

This excerpt contains Chapter 18 of Infrastructure as Code.
The complete book is available on the O’Reilly Online

Learning Platform and through other retailers.

Kief Morris

Infrastructure as Code
Dynamic Systems for the Cloud Age

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11467-1

[GP]

Infrastructure as Code
by Kief Morris

Copyright © 2021 Kief Morris. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins Indexer: Potomac Indexing, LLC
Development Editor: Virginia Wilson Interior Designer: David Futato
Production Editor: Kate Galloway Cover Designer: Karen Montgomery
Copyeditor: Kim Cofer Illustrator: John Francis Amalanathan
Proofreader: nSight, Inc.

June 2016: First Edition
December 2020: Second Edition

Revision History for the Second Edition
2020-11-17: First Release
2021-01-15: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098114671 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Infrastructure as Code, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Linode. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098114671
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

18. Organizing Infrastructure Code. 1
Organizing Projects and Repositories 1

One Repository, or Many? 2
One Repository for Everything 2
A Separate Repository for Each Project (Microrepo) 5
Multiple Repositories with Multiple Projects 6

Organizing Different Types of Code 7
Project Support Files 7
Cross-Project Tests 8
Dedicated Integration Test Projects 9
Organize Code by Domain Concept 10
Organizing Configuration Value Files 10

Managing Infrastructure and Application Code 11
Delivering Infrastructure and Applications 12
Testing Applications with Infrastructure 13
Testing Infrastructure Before Integrating 14
Using Infrastructure Code to Deploy Applications 15

Conclusion 17

iii

CHAPTER 18

Organizing Infrastructure Code

An infrastructure codebase may include various types of code, including stack defini‐
tions, server configurations, modules, libraries, tests, configuration, and utilities.

How should you organize this code across and within projects? How should you
organize projects across repositories? Do infrastructure and application code belong
together, or should they be separated? How should you organize code for an estate
with multiple parts?

Organizing Projects and Repositories
In this context, a project is a collection of code used to build a discrete component of
the system. There is no hard rule on how much a single project or its component can
include. “Patterns and Antipatterns for Structuring Stacks” in Chapter 5 describes
different levels of scope for an infrastructure stack, for instance.

A project may depend on other projects in the codebase. Ideally, these dependencies
and the boundaries between projects are well-defined, and clearly reflected in the way
project code is organized.

Conway’s Law (see “Align Boundaries with Organizational Structures” in Chapter
15) says that there is a direct relationship between the structure of the organization
and the systems that it builds. Poor alignment of team structures and ownership of
systems, and the code that defines those systems, creates friction and inefficiency.

The flip side of drawing boundaries between projects is integrating projects when
there are dependencies between them, as described for stacks in Chapter 17.

1

See “Integrating Projects” in Chapter 19 for a discussion of how and when different
dependencies may be integrated with a project.

There are two dimensions to the problem of how to organize code. One is where to
put different types of code—code for stacks, server configuration, server images, con‐
figuration, tests, delivery tooling, and applications. The other is how to arrange
projects across source code repositories. This last question is a bit simpler, so let’s
start there.

One Repository, or Many?
Given that you have multiple code projects, should you put them all in a single repos‐
itory in your source control system, or spread them among more than one? If you use
more than one repository, should every project have its own repository, or should
you group some projects together into shared repositories? If you arrange multiple
projects into repositories, how should you decide which ones to group and which
ones to separate?

There are some trade-off factors to consider:

• Separating projects into different repositories makes it easier to maintain bound‐
aries at the code level.

• Having multiple teams working on code in a single repository can add overhead
and create conflicts.

• Spreading code across multiple repositories can complicate working on changes
that cross them.

• Code kept in the same repository is versioned and can be branched together,
which simplifies some project integration and delivery strategies.

• Different source code management systems (such as Git, Perforce, and Mercu‐
rial) have different performance and scalability characteristics and features to
support complex scenarios.

Let’s look at the main options for organizing projects across repositories in the light
of these factors.

One Repository for Everything
Some teams, and even some larger organizations, maintain a single repository with
all of their code. This requires source control system software that can scale to your
usage level. Some software struggles to handle a codebase as it grows in size, history,

2 | Chapter 18: Organizing Infrastructure Code

1 Facebook, Google, and Microsoft all use very large repositories. All three have either made custom changes to
their version control software or built their own. See “Scaling version control software” for more. Also see
“Scaled trunk-based development” by Paul Hammant for insight on this history of Google’s approach.

number of users, and activity level.1 So splitting repositories becomes a matter of
managing performance.

A single repository can be easier to use. People can check out all of the projects they
need to work on, guaranteeing they have a consistent version of everything. Some
version control software offers features, like sparse-checkout, which let a user work
with a subset of the repository.

Monorepo—One Repository, One Build
A single repository works well with build-time integration (see “Pattern: Build-Time
Project Integration” in Chapter 19). The monorepo strategy uses the build-time inte‐
gration pattern for projects maintained in a single repository. A simplistic version of
monorepo builds all of the projects in the repository, as shown in Figure 18-1.

Figure 18-1. Building all projects in a repository together

Although the projects are built together, they may produce multiple artifacts, such as
application packages, infrastructure stacks, and server images.

Organizing Projects and Repositories | 3

https://oreil.ly/2KBk8
https://oreil.ly/Dc21t

One repository, multiple builds
Most organizations that keep all of their projects in a single repository don’t neces‐
sarily run a single build across them all. They often have a few different builds to
build different subsets of their system (see Figure 18-2).

Figure 18-2. Building different combinations of projects from one repository

Often, these builds will share some projects. For instance, two different builds may
use the same shared library (see Figure 18-3).

Figure 18-3. Sharing a component across builds in a single repository

One pitfall of managing multiple projects is that it can blur the boundaries between
projects. People may write code for one project that refers directly to files in another
project in the repository. Doing this leads to tighter coupling and less visibility of
dependencies. Over time, projects become tangled and hard to maintain, because a
change to a file in one project can have unexpected conflicts with other projects.

4 | Chapter 18: Organizing Infrastructure Code

A Separate Repository for Each Project (Microrepo)
Having a separate repository for each project is the other extreme (Figure 18-4).

Figure 18-4. Each project in a separate repository

This strategy ensures a clean separation between projects, especially when you have a
pipeline that builds and tests each project separately before integrating them. If
someone checks out two projects and makes a change to files across projects, the
pipeline will fail, exposing the problem.

Technically, you could use build-time integration across projects managed in sepa‐
rate repositories, by first checking out all of the builds (see Figure 18-5).

Figure 18-5. A single build across multiple repositories

Organizing Projects and Repositories | 5

In practice, it’s more practical to build across multiple projects in a single repository,
because their code is versioned together. Pushing changes for a single build to multi‐
ple repositories complicates the delivery process. The delivery stage would need some
way to know which versions of all of the involved repositories to check out to create a
consistent build.

Single-project repositories work best when supporting delivery-time and apply-time
integration. A change to any one repository triggers the delivery process for its
project, bringing it together with other projects later in the flow.

Multiple Repositories with Multiple Projects
While some organizations push toward one extreme or the other—single repository
for everything, or a separate repository for each project—most maintain multiple
repositories with more than one project (see Figure 18-6).

Figure 18-6. Multiple repositories with multiple projects

Often, the grouping of projects into repositories happens organically, rather than
being driven by a strategy like monorepo or microrepo. However, there are a few fac‐
tors that influence how smoothly things work.

One factor, as seen in the discussions of the other repository strategies, is the align‐
ment of a project grouping with its build and delivery strategy. Keep projects in a sin‐
gle repository when they are closely related, and especially when you integrate the
projects at build time. Consider separating projects into separate repositories when
their delivery paths aren’t tightly integrated.

Another factor is team ownership. Although multiple people and teams can work on
different projects in the same repository, it can be distracting. Changelogs intermin‐
gle commit history from different teams with unrelated workstreams. Some

6 | Chapter 18: Organizing Infrastructure Code

organizations restrict access to code. Access control for source control systems is
often managed by repository, which is another driver for deciding which projects go
where.

As mentioned for single repositories, projects within a repository more easily become
tangled together with file dependencies. So teams might divide projects between
repositories based on where they need stronger boundaries from an architectural and
design perspective.

Organizing Different Types of Code
Different projects in an infrastructure codebase define different types of elements of
your system, such as applications, infrastructure stacks, server configuration mod‐
ules, and libraries. And these projects may include different types of code, including
declarations, imperative code, configuration values, tests, and utility scripts. Having a
strategy for organizing these things helps to keep your codebase maintainable.

Project Support Files
Generally speaking, any supporting code for a specific project should live with that
project’s code. A typical project layout for a stack might look like Example 18-1.

Example 18-1. Example folder layout for a project

 ├── build.sh
 ├── src/
 ├── test/
 ├── environments/
 └── pipeline/

This project’s folder structure includes:

src/

The infrastructure stack code, which is the heart of the project.

test/

Test code. This folder can be divided into subfolders for tests that run at different
phases, such as offline and online tests. Tests that use different tools, like static
analysis, performance tests, and functional tests, probably have dedicated sub‐
folders as well.

environments/

Configuration. This folder includes a separate file with configuration values for
each stack instance.

Organizing Different Types of Code | 7

pipeline/

Delivery configuration. The folder contains configuration files to create delivery
stages in a delivery pipeline tool (see “Delivery Pipeline Software and Services” in
Chapter 8).

build.sh/

Script to implement build activities. See “Using Scripts to Wrap Infrastructure
Tools” in Chapter 19 for a discussion of scripts like this one.

Of course, this is only an example. People organize their projects differently and
include many other things than what’s shown here.

The key takeaway is the recommendation that files specific to a project live with the
project. This ensures that when someone checks out a version of the project, they
know that the infrastructure code, tests, and delivery are all the same version, and so
should work together. If the tests are stored in a separate project it would be easy to
mismatch them, running the wrong version of the tests for the code you’re testing.

However, some tests, configuration, or other files might not be specific to a single
project. How should you handle these?

Cross-Project Tests
Progressive testing (see “Progressive Testing” in Chapter 8) involves testing each
project separately before testing it integrated with other projects, as shown in Figure
18-7.

Figure 18-7. Testing projects separately, then together

You can comfortably put the test code to run in the individual stages for each project
with that project. But what about the test code for the integration stage? You can put
these tests in one of the projects, or create a separate project for the integration tests.

8 | Chapter 18: Organizing Infrastructure Code

Keeping integration tests within a project
In many cases where you integrate multiple projects, one project is an obvious entry
point for certain types of tests. For example, many functional tests connect to a front-
end service to prove that the entire system works. If a backend component, such as a
database, isn’t configured correctly, the frontend service can’t connect to it, so the test
fails.

In these cases, the integration test code lives comfortably with the project that provi‐
sions the frontend service. Most likely, the test code is coupled to that service. For
example, it needs to know the hostname and port for that service.

Separate these tests from tests that run in earlier delivery stages—for example, when
testing with test doubles. You can keep each set of tests in a separate subfolder in the
project.

Integration tests also fit well in projects that consume other projects (see “Using Test
Fixtures to Handle Dependencies” in Chapter 9), rather than in the provider project.
The ShopSpinner example includes one stack project that defines application infra‐
structure instances, sharing network structures defined in a different stack.

Putting integration tests into the shared network stack project goes against the direc‐
tion of the dependency. The network project needs to know specific details of the
application stack, and any other stacks that use it, to test that integration works cor‐
rectly. The application infrastructure stack already knows about the shared network
stack, so keeping the integration tests with the application stack code avoids depend‐
ency loops between the projects.

Dedicated Integration Test Projects
An alternative approach is to create a separate project for integration tests, perhaps
one for each integration stage. This approach is common when a different team owns
the integration tests, as predicted by Conway’s Law. Other teams do this when it’s not
clear which project aligns with the integration tests.

Versioning can be challenging when managing integration test suites separately from
the code they test. People may confuse which version of the integration tests to run
for a given version of the system code. To mitigate this, be sure to write and change
tests along with the code, rather than separating those activities. And implement a
way to correlate project versions; for example, using the fan-in approach described in
the delivery-time integration pattern (see “Pattern: Delivery-Time Project Integra‐
tion” in Chapter 19).

Organizing Different Types of Code | 9

Organize Code by Domain Concept
Code within a single project can include multiple pieces. The application infrastruc‐
ture project in the ShopSpinner example defines a server cluster and a database
instance, and networking structures and security policies for each. Many teams define
networking structures and security policies in their own files, as shown in Example
18-2.

Example 18-2. Source files organized by technology

 └── src/
├── cluster.infra
├── database.infra
├── load_balancer.infra
├── routing.infra
├── firewall_rules.infra
└── policies.infra

The firewall_rules.infra file includes firewall rules for the virtual machines created in
cluster.infra as well as rules for the database instance defined in database.infra.

Organizing code this way focuses on the functional elements over how they’re used.
It’s often easier to understand, write, change, and maintain the code for related ele‐
ments when they’re in the same file. Imagine a file with thirty different firewall rules
for access to eight different services, versus a file that defines one service, and the
three firewall rules related to it.

This concept follows the design principle of designing around domain concepts
rather than technical ones (see “Design components around domain concepts, not
technical ones” in Chapter 15).

Organizing Configuration Value Files
Chapter 7 described the configuration files pattern for managing parameter values
for different instances of a stack project (see “Pattern: Stack Configuration Files” in
Chapter 7). The description suggested two different ways to organize per-
environment configuration files across multiple projects. One is to store them within
the relevant project:

 ├── application_infra_stack/
 │ ├── src/
 │ └── environments/
 │ ├── test.properties
 │ ├── staging.properties
 │ └── production.properties
 │
 └── shared_network_stack/

├── src/

10 | Chapter 18: Organizing Infrastructure Code

└── environments/
├── test.properties
├── staging.properties
└── production.properties

The other is to have a separate project with the configuration for all of the stacks,
organized by environment:

 ├── application_infra_stack/
 │ └── src/
 │
 ├── shared_network_stack/
 │ └── src/
 │
 └── configuration/

├── test/
│ ├── application_infra.properties
│ └── shared_network.properties
├── staging/
│ ├── application_infra.properties
│ └── shared_network.properties
└── production/

├── application_infra.properties
└── shared_network.properties

Storing configuration values with the code for a project mixes generalized, reusable
code (assuming it’s a reusable stack, per “Pattern: Reusable Stack” in Chapter 6) with
details of specific instances. Ideally, changing the configuration for an environment
shouldn’t require modifying the stack project.

On the other hand, it’s arguably easier to trace and understand configuration values
when they’re close to the projects they relate to, rather than mingled in a monolithic
configuration project. Team ownership and alignment is a factor, as usual. Separating
infrastructure code and its configuration can discourage taking ownership and
responsibility across both.

Managing Infrastructure and Application Code
Should application and infrastructure code be kept in separate repositories, or
together? Each answer seems obviously correct to different people. The right answer
depends on your organization’s structure and division of ownership.

Managing infrastructure and application code in separate repositories supports an
operating model where separate teams build and manage infrastructure and applica‐
tions. But it creates challenges if your application teams have responsibility for infra‐
structure, particularly infrastructure specific to their applications.

Separating code creates a cognitive barrier, even when application team members are
given responsibility for elements of the infrastructure that relate to their application.

Managing Infrastructure and Application Code | 11

2 The questions—and patterns—around when to integrate projects are relevant to integrating applications with
infrastructure. See “Integrating Projects” in Chaper 19 for more on this.

If that code is in a different repository than the one they most often work in, they
won’t have the same level of comfort digging into it. This is especially true when it’s
code that they’re less familiar with, and when it’s mixed with code for infrastructure
for other parts of the system.

Infrastructure code located in the team’s own area of the codebase is less intimidat‐
ing. There’s less feeling that a change might break someone else’s applications or even
fundamental parts of the infrastructure.

DevOps and Team Structures

The DevOps movement encourages organizations to experiment
with alternatives to the traditional divide between development
and operations. See Matthew Skelton and Manuel Pais’s writings
on Team Topologies for more in-depth thoughts on structuring
application and infrastructure teams.

Delivering Infrastructure and Applications
Regardless of whether you manage application and infrastructure code together, you
ultimately deploy them into the same system.2 Changes to infrastructure code should
be integrated and tested with applications throughout the application delivery flow
(Figure 18-8).

Figure 18-8. Application delivery to environments managed by infrastructure code

As a counter-example, many organizations have a legacy view of production infra‐
structure as a separate silo. Quite often, one team owns the production infrastructure,

12 | Chapter 18: Organizing Infrastructure Code

https://teamtopologies.com

including a staging or preproduction environment, but doesn’t have responsibility
for development and testing environments (Figure 18-9).

Figure 18-9. Separate ownership of production infrastructure

This separation creates friction for application delivery, and also for infrastructure
changes. Teams don’t discover conflicts or gaps between the two parts of the system
until late in the delivery process. As explained in Chapter 8, continuously integrating
and testing all parts of the system as people work on changes is the most effective way
to ensure high quality and reliable delivery.

So your delivery strategy should deliver changes to infrastructure code across all
environments. There are a few options for the flow of infrastructure changes.

Testing Applications with Infrastructure
If you deliver infrastructure changes along the application delivery path, you can lev‐
erage automated application tests. At each stage, after applying the infrastructure
change, trigger the application test stage (see Figure 18-10).

The progressive testing approach (“Progressive Testing” in Chapter 8) uses applica‐
tion tests for integration testing. The application and infrastructure versions can be
tied together and progressed through the rest of the delivery flow following the
delivery-time integration pattern (see “Pattern: Delivery-Time Project Integration” in
Chapter 19). Or the infrastructure change can be pushed on to downstream environ‐
ments without integrating with any application changes in progress, using apply-time
integration (see “Pattern: Apply-Time Project Integration” in Chapter 19).

Managing Infrastructure and Application Code | 13

Figure 18-10. Running application tests when infrastructure changes

Pushing changes to applications and infrastructure through as quickly as possible is
ideal. But in practice, it’s not always possible to remove the friction from all types of
changes in an organization. For example, if stakeholders require a deeper review of
user-facing application changes, you may need to push routine infrastructure
changes faster. Otherwise, your application release process may tie up urgent changes
like security patches and minor changes like configuration updates.

Testing Infrastructure Before Integrating
A risk of applying infrastructure code to shared application development and test
environments is that breaking those environments impacts other teams. So it’s a good
idea to have delivery stages and environments for testing infrastructure code on their
own, before promoting them to shared environments (see Figure 18-11).

14 | Chapter 18: Organizing Infrastructure Code

Figure 18-11. Infrastructure testing stage

This idea is a specific implementation of progressive testing (“Progressive Testing” in
Chapter 8) and delivery-time project integration (“Pattern: Delivery-Time Project
Integration” in Chapter 19).

Using Infrastructure Code to Deploy Applications
Infrastructure code defines what goes onto servers. Deploying an application involves
putting things onto servers. So it may seem sensible to write infrastructure code to
automate an application’s deployment process. In practice, mixing the concerns of
application deployment and infrastructure configuration becomes messy. The inter‐
face between application and infrastructure should be simple and clear.

Operating system packaging systems like RPMs, .deb files, and .msi files are a well-
defined interface for packaging and deploying applications. Infrastructure code can
specify the package file to deploy, then let the deployment tool take over.

Trouble comes when deploying an application involves multiple activities, and espe‐
cially when it involves multiple moving parts. For example, I once wrote a Chef cook‐
book to deploy my team’s Dropwizard Java applications onto Linux virtual machines.
The cookbook needed to:

1. Download and unpack the new application version to a new folder
2. Stop the process for the previous version of the application if it was running
3. Update configuration files if required
4. Update the symlink that points to the current version of the application to the

new folder

Managing Infrastructure and Application Code | 15

https://www.dropwizard.io

3 See “Using Migration Scripts in Database Deployments” from Red Gate.

4 We used the expand and contract pattern to make database schema changes without downtime.

5. Run database schema migration scripts3

6. Start the process for the new application version
7. Check that the new process is working correctly

This cookbook was troublesome for our team, sometimes failing to detect when the
previous process hadn’t terminated, or that the new process crashed a minute or so
after starting.

Fundamentally, this was a procedural script within a declarative infrastructure code‐
base. We had more success after deciding to package our applications as RPMs,
which meant we could use tools and scripts specifically intended for deploying and
upgrading applications. We wrote tests for our RPM packaging process, which didn’t
rely on the rest of our Chef codebase, so we could drill in on the specific issues that
made our deployment unreliable.

Another challenge with using infrastructure code to deploy applications is when the
deployment process requires orchestrating multiple pieces. My team’s process
worked fine when deploying our Dropwizard applications to a single server. It wasn’t
suitable when we moved to load balancing an application across multiple servers.

Even after moving to RPM packages, the cookbooks didn’t manage the deployment
order across multiple servers. So the cluster would run mixed application versions
during the deployment operation. And the database schema migration script should
only run once, so we needed to implement locking to ensure that only the first
server’s deployment process would run it.

Our solution was to move the deployment operation out of the server configuration
code, and into a script that pushed applications onto servers from a central deploy‐
ment location—our build server. This script managed the order of deployment to
servers and database schema migrations, implementing zero-downtime deployment
by modifying the load balancer’s configuration for a rolling upgrade.4

Distributed, cloud native applications increase the challenge of orchestrating applica‐
tion deployments. Orchestrating changes to dozens, hundreds, or thousands of appli‐
cation instances can become messy indeed. Teams use deployment tools like Helm or
Octopus Deploy to define the deployment of groups of applications. These tools
enforce separation of concerns by focusing on deploying the set of applications, leav‐
ing the provisioning of the underlying cluster to other parts of the codebase.

16 | Chapter 18: Organizing Infrastructure Code

https://oreil.ly/S_jbC
https://oreil.ly/RUu61
https://helm.sh
https://octopus.com

However, the most robust application deployment strategy is to keep each element
loosely coupled. The easier and safer it is to deploy a change independently of other
changes, the more reliable the entire system is.

Conclusion
Infrastructure as Code, as the name suggests, drives the architecture, quality, and
manageability of a system’s infrastructure from the codebase. So the codebase needs
to be structured and managed according to the business requirements and system
architecture. It needs to support the engineering principles and practices that make
your team effective.

Conclusion | 17

About the Author
Kief Morris (he/him) is Global Director of Cloud Engineering at ThoughtWorks. He
drives conversations across roles, regions, and industries at companies ranging from
global enterprises to early stage startups. He enjoys working and talking with people
to explore better engineering practices, architecture design principles, and delivery
practices for building systems on the cloud.

Kief ran his first online system, a bulletin board system (BBS) in Florida in the early
1990s. He later enrolled in an MSc program in computer science at the University of
Tennessee because it seemed like the easiest way to get a real internet connection.
Joining the CS department’s system administration team gave him exposure to man‐
aging hundreds of machines running a variety of Unix flavors.

When the dot-com bubble began to inflate, Kief moved to London, drawn by the
multicultural mixture of industries and people. He’s still there, living with his wife,
son, and cat.

Most of the companies Kief worked for before ThoughtWorks were post-startups,
looking to build and scale. The titles he’s been given or self-applied include Software
Developer, Systems Administrator, Deputy Technical Director, R&D Manager, Host‐
ing Manager, Technical Lead, Technical Architect, Consultant, and Director of Cloud
Engineering.

Colophon
The animal on the cover of Infrastructure as Code is Rüppell’s vulture (Gyps rueppel‐
lii), native to the Sahel region of Africa (a geographic zone that serves as a transition
between the Sahara Desert and the savanna). It is named in honor of a 19th-century
German explorer and zoologist, Eduard Rüppell.

It is a large bird (with a wingspan of 7–8 feet and weighing 14–20 pounds) with mot‐
tled brown feathers and a yellowish-white neck and head. Like all vultures, this spe‐
cies is carnivorous and feeds almost exclusively on carrion. They use their sharp
talons and beaks to rip meat from carcasses and have backward-facing spines on their
tongue to thoroughly scrape bones clean. While normally silent, these are very social
birds who will voice a loud squealing call at colony nesting sites or when fighting over
food.

The Rüppell’s vulture is monogamous and mates for life, which can be 40–50 years
long. Breeding pairs build their nests near cliffs, out of sticks lined with grass and
leaves (and often use it for multiple years). Only one egg is laid each year—by the
time the next breeding season begins, the chick is just becoming independent. This
vulture does not fly very fast (about 22 mph), but will venture up to 90 miles from the
nest in search of food.

Rüppell’s vultures are the highest-flying birds on record; there is evidence of them
flying 37,000 feet above sea level, as high as commercial aircraft. They have a special
hemoglobin in their blood that allows them to absorb oxygen more efficiently at high
altitudes.

This species is considered endangered and populations have been in decline. Though
loss of habitat is one factor, the most serious threat is poisoning. The vulture is not
even the intended target: farmers often poison livestock carcasses to retaliate against
predators like lions and hyenas. As vultures identify a meal by sight and gather
around it in flocks, hundreds of birds can be killed each time. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

Color illustration by Karen Montgomery, based on a black and white engraving from
Cassell’s Natural History. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Chapter 18. Organizing Infrastructure Code
	Organizing Projects and Repositories
	One Repository, or Many?
	One Repository for Everything
	A Separate Repository for Each Project (Microrepo)
	Multiple Repositories with Multiple Projects

	Organizing Different Types of Code
	Project Support Files
	Cross-Project Tests
	Dedicated Integration Test Projects
	Organize Code by Domain Concept
	Organizing Configuration Value Files

	Managing Infrastructure and Application Code
	Delivering Infrastructure and Applications
	Testing Applications with Infrastructure
	Testing Infrastructure Before Integrating
	Using Infrastructure Code to Deploy Applications

	Conclusion

	About the Author
	Colophon

