related
to its architecture? You can find our thoughts at the end of this chapter.

———— Solution on page 29

Did you notice that the floor plan for
the house above doesn’t specify the
details of the rooms—things like the
type of flooring (carpet or hardwood),
the color of the walls, and where a bed
might go in a bedroom? That’s because
those things aren’t structural. In other
words, they don’t specify something
about the architecture of the house,
but rather about its design.

DOh’f worry—vou'l] |
about this Zis y . A d lot more

tinetion later i thi
chapter. Right now, Just £°c:s onls
the S'lzrucfwc o‘: somc'l:hiha-—in other
words, its architeeture.

software architecture

The dimensions of software architecture

Most things around us are multidimensional.

For example, you might describe a particular
room in your home by saying it is 5 meters long
and 4 meters wide, with a ceiling height of 2.5
meters. Notice that to properly describe the room
you needed to specify all three dimensions—its
height, length, and width.

W C\S\‘*’

You can describe software architecture by its
dimensions, too. The difference is that software
architecture has four dimensions.

0 Architectural characteristics

This dimension describes what aspects of the

— architectural characteristics —]

system the architecture needs to support—things § s
like scalability, testability, availability, and so on. - a
§ :’E
. & ®

e Architectural decisions s Q

This dimension includes important decisions that 2 ss

have long-term or significant implications for ‘%' %

the system—for example, the kind of database it g &

uses, the number of services it has, and how those o o

services communicate with each other. 5

L I——_ 1 4

e Logical components logical components

This dimension describes the building blocks of the system’s

functionality and how they interact with each other. For

example, an ecommerce system might have components for

inventory management, payment processing, and so on. You'l |

u
"’OS{ C::rn abOu-é 'F‘iVC o.p _6‘)
° m
e Architectural style styles |34, ‘1*6 itectug)
" Thi
This dimension defines the overall physical shape and structure of a J s book.
software system in the same way a building plan defines the overall shape

and structure of your home.

software architecture

Puzzling out the dimensions

You can think of software architecture as a puzzle, with each dimension representing a
separate puzzle piece. While each piece has its own unique shape and properties, they must
all fit together and interact to build a complete picture.

We've going 4o help you take the Puzzle)

Pieces and build 3 omplete piet
\/ what softwave archi{:cc'tu\rcFis al;lr :;i'l;

 ARCHITECTURAL CHARACTERISTICS — Everything is interconnected.

Did you notice how the pieces of this puzzle are joined in the

middle? That’s exactly how software architecture works: each
dimension must align.

The architectural style must align with the architectural
characteristics you choose as well as the architectural decisions

you make. Similarly, the logical components you define must
align with the characteristics and the architectural style as well
as the decisions you make.

— SNOISID3a IWANLO3LIHOZY
— 37ALS WANLOSLIHOZY

LOGICAL COMPONENTS

therejare no o
Dumb Questions

Q: Do you need all four dimensions when creating an architecture, or can you skip some if you don’t have time?

A: Unfortunately, you can't skip any of these dimensions—they are all required to create and describe an architecture. One common
mistake software architects make is using only one or two of these dimensions when describing their architecture. “Our architecture is
microservices” describes a single dimension—the architectural style—but leaves too many unanswered questions. For example, what
architectural characteristics are critical to the success of the system? What are its logical components (functional building blocks)? What
major decisions have you made about how you'll implement the architecture?

architectural

The first dimension: Architectural characteristics

Architectural characteristics form the foundation of the architecture
in a software system. Without them, you cannot make architectural
decisions or analyze important trade-offs.

N ARCHITECTURAL CHARACTERISTICS —

Imagine you’re trying to choose between two homes. One home is
roomy but is next to a busy, noisy motorway. The other home is in a
nice, quiet neighborhood, but is much smaller. Which characteristic is more important to you—
home size or the level of noise and traffic? Without knowing that, you can’t make the right choice.

The same is true with software architecture. Let’s say you need to decide what kind of database to use
for your new system. Should it be a relational database, a simple key/value database, or a complex
graph database? The answer will be based on what architectural characteristics are critical to you. For
example, you might choose a graph database if you need high-speed search capability (we’ll call that
performance), whereas a traditional relational database might be better if you need to preserve data
relationships (we’ll call that data integrity).

H HH ah“\“‘v . .
pe\r{orm’o\?“"‘_" tokes Availa bi ”'Y sca\'s ability 10 wainta
he amount we it «a € amount of Uptime of The SYS."“‘M rosponse fime v .
T{ " dho systen 1o proce :stem- Usual measureda 2 CONSISTE s the auwber of use
or 4 ines” (s g9 in o 1ate &
pusiness redV ree “nipgg”) % Would be eor reguests ¢ 0ases

Here are some of the more common arthitectural
chavactevisties. \/ou'll be |ca\rnin5 all about these
in Chapter 2.

Check the things you think might be considered architectural characteristics—something that the structure of the
software system supports.

|| Changing the font size in a window on the user interface screen
|| Making changes quickly

|| Handling thousands of concurrent users

|| Enerypting user passwords stored in the database

|| Interacting with many external systems to complete a business request

——— Solution on page 30

The term architectural characteristics might not be familiar
to you, but that doesn’t mean you haven’t heard of them before.
Collectively, things like performance, scalability, reliability, and
availability are also known as nonfunctional requirements, system
quality attributes, and simply “the -ilities” because most end with
the suffix -tlity. We like the term architectural characteristics because
these qualities help define the character of the architecture and
what it needs to support.

Arch‘\{cl‘,{wa\ chavackcris{:'\cs are

. itieal
capabilities that ave et j Z‘\r\c system.

im‘?or{;an{: 1o the suetess

software architecture

LY

To architect software you mus
first address:

Capabilities key to the new app’s
success

Who Does Whétt?

Here’s your chance to see how much you already know about many common architectural characteristics. Can you
match up each architectural characteristic on the left with its definition on the right? You'll notice there are more
definitions than characteristics, so be careful—not all of the definitions have matches.

Extensibility Taking into account time frames, budgets, and
developer skills when making architectural choices
N_ We did his
one for You. The system'’s ability to keep its other parts

Aqgility functioning when fatal errors occur

The ease with which the system can be enhanced to

Interoperability

support additional features and functionality

The amount of time it takes to get a response to the

user
Fault tolerance

The system’s ability to respond quickly to change
(a function of maintainability, testability, and

deployability)

Feasibility

The system’s ability to interface and interact with
other systems to complete a business request

————> Solution on page 30

architectural

The second dimension: Architectural decisions

Avrchitectural decisions are choices you make about structural
aspects of the system that have long-term or significant
implications. As constraints, they’ll guide your development team
in planning and building the system.

Should your new home have one floor or two? Should the roof
be flat or peaked? Should you build a big, sprawling ranch house?
These are good examples of architectural decisions because they
involve the structural aspect of your home.

What should Your home look
like? This kind of detision

\/ is an architectural one.

— SNOISID3a WANLO3LIHDZY —,

You might decide that your system’s user interface should not
communicate directly with the database, but instead must go through
the underlying services to retrieve and update data. This architectural
decision places a particular constraint on the development of the user
interface, and also guides the development team about how other
components should access and update data in the database.

Heve's an example
of an avehiteetural

detision. Architectural
\ﬁ decision

This avehiteetural
detision imposes

a tonstraint and
atts as a gquide.

Data
/_\ Access

The user interface must
go through the data

access service to read Service

or write data; it cannot

communicate directly with

the database. ? \

This imagc
) j\) vepresents :?

You'll be learning a lot e ,g/:“lgffn
about avehiteetural j;ccmeook
detisions in Chapter 3. ' This is the

database.

software architecture

It’s not uncommon to have several dozen or more
documented architectural decisions within any system.
Generally, the larger and more complicated the
system, the more architectural decisions it will have.

* .. BE the architect

Your job is to be the architect and identify
)\ as many architectura] decisions as you
can in the diagram below. Draw a circle
around anything that you think might be
an architectura] decision and write what
that decision might be.

Here's a hint—do Yyou have questions
about why cevtain things ave done

the way they are? E/

Y

Order Inventory Payv!nenf
Placement Adjuster Mediator

Credit Gift Reward
Card Card Points
ke e Payment Payment Paywment
Reporting Inventory
Patabase Patabase Patabase \ /

Paymen;r

——— Solution on page 31 Database

logical

The third dimension: Logical components

Thcsc rooms

Logical components are the up the bulp make
building blocks of a system, ocke oﬁw dms
much in the same way rooms are Your home.
the building blocks of your home. ¢
LOGICAL COMPONENTS A logical component performs el)
some sort of function, such as acssr) [o B sEoROOM 3
processing the payment for an g) _@_ﬂi{\
order, managing item inventory, or tracking orders. N m
Logical components in a system are usually represented through a BEDROOM (i, /ik | seoroon 2
directory or namespace. For example, the directory app/order/
payment with the corresponding namespace app .order.

payment identifies a logical component named Payment Processing.
The source code that allows users to pay for an order is stored in this
directory and uses this namespace.

Order
Trackin
Al of Lhese boxes / g

al CO"‘Y°"°"J(’S'

/ ch\(cSCV\‘h \0‘5‘(‘ A
Order {\

Paywment Order

Placement Processing Shipping :’g;vc into the
etails of I°Sit‘—al

‘:°"‘P°hch{;s and
ow to treate

The Payment Protessing then
. logical COM?OV\CY\'{Z is B app min ChaP{:ﬂ' 4‘
Inventory identified through this [
Managewment divectory structure and is F= order
implemented {‘)wou%h these L
three sourte tode tiles. ___ 7 £ payment
——[E| pay_with_creditcard.py

Arthiteetural . .
tomponents are _E| pOY—Wlth_gl ftcard. py
language-agnostie. —E| process_refund.py

We \)us{; haFPch +o
be using Python

heve.

10

software architecture

'@ en your Penci]. - A logical component should always have a well-

N\ defined role and responsibility in the system—in

_ ‘ other words, a clear definition of what it does.
You've just created the following two components for a

new system, and your development team wants to start This component is vesponsible
writing class files to implement them. Can you create for © ickFand ack” |?£ locajw/]/
a directory structure for them so they can start coding? P pack

) , items in a warehouse (that’s the Order
Flip to the end of the chapter for our solution. “piek” part), then determines

the correet box size for the
items so they tan be shipped
rotile

Fulfillment

This is the vole and
vesponsibility statement
for the Order
Ful£i|lmcn{: Com‘?oncn{i-

Wn
Jnsweh y Our

L]
(]
Stick

Logica

~al Com
They h

Y hold the
Usinegg fUnCtISOour

————> Solution on page 32

therejare no o
Dumb Questions

Q,: What is the difference between the system functionality and the domain?

A: The domain is the problem you are trying to solve, and the system functionality is how you are solving that problem. In other
words, the domain is the “what,” and the system’s functionality is the “how.”

11

architectural

The fourth dimension: Architectural styles

Homes come in all shapes, sizes, and styles. While there
are some wild-looking houses out there, most conform to a

|
H] particular style, such as Victorian, ranch, or Tudor. The style Eath vpn:
2 . region of {),
g‘ of a home says a lot about its overall structure. For example, world ha ; L e
5| ranch homes typically have only one floor; colonial and home st ’ owh set
g Tudor homes typically have chimneys; contemporary homes ‘em out at z&:*éheck
5| typically have flat roofs. en-wikiped: ps://

- iPedia.org/yiki /
l ist_of

_housc“sfyl es.

Architectural styles define the overall shape and structure of a software system,
each with its own unique set of characteristics. For example, the microservices

architectural style scales very well and provides a high level of agility—the ability S'(Z)’lcs
to respond quickly to change—whereas the layered architectural style is less ter in the book. We'v
complex and less costly. The event-driven architectural style provides high levels evoted thapteys to ¢
of scalability and is very fast and responsive. €ath of thep,
é
microservices itestore Ve”fw .
ed A¥C Ty,
\ayer e 5.
Mﬁé’af
Ure

i

Theve ave a number of diffevent
avthitectural s{:\/lcs, but ﬁo\r{:una‘f:cly
not as many as there are house styles.

12

software architecture

Because the architectural style defines the overall shape and
characteristics of the system, it’s important to get it right the
first ime. Why? Can you imagine starting construction on

a one-story ranch home, and in the middle of construction
changing your mind and deciding you’re going to build a
three-story Victorian house instead? That would be a major
undertaking, and likely exceed your budget and affect when you
can move into the house.

Software architecture is no different. It’s not easy changing
from a monolithic layered architecture to microservices. Like
the house example, this would be quite an undertaking:

Later in the book, we’ll show you how to
properly select an architectural style based
on characteristics that are important to you.

Which brings us back to an earlier

story Vietoria,

wi . . .
very dif«cicult beaou’d be point—all of the dimensions of software
Struttures duse the architecture are interconnected. You
are so diff, erent.

can’t select an architectural style without
knowing what’s important to you.

The tightly wound tendons and muscles in a lion’s legs enable it to reach
speeds as fast as reach speeds as fast as 50 miles (80 kilometers) per hour
and leap up to 36 feet (11 meters) in a single bound. This characteristic
allows lions to survive by catching fast prey.

Look around you—what else has a structure or shape that defines its
characteristics and capabilities?

Fun faet: A lion doesn't have mueh
onl\/ run 1Cas‘l: in short buyrs
than the lion thasing you,

stamina and can
ts. |£ You tan last longcr
then You Jus{: might survive.

13

putting the pieces

Who Does What

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out
which dimension does what by matching the statements on the left with the software architecture dimensions on
the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

This is about availability-
This systew wwust be available for our overseas customers. ——— >

Customers are complaining about the background color
of the new user interface.

The produet owner insists that we get new features and
bug fixes out to our customers as fast as possible.

Qur system uses an event-driven architecture.

We need to support up to 300,000 concurrent users in
this system.

The single payment service will be broken apart into
separate services, one for each payment type we accept.

We are going to start offering reward points as a new
paywent option when paying for an order.

We are breaking up the orderPlacement class into
three smaller class files.

The user interface shall not communicate directly with
the database.

N ARCHITECTURAL CHARACTERISTICS —;,

We did this

one for Yyow

LOGICAL COMPONENTS

— 37ALS WENLOSLIROZY —

— SNOISID3a WANLO3LIHOZY —,

——— Solution on page 33

14

If I'm responsible for the
design of a software system,
does that mean I'm responsible

for its architecture as well?
Aren’t those the same thing?

software architecture

No, architecture and design are different.

You see, architecture is less about appearance and more about structure,
while design is less about structure and more about appearance.

The color of a room’s walls, the placement of furniture, and the type of
flooring (carpet or wood) are all aspects of design, whereas the physical
size of the room and the placement of doors and windows are part of
architecture—in other words, the structure of the room.

Think about a typical business application. The architecture, or structure,
is all about how the web pages communicate with backend services and
databases to retrieve and save data, whereas the design is all about what
each page looks like: the colors, the placement of the fields, which design
patterns you use, and so on. Again, it becomes a matter of structure versus
appearance.

Your question is a good one, because sometimes it gets confusing trying to
tell what is considered architecture and what 1s considered design. Let’s
investigate these differences.

15

design vs. architecture

A design perspective

Suppose your company wants to replace its outdated order processing system with a new
custom-built one that better suits its specific needs. Customers can place orders and can
view or cancel orders once they have been placed. They can pay for an order using a
credit card, a gift card, or both payment methods.

Luky you. You've been put ;
put i
K~ charge of building the new o:‘rdcr
Protessing system. This is the bi
break Yo ;

)
uve been |oo|(ih5 for, and

\/ou'kc anxious to 3e‘l: stavted.

From a design perspective, you might build a Unified Modeling Language (UML) class diagram like the
one below to show how the classes interact with each other to implement the payment functionality.

While you could write source code to implement these class files, this design says nothing about the
physical structure of the source code—in other words, how these class files would be organized and deployed.

Ovdevrs tan have one or
two payment types, and
payment types an be
assotiated with zero or
movre ordevrs.

Order / \J PaymentMethod
+ viewOrder() 0. 1.2

+ placeOrder()
+ cancelOrder()

+ applyPayment()
+ refundPayment()

A The CreditCard and
GiftCard classes inherit
| behavior ‘(:rom the

PaymentMethod elass.
CreditCard GiftCard
+ addNewCard() + getBalance()
+ removeCard()

16 Chapter 1

software architecture

An architectural perspective

Unlike design, architecture is about the structure of the system—things like services, databases,
and how services communicate with each other and the user interface.

Let’s think about that new order processing system again. What would the system look like?
From an architectural perspective, you might decide to create separate services for each payment
type within the order payment process and have an orchestrator service to manage the
payment processing part of the system, like in the diagram below.

As a gentle veminder, _ The Faymey,

eath of these boxes service auowf /'chﬁij{;o,.
« . n u
vepresents a “sevvice. Order Payvglenf ;‘3’) O Your or gy
\ y | Placement >| Mediator £y 2 Credit eapg
Service Service P Card, o oy

Credit g::z
Card .
(5 Service Service

Eath servite would have
its own tlass diagram
vepresenting the design

of the service.

>

Exercise

Check all of the things that should be included in a diagram from an architectural perspective.

|| How services communicate with each other

|| The platform and language in which the services are implemented
|| Which services can aceess which databases

|| How many services and databases there are

———— Solution on page 34

17

architecture—design

The spectrum between architecture and design

Some decisions are certainly architectural (such as deciding which architectural style to use),
and others are clearly design-related (such as changing the position of a field on a screen or
changing the type of a field within a class). In reality, most decisions you encounter will fall
between these two examples, within a spectrum of architecture and design.

Things on this side are Things on this side are
¢ more about arehitecture. more about design.),

Don't worry i(: You
don’{‘, know all ‘U\C

Architecture —_—— Design vsvers o this

You'“ £ind most of Your detisions £all r:irdse:\/‘;i” L
within the spectrum vight about here. carn more dbou

\c\ﬂ\is topie on the
en your penci]

next page.
A, Circle all of the things that you think fall somewhere in the middle of the spectrum between
architecture and design.

ace framework

) . ser interf
: class file database Selecting 2! .
Breaking up @ - use a graph d@ Migratin -
Deciding to Redesigning a web o eroservices
Choosi Breaki Page :
fra;:j;g?ka Persistence servai:;:;ng aparta Choosing an XML parsing library

———— Solution on page 34

Why should | care
where in the spectrum
between architecture and
design my decision lies?
Does it really matter that
much?

Yes, it matters a lot. You sce, knowing where along the spectrum
between architecture and design your decision lies helps determine who
should be responsible for ultimately making that decision. There are some
decisions that the development team should make (such as designing the
classes to implement a certain feature), some decisions that an architect
should make (such as choosing the most appropriate architectural style for
a system), and others that should be made together (such as breaking apart
services or putting them back together).

18

software architecture

Where along the spectrum does your decision fall?

Is it strategic or tactical?

Strategic decisions are long term and influence future actions or
decisions. Tactical decisions are short term and generally stand
independent of other actions or decisions (but may be made in the
context of a particular strategy). For example, deciding how big your
new home will be influences the number of rooms and the sizes of those
rooms, whereas deciding on a particular lighting fixture won’t affect
decisions about the size of your dining room table. The more strategic
the decision, the more it sits toward the architecture side of the spectrum.

Somclc;\vncS wa\(\“‘}
. Vﬁo““’"‘% ' .
w " ““‘a \ot of How wuch effort will it take to construet or change?
w.}m‘fi’/wcy\\ eall , Architectural decisions require more effort to construct or
ii‘o: « avt\\\{:cd’/""c change, while design decisions require relatively less. For
05!

e example, building an addition to your home generally requires
morniny \% a high level of effort and would therefore be more on the
architecture side of the spectrum, whereas adding an area rug

to a room requires much less effort and would therefore be more
on the design side.

Does it have significant trade-offs?

Trade-offs are the pros and cons you evaluate as you are making a
decision. Decisions that involve significant trade-offs require much more
time and analysis to make and tend to be more architectural in nature.
Decisions that have less-significant trade-offs can be made quicker, with
less analysis, and therefore tend to be more on the design side.

/t_Wc)rc 9oing 1o walk you through
the details of all three of these
fattors in the next several pages.

Can you think of a decision that doesn’t involve a trade-off, no matter how small or insignificant? Here’s a hint:
if you think you've found a decision that doesn’t involve a trade-off, keep looking.

19

level of

Strategic versus tactical

The more strategic a decision is, the more architectural it becomes. This is an important
distinction, because decisions that are strategic require more thought and planning and

are generally long term.

Strategic <= > Tactical

Architecture

How
can | determine
whether a decision
is more strategic or
moretactical?

Good questlon. You can use these three questions to help
determine if something is more strategic or tactical. Remember, the
more strategic something is, the more it’s about architecture.

1. How much thought and planning do you need to
put into the decision?

If making the decision takes a couple of minutes to an hour, it’s more
tactical in nature. If thought and planning require several days or weeks,
it’s likely more strategic (hence more architectural).

2. How many people are involved in the decision?
The more people involved, the more strategic the decision. A decision
you can make by yourself or with a colleague is likely to be tactical.
A decision that requires many meetings with lots of stakeholders is
probably more strategic.

3. Does your decision involve a long-term vision or a
short-term action?
If you are making a quick decision about something that is temporary
or likely to change soon, it’s more tactical and hence more about design.
Conversely, if this is a decision you’ll be living with for a very long time,
it’s more strategic and more about architecture.

20

software architecture

en your penci]

Oh dear. We've lost all of our marbles and we need your help collecting them and putting them
back in the right spot. Using the three questions on the previous page as a guide, can you figure
out which jar each marble should go in?

Q Q. o)

Picking a Deciding o get Peploying in the
icking 2 your first dog cloud or on prewmises
programwing
language for your
hew project g
@ Choosing a &
parsing library
.. Migrating Using a design
Ked“‘?ﬂ'j{"ﬂ;"’"" your systew to pattern
user iertace wicroservices

i i
Py gy —Ades iy e

‘‘‘‘‘

x| = I = =
Strategic Somewhere in Tactical
bhetween

————> Solution on page 35

21

level of

High versus low levels of effort

Renowned software architect and author Martin Fowler once wrote that “software Mavtin
architecture is the stuff that’s hard to change.” You can use Martin’s definition & (h‘H:Fs: /
to help determine where along the spectrum your decision lies. The harder
something is to change later, the further it falls toward the architecture side of the
spectrum. Conversely, the easier it is to change later, the more it’s probably related

to design.

Fowler’s website
/mavrtinfowler.
tom/arthitecture) has

lo'l:s o‘c usc(:ul s‘l:u‘“ abou{:
avchiteeture.

Architecture [

High effort < > Low effort

Suppose you are planning on moving from one architectural style to another; say, from a
traditional n-tiered layered architecture to microservices. This migration effort is rather
difficult and will take a lot of time. Because the level of effort is high, this would be on
the far end of the architecture side of the spectrum.

- o the \3\[0\4{',
hanon
%azac %'\C\ds on 3
web Ya%g s move

te
about appeavan
than strueture=YC

anokher veason

why this WO"\d_bc
deved desiyr

.

Loy\s\

22

Oh degay. thi

4 hlS is i
C"aﬁgfs s oF el
archite, {:(Aka'[h?: that are

HCF,',:(‘I-[:_

Now suppose you're rearranging fields on a user interface screen. This
task takes relatively less effort, so it resides on the far end of the design
side of the spectrum.

[18] [18I
From Depart From: | |V|
| | v | | dd/mm/yy | To: | I vl
To Return S
| [w] [aammyy | Depart: [da/mmiyy | Return: [de/mmyyy |
| Find Flights | | Find Flights |

Code Magnets

software architecture

We had all of these magnets from our to-do list arranged from high effort to low effort, and somehow
they all fell on the floor and got mixed up. Can you help us put them back in the right order based on the
amount of effort it would take to make each change?

{ ort .
arrows \m{: the \\\g\n—caifc‘d 1 ‘- ngh effor‘r
E,;?s' at the to? ok the ‘:ia?;,c e °£
S|
\owcr—c“ov{: ones towa¥ \ A
khe 7392

Migrating Your system to
a cloud environment

Renaming a method or
function

art a single

preaking 2P © te ones

service into seP

Moving from a relational
to a graph database
Breaking apart a class file

\/
Low effort

————> Solution on page 36

23

significant

Significant versus less-significant trade-offs

Some decisions you make might involve significant trade-offs, such as choosing which city

to live in. Others might involve less significant trade-offs, like deciding on the color of

your living room rug. You can use the level of significance of the trade-offs in a particular
decision to help determine whether that decision is more about architecture or design. The
more significant the trade-offs, the more it’s about architecture; the less significant the trade-

offs, the more it’s about design.

More-significant - > Less-significant
trade-offs Trade-offs

Architecture [

| wonder
if microservices

might be & good fit
for this project.

o,

Serig, s

abo, ¢ a"chifez fis ore
ur,
+ Scalability - Cost /
+ Agility - Cowmplexity
+ Elasticity - Performance
+ Fault tolerance - Workflow

Should | break This 4
: rade_
my class file 5o sign Fif: z«ff is not
aPN’t? 'H'us dCC,‘S,-o:"" m&king
abou-é dCS,ah Ore
+ Maintainability —A - More classes

+ Readability

24

software architecture

WL Exereise

Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might
help is to identify the decisions that involve significant trade-offs, since those will require more thinking and
will take longer. Can you help us by identifying which decisions have significant trade-offs and which don’t?

Is this a significant trade-off?

| |VYes | No Picking out what clothes to wear to work today

[IYes [|No Choosing to deploy in the cloud or on premises
[IYes [|No Selecting a user interface framework

| IYes | |No Nawing a variable in a class file

[|Yes | No Choosing between vanilla and chocolate ice cream

| lYes | |No Peciding which architectural style to use

[]Yes [INo Choosing between REST and messaging

[IYes [INo Using full data or only keys for the message payload
IYes [INo Selecting an XML parsing library

|| Yes | No Peciding whether or not to break apart a service
|| Yes | No Choosing between atomic or distributed transactions

[|Yes | No Peciding whether or not to go out fo dinner tonight

———— Solution on page 37

25

chapter

Putting it all together

Now it’s time to put all three of these factors to use to figure out whether a decision is
more about architecture or more about design. This tells development teams when to
collaborate with an architect and when to make a decision on their own.

Let’s say you decide to use asynchronous messaging between the Order Placement
service and the Inventory Management service to increase the system’s responsiveness
when customers place orders. After all, why should the customer have to wait for the
business to adjust and process inventory? Let’s see if we can determine where in the
spectrum this decision lies.

ents ave sent. o

e
naSCan‘t servie

cuskm
|y\vancOY‘f adys
fhe Inventory Ma

Ehrough this queue)
Order - Inventory
Placement Management
ot || > e () s
Service m. Service

Significance of trade-offs Strategic or tactical
Using a queve will increase responsiveness when o Not many people need to be
placing an order, but inventory may not be updated The "9""c icant involved in this decision, and
in a timely manner, likely creating back-order W Jc‘ra_d_““c £s push this it doesw't involve long-term
conditions. These are pretty significant trade-offs. detision eloser to planning, so it’s wore tactical.

architecture.

)

Architecture Pesign

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably

be consulted or involved. We needed all three factors Level of effort

to determine whether this decision was more about It doesn’t take a whole lot

architecture or design. of effort to send a message
10 another service. This is
prefty standard stuff.

26

You made it!

software architecture

Congratulations—you made it through the first part of your journey to understanding

software architecture. But before you roll up your sleeves to dig into further chapters, here’s

a little quiz for you to test your knowledge so far. For each of the statements below, circle

whether it is true or false.

"True or False

True False Design is like the structure of a house (walls, roof, layout, and so on), and
software architecture is like the furniture and decoration.

True False Most decisions are purely about architecture or design. Very few
exist along a spectrum between architecture and design.

True False The more strategic your decision, the more it’s about architecture;
the more tactical, the more it's about design.

True False The more effort it takes to implement or change your decision, the more
it's about design; the less effort, the more it’s about architecture.

True False Trade-offs are the pros and cons of a given decision or task. The more
significant the trade-offs become, the more it's about architecture.

——— Solution on page 38

— Bul]et Points

= Software architecture is less about appearance and
more about structure, whereas design is more about
appearance and less about structure.

= You need to use four dimensions to understand
and describe software architecture: architectural
characteristics, architectural decisions, logical
components, and architectural style.

= Architectural characteristics form the foundational
aspects of software architecture. You must know
which architectural characteristics are most important
to your specific system, so you can analyze trade-offs
and make the right architectural decisions.

= Architectural decisions serve as guideposts to help
development teams understand the constraints and
conditions of the architecture.

® The logical components of a software architecture

solution make up the building blocks of the system.
They represent things the system does and are
implemented through class files or source code.

Like with houses, with software there are many
different architectural styles you can use. Each style
supports a specific set of architectural characteristics,
so it's important to make sure you select the right one
(or combination of them) for your system.

It's important to know if a decision is about
architecture or design, because that helps determine
who should be responsible for the decision and how
important it is.

27

software architecture

Software Architecture Crossword

Congratulations! You made it through the first chapter and learned
about what software architecture is (and isn’t). Now, why don’t you
try architecting the solution to this crossword?

1 2 3

[|

8 6

13

EEEE

i EEE

Across

2. An architectural style determings the system’s overall
4. -driven is an architectural style

5. Architectural characteristics are sometimes called this
10. Architectural decisions are usually term

12. If something takes a lot of to implement, it’s

probably architectural

13. You’re learning about software

15. You’ll make lots of architectural

16. A system’s components are its building blocks
18. The number of rooms in your home is part of its

19. Architecture and design exist on a

EEEEEEEE

Down

1. Strategic decisions typically involve a lot of these
3. Building this can be a great metaphor

6. Decisions can be strategic of
7. How many dimensions it takes to describe a software
architecture

8. A website’s user involves lots of design decisions
9. The overall shape of a house or a system, like Victorian

or microservices

11. It’s important to know whether a decision is about
architecture or this

13. You might want to become one after reading this book
14. You analyze these when making an architectural
decision

17. Trade-offs are about the and cons

———— Solution on page 39

software architecture demystified

From page 2

Gardening is another useful metaphor for describing software architecture. Using the space below, can you
describe how a garden might relate to software architecture?

The overall layout of a garden an be compared to the architectural style, whereas eath grouping of

like plants (either by type or color) an vepresent the architectural components. Individual plants
within a group vepresent the class files implementing those components.

Qardens are influenced by weather in the same way a software architecture is influenced by thanges
in ‘Ecchnolog\/, F|a{:‘(:ov-ms, the dCFlO\/thh‘{: environment, and so on. Also, if You don't pay attention
to the garden, weeds S\row—-\')us{: like struetural dcca\/ within Your arthitetture.

en your penci] From page 9

2, Solution

What features of your home can you list that are structural and related to its architecture?

Q H v 1S
oX | ow he front doo
The s2¢ and z\‘a\'\?: doest has a':a;o)'uﬂoors it thcv'\i: i‘_;c C:La“ccwa\[is
\lO\A‘(‘*'L\\c\:o oW smd STairs mishfsbcfaoldch ilv;\CC\C\'\aw- aCLCSS.‘b e
\aim 3997 9 Problem)
towy'e” 16 em N
e \u’ot\““ o£ \io\,\' The hei 5“{" of your Lcﬂm%;
The szt c\osf)@ Gk Yo+ (cs\ch‘ a“\/ £ you happen
\)Cdvoo"‘ OQ L\O*/\‘CS) bc VCV\I {',a“)
HOW man b -{: \\Q‘JC \O
3dding aynci, t‘r?(:om; tha fin attic for storing all of (?fﬂdc deck or patiq
hard £5 4o) athroom i really the stuff You never use AVZ;S: You live in +he

» of Course)

you are here » 29

exercise

From page 6

<9 Exercise

Solution

Check the things you think might be considered architectural characteristics—something that the structure of the
software system supports.

|| Changing the font size in a window on the user interface screen

IE Making changes quickly — This .is known as agili Y in

arthitetture.
This is known as clas{ici{:\/-

E Handling thousands of concurrent users 4/_ S
i H Intevo bility.
|| Enerypting user passwords stored in the database / interoperability

@ Interacting with many external systems to complete a business request

W})O DOeS W})&t O From page 7

Solutidn

Here's your chance to see how much you already know about many common architectural characteristics. Can you
match up each architectural characteristic on the left with its definition on the right? You'll notice there are more
definitions than characteristics, so be careful—not all of the definitions have matches.

Taking into account time frames, budgets, and
developer skills when making architectural choices

Extensibility
N We did this

oneé tovr yOlA-

The system’s ability to keep its other parts
Aqility functioning when fatal errors occur

The ease with which the system can be enhanced to
support additional features and functionality
Interoperability
The amount of time it takes to get a response to the
user

Fault tolerance The system’s ability to respond quickly to change

(a function of maintainability, testability, and
deployability)

\> The system’s ability to interface and interact with

other systems to complete a business request

Feasihility

30

software architecture demystified

From page 9

BE the architect
Solution

Your job is to be the architect and identify
as many architectura] decisions as you
can in the diagram helow. Draw a circle

around anything that you think might be
an architectura] decision and write what
that decision might be.
The 0\'66‘;’ e ,‘Z_hc /"VCh'ﬁory Serviee
\7\355'“(_‘“ " Communicafjhﬂ with
;oD © Payment cer,

\ ! Xn0) Wh
e veRo* (¥4 Y not the Ovd
‘hda*/a\)asc \N \1 P’acc'neh-é Seszc;?‘

> >
Order Inventory wh Payment
Placement Adjuster I Y does the Mediator You decidey
Ch.foky sery; bkeak up £
aVc "éS ce Pa P hc
|/ dafaba_gc;wn)’m h'é Serv,ces
Credit Gift Reward
Card Card Points
S —— — Payment Payment Payment
Reporting Order Inventory
Patabase Patabase Patabase \ /
Th
is ;"'ft;{;i[;r P/ace,,,ch ¢ s
Com, .) rvice . e
the P&ymen,é dazzsaflna with \j\ 2 enk SCW‘“:C:\Z) 7 —
se. Whye A ok H\C;aubasc- Why “cadn Payment
ghacind aJC dataodse or Database
F SCY3V3 ¢
servite:

you are here » 31

exercise

en your penci]

From page 11

~. dolution

You've just created the following two components for a new system, and your development team
wants to start writing class files to implement them. Can you create a directory structure for them
so they can start coding?

Customer Customer

Profile Preferences

E bu\/_ﬁ‘om_us
L B customer

4 profile
L— E SOUYCC_COdC_‘plICS

. yrc(—\crcnc,es
[‘__ E SOUYCC_COdC_‘plICS

32

software architecture

LO DO@S WLa:t 9 From page 14
Solution

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out
which dimension does what by matching the statements on the left with the software architecture dimensions on
the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

This is about availability-
This system must be available for our overseas customers, ———>

We did this
Customers are complaining about the backaround color one for you

N ARCHITECTURAL CHARACTERISTICS —,

This :

IS is abouf aﬁif)’
The product owner insists that we get new features and
bug fixes out to our customers as fast as possible.

Our systewm uses an event-driven architecture.

LOGICAL COMPONENTS

We need fo support up t0 300,000 concurrent users in
this system, R This is about sealability-

The single payment service will be broken apart into
separate services, one for each payment type we accept.

— 37ALS WANLO3LIHDZEY —

We are going to start offering reward points as a new
paywent option when paying for an order.

We are breaki the orderPlacement class info
three smaller class files.

The user interface shall not communicate directly with —/

the database.

— SNOISID3a WANLO3LIHOEY —,

33

exercise

From page 17

Check all of the things that should be included in a diagram from an architectural perspective.

Hoy,
68\ :o'he'é/)l'h

@] How services communicate with each other d&ig’:/’/cm,,, 223 Shouy
|| The platform and language in which the services are implemented P/e"f’ecm: ?
Z] Which services can access which databases

% How many services and databases there are

From page 18

i arpen your penci]
e yoSOll?’ceion1

Circle all of the things that you think fall somewhere in the middle of the spectrum between
This is design. architecture and design.

his ;.

\ rehit,
file - sorface framework ect,,.
ing up a class . h database inq a user inte e.
Breaking Deciding to use grap Selecting Migratin . v
R g to Microseryiges

Choosin > p e'jes"gning aw
9 a per Breakin eb page
framework Persisteng service g apart a g

Choosing an XML parsing library
These are design. _]

34

software architecture

From page 21

“~Shar T penci]
e S hetion

Oh dear. We've lost all of our marbles and we need your help collecting them and putting them back in the right spot.
Using the three questions on page 20 as a guide, can you figure out which jar each marble should go in?

This vequires a lot of planning, is

tision involves

This de - is d involves a lot
) Rk ‘Qam\\ . movre vnsnona\ry, and Involves a lo
o;b*:o é,\:’ the entive 1 of ?eo?le-
. U
o g \>
,_)O ka
< _,_/7 g0 .
. 1?{}"“ Picking Vecldl;ligs’;odgef Peploying in fh.e
DN programming your 09 cloud or on premises
AN language for your
c a9 You tan usua”\/ make

these detisions alone.

& N
QO g O
parsing library

Migrating Using a design
pattern

\ new project

Redesigning your
user inferface

your systew to 5.
wicroservices %d |
R "“k

ma iy
.......

Strategic Somewhere in
hetween

35

exercise solutions

Code Mafnets From page 23
Solution

We had all of these magnets from our to-do list arranged from high effort to low effort, and
somehow they all fell on the floor and got mixed up. Can you help us put them back in the
right order based on the amount of effort it would take to make each change?

High effort

A

« \‘ ACC"
Don't believe 2 Plug “parado* of thoi
on

{'p 1) ‘EC seav Ch C'\%"\C' x
w [\ ‘c vov'\
/

£loct
These take 3 \:;: :f J:,\\c a\'c\\\)cec’c,wc

‘H‘C“Qon e cheum. Replacing your user
side of the spe interface framework

oh mustard

iding whi
ecid o buy

Migrating your system to
a cloud environment

Moving from a relational
to a graph database

This would fall \righ{: about in the middle
of the speetrum between architecture
and dcsign.

Breaking apart a single
service into separate ones

Resolving a merge
conflict in Git

These take \rcla{:ively less effort and

would thevefore v

. eside move on the desi l
side of the SPCC{:rum. €sign t% I Breaking apart a class file '

Renaming a method or
function

Low effort

36 Chapter 1

software architecture

1.7 Exercise From page 25
> Dolution
Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might help
is to identify the decisions that involve significant trade-offs, since those will require more thinking and will
take longer. Can you help us by identifying which decisions have significant trade-offs and which ones don’t?
Ok‘?' So "‘3)’56 this is g
Significant Tradeoffs? \[- diffieult decision sometimes,
| |Yes @] No Picking out what clothes fo wear to work today
[X Yes " | No Choosing to deploy in the cloud or on prewisis
Theve are tovtainy bﬂdc\’d .
| |Yes @ No Selecting a user inferface framework £ _(f. yeve, so £his ¢ J
either way:
| |Yes @ No Peciding on the name of a variable in a class file
| |VYes E] No Choosing between vanilla and chocolate ice cream
@ Yes | No Peciding which architectural style fo use ﬁam mpatt sealability)
ese an 7)\
mantes a“d oveva
K] Yes [|No Choosing between REST and messagivllg/ ‘:a-\:;\.\:b\\\bfg
[<|Yes | |No Using full data or only keys for the message payload
[|VYes E] No Selecting an XML parsing library
[E Yes | No Peciding whether or not fo break apart a service
K] Yes | No Choosing between atowic or distributed fransactions
|| VYes @ No Peciding whether or not to go out to dinner tonight
Are .
You getting hungy yet? j‘ This ean impact data integrity
and data Consis{:cnc\/, but also
sealability and performante.

37

exercise

True
True (False)

False

True
False

True or False
Solution

From page 27

ThlS is badeaV‘ds,
Design is like the structure of a house (walls, roof, layout, and so on), and r\/
software architecture is like the furniture and decoration.

Most der:
- . . €Lis;,
Most decisions are purely about architecture or design. Very few Wi'éhi,, Cisiopg lie
exist along a spectrum between architecture and design. befwe&) e SPflffru,h
and ... ehiteps
dCSish_ ure
The more strategic your decision, the more it's about architecture;
the more tactical, the more it's about design.
The more effort it takes to implement or change your decision, the more
it's about design; the less effort, the more it's about architecture. This 1 \JaC\LwaYdS-
\}

Trade-offs are the pros and cons of a given decision or task. The more
significant the trade-offs become, the more it's about architecture.

38

software architecture

“ Software Architecture Crossword Solution

From page 23

=
D
— o
< ~
= [>]—=|w O O
o — L
e =) O o
w|o|Dfx| |+ W{O|L|L [N
L o [© -~
ol wf |w
<) w| [+ n
IO w| [Qffnl— P L
n — T) 0 d
= H[<|O|-[—]O —)
pa — 0 n ~
o | — < — [lW]|O|+
> —| |O @) D
Ll Z |- e w| [a|x|O
O fa) ~
! %

39

	Cover
	Title Page
	Copyright
	About the Authors
	Table of Contents
	Intro
	Chapter 1: Software Architecture Demystified
	Building your understanding of software architecture
	Building plans and software architecture
	The dimensions of software architecture
	Puzzling out the dimensions
	The first dimension: Architectural characteristics
	The second dimension: Architectural decisions
	The third dimension: Logical components
	The fourth dimension: Architectural styles
	A design perspective
	An architectural perspective
	The spectrum between architecture and design
	Where along the spectrum does your decision fall?
	Strategic versus tactical
	High versus low levels of effort
	Significant versus less-significant trade-offs
	Putting it all together
	You made it!

	Chapter 2: Architectural Characteristics
	Causing Lafter
	What are architectural characteristics?
	Defining architectural characteristics
	Characteristics are nondomain design considerations
	Characteristics influence architectural structure
	Limit characteristics to prevent overengineering
	Consider explicit and implicit capabilities
	The International Zoo of “-ilities”
	Process architectural characteristics
	Structural architectural characteristics
	Operational architectural characteristics
	Cross-cutting architectural characteristics
	Sourcing architectural characteristics from the problem domain
	Sourcing architectural characteristics from environmental awareness
	Sourcing architectural characteristics from holistic domain knowledge
	Composite architectural characteristics
	Priorities are contextual
	Lost in translation
	Architectural characteristics and logical components
	Balancing domain considerations and architectural characteristics
	Limiting architectural characteristics

	Chapter 3: The Two Laws of Software Architecture
	It starts with a sneaker app
	What do we know so far?
	Communicating with downstream services
	Analyzing trade-offs
	Trade-off analysis: Queue edition
	Trade-off analysis: Topic edition
	The first law of software architecture
	It always comes back to trade-offs
	Making an architectural decision
	What else makes a decision architectural?
	The second law of software architecture
	Architectural decision records (ADRs)
	Writing ADRs: Getting the title right
	Writing ADRs: What’s your status?
	Writing ADRs: Establishing the context
	Writing ADRs: Communicating the decision
	Writing ADRs: Considering the consequences
	Writing ADRs: Ensuring governance
	Writing ADRs: Closing notes
	The benefits of ADRs
	Two Many Sneakers is a success

	Chapter 4: Logical Components
	Logical components revisited
	Name that component
	Adventurous Auctions goes online
	Logical versus physical architecture
	Creating a logical architecture
	Step 1: Identifying initial core components
	Workflow approach
	Actor/action approach
	The entity trap
	Step 2: Assign requirements
	Step 3: Analyze roles and responsibilities
	Sticking to cohesion
	Step 4: Analyze characteristics
	The Bid Capture component
	Component coupling
	Afferent coupling
	Efferent coupling
	Measuring coupling
	A tightly coupled system
	Applying the Law of Demeter
	A balancing act
	Some final words about components

	Chapter 5: Categorization and Philosophies
	There are lots of architectural styles
	The world of architectural styles
	Partitioning: Technical versus domain
	Deployment model: Monolithic versus distributed
	Monolithic deployment models: The pros
	Monolithic: The cons
	Distributed deployment models: The pros
	Distributed deployment models: The cons
	And that’s a wrap!

	Chapter 6: Layered Architecture
	Naan & Pop: Gathering requirements
	Design patterns redux
	Layering MVC
	Layering it on
	Translating layers into code
	Domains, components, and layers
	Drivers for layered architecture
	Layers, meet the real world: Physical architectures
	Physical architecture trade-offs
	One final caveat about domain changes
	Layered architecture superpowers
	Layered architecture kryptonite
	Layered architecture star ratings
	Wrapping it up

	Chapter 7: Driven by the Domain
	Modular monolith?
	Domain pains changes
	Why modular monoliths?
	Show me the code!
	Keeping modules modular
	Taking modularity all the way to the database
	Beware of joins
	Modular monolith superpowers
	Modular monolith kryptonite
	Modular monolith star ratings
	Naan & Pop is delivering pizza!

	Chapter 8: Microkernel Architecture
	The benefits of Going Green
	The two parts of microkernel architectures
	The spectrum of “microkern-ality”
	Device assessment service core
	Encapsulated versus distributed plugins
	Plugin communication
	Cubicle conversation
	Plugin contracts
	Going Green goes green
	Microkernel superpowers
	Microkernel kryptonite
	Microkernel star ratings
	Wrapping it up

	Chapter 9: Do It Yourself
	Making travel easier
	TripEZ’s user workflow
	Planning the architecture
	The architects’ roadmap
	Step 1: Identify architectural characteristics
	Step 2: Identify logical components
	Step 3: Choose an architectural style
	Step 4: Document your decision
	Step 5: Diagram your architecture
	There are no right (or wrong) answers

	Chapter 10: Microservices Architecture
	Are you feeling okay?
	What’s a microservice?
	It’s my data, not yours
	How micro is “micro”?
	Granularity disintegrators
	Why should you make microservices smaller?
	Granularity integrators
	Why should you make microservices bigger?
	It’s all about balance
	Sharing functionality
	Code reuse with a shared service
	Code reuse with a shared library
	Managing workflows
	Orchestration: Conducting microservices
	Choreography: Let’s dance
	Microservices architecture superpowers
	Microservices architecture kryptonite
	Microservices star ratings
	Wrapping it up

	Chapter 11: Event-Driven Architecture
	Too slow
	Speeding things up
	Der Nile flows faster than ever
	What is an event?
	Events versus messages
	Initiating and derived events
	Is anyone listening?
	Asynchronous communication
	Fire-and-forget
	Asynchronous for the win
	Synchronous for the win
	Database topologies
	Monolithic database
	Domain-partitioned databases
	Database-per-service
	EDA versus microservices
	Hybrids: Event-driven microservices
	Event-driven architecture superpowers
	Event-driven architecture kryptonite
	Event-driven architecture star ratings
	Putting it all together
	Wrapping up

	Chapter 12: Testing Your Knowledge
	Welcome to Make the Grade
	Student testing workflow
	Planning the architecture
	The architects’ roadmap
	Step 1: Identify architectural characteristics
	Step 2: Identify logical components
	Step 3: Choose an architectural style
	Step 4: Document your decision
	Step 5: Diagram your architecture
	There are no right (or wrong) answers!

	Appendix: Leftovers
	#1 The coding architect
	#2 Expectations for architects
	#3 The soft skills of architecture
	#4 Diagramming techniques
	#5 Knowledge depth versus breadth
	#6 Practicing architecture with katas

	Index

