
Gayathri Mohan
Foreword by Dr. Rebecca Parsons

Free
Chapter

Full Stack
Testing
A Practical Guide for
Delivering High Quality Software

This excerpt contains Chapter 1. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Gayathri Mohan

Full Stack Testing
A Practical Guide for Delivering

High Quality Software

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-09810-813-7

[LSI]

Full Stack Testing
by Gayathri Mohan

Copyright © 2022 Gayathri Mohan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Jill Leonard
Production Editor: Jonathon Owen
Copyeditor: Rachel Head
Proofreader: Liz Wheeler

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2022: First Edition

Revision History for the First Edition
2022-06-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098108137 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Full Stack Testing, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Thoughtworks. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098108137
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

1. Introduction to Full Stack Testing. 1
Full Stack Testing for High Quality 3
Shift-Left Testing 5
Ten Full Stack Testing Skills 8
Key Takeaways 12

iii

CHAPTER 1

Introduction to Full Stack Testing

In today’s world, digitalization is required to sustain and grow any business. Many
businesses are leading the way in this aspect, while some are in the early phases of
modernizing their existing digital platforms.

Digitalization is key to broadening a business’s reach from a local community to a
global scale, translating to more adoption and more revenue. Almost all small and
large-scale enterprises in various sectors, like health care, retail, travel, academics,
social media, banking, and entertainment, devise plans to advance their digital strate‐
gies as a critical measure to reach new customer segments and yield higher profits.

In this journey toward digitalization and modernization, innovation becomes a cru‐
cial driver. The businesses that innovate constantly continue to stay relevant and
thrive over many decades. Netflix is a classic example: it started as an online DVD
rental portal in the 1990s, then ventured into online streaming in 2007, cannibalizing
its own DVD rental business. It later started producing original content, called Netflix
Originals. As of the end of 2021, Netflix was the largest online streaming service with
well over 200 million global subscribers.

The technology space has been evolving in parallel with these innovative businesses
to accommodate their increasingly advanced needs. Gone are the days where people
were willing to wait in line to buy movie tickets, drive to a store in a remote location
to buy a specialty product, or carry around a handwritten shopping list searching for
specifics. Technology eases such everyday tasks. We can sit at home and stream our
favorite entertainment programs at the touch of a button, try on a new dress virtually,
schedule regular delivery of the items on our grocery lists, brew a coffee with voice
command, and more.

With the rapid pace of evolution in technology, product strategies must be versatile,
catering to different customer needs to fend off competition in the sector at hand. It’s

1

https://oreil.ly/AyHBL

no longer enough to just build a website; horizons must be broadened. Consider ride-
hailing companies like Uber and Lyft, which provide varying ways of accessing their
services: the web, Android and iOS mobile platforms, even a WhatsApp chatbot. This
kind of versatile product strategy has helped these companies expand across the globe
and outgrow their competitors.

Innovation and versatility help businesses be successful in acquiring a critical mass of
customers. But the challenge then is to thrive further, earning more revenue and
gaining more customers. We’ve seen how industry giants like Amazon leverage their
existing customer base to cross-sell services and products as a strategy for expansion.
Amazon, which started as an online bookstore, now cross-sells products ranging
from fresh pantry items to electronics to apparel, jewelry, and more, meeting cus‐
tomer demand for consumer goods in nearly every market segment.

Why are we discussing these details in a book on software testing? Because today’s
software industry caters to all these business needs, providing the tools to innovate
new product ideas, bring them to life, and scale them to reach new customer seg‐
ments across the globe. Unquestionably, software development teams are standing on
the edge, especially when the need of the hour is to deliver with high quality! Indeed,
software quality has become a nonnegotiable criterion in today’s competitive market.
Compromising on software quality is equivalent to running a race knowing that you
will lose it. This has been reinforced by many real-world examples. For instance, in
October 2014 Indian ecommerce giants Snapdeal and Flipkart went head to head on
their seasonal sale after months of marketing. Unfortunately, Flipkart’s website
crashed multiple times during the “Big Billion Day” sale due to overwhelming
demand, causing it to lose many customers and a great deal of revenue to Snapdeal.
Similarly, Yahoo! failed to keep pace with its competitors (in spite of being one of the
first of its kind in the market), in part because it failed to pay attention to the quality
of its search product and in part because of damage to the brand caused by poor secu‐
rity measures, which led to the biggest data breach in history, exposing 3 billion user
accounts in 2013. Such is the impact of software quality today!

There are many similar examples across the globe that reinforce the observation that
businesses, despite whatever novel product ideas they might have, face a steep and
slippery slope when quality is compromised, as customers quickly move on to more
reliable competitors. At times, businesses may be forced to choose time-to-market
over software quality, but they should be aware that they have only created a debt for
themselves that needs to be resolved before their competitors use it to their advan‐
tage. Thus, we can firmly say that quality is quintessential for sustaining a business in
the long term—and high quality can only be achieved through a combination of skill‐
ful development and meticulous testing, paying attention to every aspect of the appli‐
cation throughout its stack. To get you started on this path, this chapter will introduce
what’s involved in full stack testing for a typical web or mobile application.

2 | Chapter 1: Introduction to Full Stack Testing

https://oreil.ly/1ijA9
https://oreil.ly/C20pD
https://oreil.ly/C20pD
https://oreil.ly/CiYDd
https://oreil.ly/CiYDd
https://oreil.ly/CP5ma

Full Stack Testing for High Quality
To begin with, let us come together on a common understanding of software quality.
Software quality was once equated to a bug-free application—but anyone in the soft‐
ware world today will agree that it’s not just that anymore. If you ask end users to
define quality, you will hear them speak of ease of use, look and feel, data privacy,
swiftness in rendering information, and 24/7 availability of services. If you ask busi‐
nesses to define quality, you will hear about return on investment, real-time analytics,
zero downtime, no vendor lock-in, scalable infrastructure, data security, legal compli‐
ance, and more. All of these are aspects of what makes an application high-quality
software today. Failings in any of these areas will affect the quality in some way or
another, which is why we need to test for them meticulously!

Though the list of quality requirements looks tall, we have tools and methodologies to
cater to most of these needs. So, the bridge to high quality is made up of knowledge of
those tools and, more importantly, the skill to apply them in a given context, both
from a development and a testing perspective. This book aims to help you build that
bridge, teaching you the testing skills you need to deliver high-quality web and
mobile applications.

Testing, in a nutshell, is a practice to validate that the behavior of the application is as
expected throughout. For testing to be successful, it needs to be practiced at the micro
and macro levels. It has to be entwined with the granular aspects of the application,
such as testing every method in a class, every input data value, log message, error
code, and so on. Similarly, it has to focus on macro aspects such as testing features,
integrations between features, and end-to-end workflows. But we cannot stop testing
there! We need to further test the holistic quality aspects of the application—security,
performance, accessibility, usability, and more—to achieve the end goal of delivering
high-quality software. We can encapsulate all of that by saying we need to do full stack
testing! As represented in Figure 1-1, full stack testing involves testing different
aspects of the application’s quality in each layer (database, services, and UI), and the
application as a whole.

Full Stack Testing for High Quality | 3

Figure 1-1. A representation of full stack testing

Indeed, full stack testing and development should be inseparable, like the two rails of
a railway track. We must advance along both rails simultaneously to build quality into
the product; otherwise, we are guaranteed to derail. For example, suppose we are
writing a small block of code to calculate the total order amount for an ecommerce
application. We need to test whether the code is computing the right amount and
whether it is secure in parallel. If we don’t do this, we might wind up with gaps in the
railway line, and if we continue to develop on top of this fractured line we will have
poor integration and suboptimal functionality. To ingrain testing at such an elemen‐
tary level, teams need to stop thinking of it as a siloed post-development activity, as it
was done traditionally. Full stack testing needs to begin in parallel with development
and be practiced throughout the delivery cycle, giving faster feedback. The practice of
starting testing early in the delivery cycle is referred to as shift-left testing, and it’s a
key principle to follow for full stack testing to yield the right results.

4 | Chapter 1: Introduction to Full Stack Testing

Shift-Left Testing
If we were to write down the sequence of activities in a traditional software develop‐
ment lifecycle, it would read requirements analysis, design, development, and testing,
with testing coming at the end. As seen in Figure 1-2, shift-left testing suggests shifting
the testing activities to the beginning of the cycle instead to produce high-
quality results.

Figure 1-2. Shift-left testing

Let’s consider an analogy to better illustrate this concept. Imagine your team is build‐
ing a house. Does it seem sensible to complete the construction fully and only then
check for quality? What if you find out the rooms are not of the correct sizes, or the
interior walls are not strong enough to bear the load? Those are the kinds of issues
shift-left testing tries to avoid, by implementing quality checks right from the plan‐
ning stage and continuing them throughout the development phase. This allows for
the end product to be of the highest possible quality.

Continuing quality checks throughout the development phase means repeating them
iteratively for every small chunk of work, so that the needed changes can be incorpo‐
rated smoothly. In the house construction analogy, it means performing these checks
as each wall is built so that any issues are corrected immediately. To perform such
extensive tests, shift-left testing relies heavily on automated testing and CI/CD practi‐
ces, where the quality checks are automated at the micro and macro levels and con‐
tinuously run against every small chunk of work in the CI server. This ensures the
application is continuously tested, with minimal cost and effort compared to man‐
ually testing every small chunk of work for multiple quality aspects.

To see what this means in a software context, let’s break down shift-left testing into
day-to-day activities. Consider a software team that follows an iterative development
cycle, such as in Agile development. Some of the quality checks they may do in differ‐
ent phases of delivery to shift testing to the left are captured in Figure 1-3.

Shift-Left Testing | 5

Figure 1-3. A set of quality checks shifted left

Reading Figure 1-3 from the left, it begins with highlighting a set of quality checks
that are carried out by the team before a user story is considered ready for
development:

• A ceremony called the three amigos process is conducted in the analysis phase.
Here the business representatives, developers, and testers gather briefly to mull
over the feature thoroughly. The process aims to collect all three roles’ perspec‐
tives so that integrations, edge cases, and other business requirements don’t get
overlooked. This is the first step in shifting left, where the requirements of a fea‐
ture are validated to begin with.

• In parallel, the business representative on the team works with the user experi‐
ence (UX) designer to validate and improve the application design.

• Once these two steps are completed, an iteration planning meeting (IPM) is con‐
ducted at the beginning of the iteration/sprint to discuss the user stories of that
iteration in detail. This provides an open space for the team to collectively vali‐
date the requirements once again.

• During the iteration, just before a user story is picked up for development, a story
kickoff happens. The story kickoff is a minified version of the three amigos pro‐
cess where the focus of discussion gets deeper into that particular user story’s
requirements and edge cases. By this stage, we can fairly say that the team has
tested/validated the requirements diligently.

Similarly, while developing a user story, the following quality checks are implanted
and utilized to get fast feedback:

• Developers write unit tests as part of each story and integrate them with CI. They
also add linting tools and plug-ins for static code analysis and integrate them
with CI to get continuous feedback.

6 | Chapter 1: Introduction to Full Stack Testing

https://oreil.ly/WFABh

• In some teams, developers also write the UI-driven functional tests as part of
user story development and integrate those with CI. In other teams, testers write
them post-development; both are common practices.

• Before committing the latest changes, developers run a set of automated tests on
their local machines to get the first level of feedback.

• The second level of feedback is obtained from the suite of automated tests (unit,
service, UI, etc.) that are run during CI for every commit.

• The third level of feedback is received from a process called dev-box testing,
where the testers and the business representatives do a quick round of manual
exploratory testing on a developer’s machine to quickly verify the newly devel‐
oped functionality.

With such rigorous focus on providing faster feedback, the team will get almost half
of the feedback that would have otherwise been gained through manual testing post-
development before the user story even gets to the testing phase itself. In other words,
the team just shifted testing to the left, in the process giving the testers on the team
the liberty to fully explore the user story for various quality aspects rather than just
verifying the expected functional behaviors.

Thus, shift-left testing both enables defect prevention (by having multiple rounds of
validation on the requirements) and assists in catching any defects that do creep in
early, either on a local developer’s machine or in CI. In addition, it ensures that high-
quality software is delivered by giving testers the space to explore various quality
aspects in depth.

Extreme Programming (XP) is a flavor of Agile software develop‐
ment framework that incorporates shift-left testing. If you’d like to
delve further into XP methodologies and practices, Kent Beck’s
Extreme Programming Explained (Addison-Wesley Professional) is
a recommended read.

This concept of incorporating testing earlier in the delivery cycle is not restricted to
functional application testing. It can be applied to testing in general, including secu‐
rity testing, performance testing, and more. For example, one of the many ways to
shift security testing to the left is to use a pre-commit scanning tool like Talisman,
which scans the commit for secrets and alerts even before checking in the code. In
each of the upcoming chapters, you will see practical approaches to shift-left testing.

Overall, this approach embodies the aphorism “Quality is the team’s responsibility,” as
performing quality checks at every phase of the software development life cycle—val‐
idating application design prototypes, requirements, and so on, as discussed earlier—
has to be owned by different team members. So, we can say that building the relevant

Shift-Left Testing | 7

testing skills to perform various quality checks is crucial for all the roles in a team to
deliver high-quality software successfully!

Ten Full Stack Testing Skills
When we think of testing skills, we tend to consolidate them into two broad skills—
manual and automated testing. But technology has evolved over the course of the last
several decades, and these broad terms mask the essential new skills that one has to
learn to perform various quality checks and deliver high-quality web and mobile
applications. Figure 1-4 shows the 10 full stack testing skills that will enable us to per‐
form full stack testing efficiently.

Figure 1-4. Ten full stack testing skills needed for delivering high-quality web and mobile
applications

Let’s explore these 10 skills, and why you should care about learning them:

Manual exploratory testing
Firstly, to clarify, manual exploratory testing is different from manual testing.
The latter refers to verifying a given list of requirements and doesn’t necessarily
demand an analytical mindset. In contrast, manual exploratory testing is the skill

8 | Chapter 1: Introduction to Full Stack Testing

of delving into the application details, coming up with different real-life scenarios
apart from what is documented in user stories, simulating them in a test environ‐
ment, and observing the application’s behavior. It demands a logical and analyti‐
cal mindset and is the first and foremost skill required to create a bug-free
application. There are various methodologies and approaches that can be learned
to structure these exploration sessions, which we shall discuss in Chapter 2.

Automated functional testing
This is one of the core skills for shift-left testing, as discussed earlier. Doing auto‐
mated testing also significantly reduces manual testing effort, especially when the
application grows to include more features. In simple terms, the skill here is to
write code to test feature requirements automatically, without human interven‐
tion. To do this we need tools, and therefore knowledge of different tools that can
be used to write tests at different application layers is required to acquire this
skill. It doesn’t stop there, however; one also needs to know what antipatterns to
look for in automated testing and how to stay clear of them. We’ll discuss the dif‐
ferent aspects of this skill in Chapter 3.

Continuous testing
Continuous delivery is a practice where features are delivered incrementally to
end users in short cycles, instead of through a single big-bang release. By contin‐
uously delivering, the business earns profits early and can assess and retune its
product strategy quickly based on end user feedback. To power continuous deliv‐
ery, we have to test the application continuously so that it is always in a ready-to-
be-released state. As obvious as it may seem, the wise way to do this is to
automate and integrate quality checks into your CI/CD pipelines and run them
frequently to ease the testing process. The skill of continuous testing involves
determining which types of automated tests should be run at each stage of the
delivery cycle so that the team can get faster feedback and integrate them effec‐
tively into the CI/CD pipelines. These essentials are discussed in detail in Chap‐
ter 4.

Data testing
You may have heard the sayings “Data is money” and “Data is the new oil.” These
ideas highlight how important testing for data integrity is today. When users’ data
is lost, or the application shows the wrong data to end users, they lose trust in the
application itself. The skill of data testing requires knowledge about the different
types of data storage and processing systems typically used in web and mobile
applications (databases, caches, event streams, etc.) and the ability to derive
appropriate test cases. Chapter 5 discusses these topics, and how data flow
between the application components creates new test cases apart from the func‐
tional flows.

Ten Full Stack Testing Skills | 9

Visual testing
The look and feel of the application is a major contributor to the business’s brand
value, and especially when it comes to big business-to-customer (B2C) products
used by millions, low visual quality can impact brand value instantly. Therefore,
it is essential to validate that end users have a harmonious and pleasant visual
experience by conducting visual testing of the application. Visual testing requires
an understanding of how the UI components interact with each other and with
the browser, for web applications. Such checks can be automated too, using tools
that are different from those used for automated functional testing. We will talk
about this skill, and about the stark differences between these two types of auto‐
mation, in Chapter 6.

Security testing
Security breaches have become all too prevalent in today’s world, and not even
giants like Facebook and Twitter are excluded from such attacks. Security issues
have a heavy cost for both the end users and the business in terms of loss or expo‐
sure of sensitive information, legal penalties, and brand reputation. So far, security
testing has been viewed as a niche skill in the industry, with qualified penetration
testers typically engaged only toward the end of the development cycle to look for
security issues. But with the lack of available professional security testing talent and
growing incidence of security breaches, software teams are well advised to incorpo‐
rate basic security testing as part of their day-to-day work. We will discuss how to
think like a hacker and seek out security issues in application functionality in
Chapter 7, along with tools to automate security scans.

Performance testing
Even a slight drop in application performance can lead to huge financial and rep‐
utational losses for a business—recall the Flipkart example discussed earlier. The
skill of performance testing involves measuring a set of key performance indica‐
tors at different application layers. Performance tests can also be automated and
integrated with CI pipelines to get continuous feedback. We will discuss a shift-
left performance testing strategy along with relevant tools in Chapter 8.

Accessibility testing
Web and mobile applications have become everyday commodities. Making them
accessible to people with permanent or temporary disabilities is not only manda‐
ted by legal regulations in many countries, but also ethically the right thing to do.
In order to acquire the accessibility testing skill, we must first understand the
accessibility standards required by law. We can then use both manual and auto‐
mated accessibility auditing tools to validate whether those standards are met.
We will discuss this skill, and why incorporating accessibility features may even
be a lucrative option for businesses, in Chapter 9.

10 | Chapter 1: Introduction to Full Stack Testing

Cross-functional requirements testing
We’ve seen that end users and businesses have a tall list of quality requirements,
such as availability, scalability, maintainability, observability, and so on, apart
from just needing bug-free functionality. These are called the cross-functional
requirements (CFRs) of an application. Although functional requirements gener‐
ally grab the most attention, it is the CFRs that imbue quality into the applica‐
tion, and failing to test these will lead to unsatisfied business or software teams,
end users, or both. Therefore, CFR testing skill is a fundamental testing skill. We
will discuss the testing methodologies and tools for validating different CFRs in
Chapter 10.

CFRs are also referred to as non-functional requirements
(NFRs) by many in the industry. We will discuss the subtle dif‐
ferences between these two terms in Chapter 10.

Mobile testing
The sheer number of apps available on the leading app stores (Google Play and
the Apple App Store) in 2021 may come as a surprise—a total of 5.7 million. The
explosion in the number of mobile apps stems mainly from our increased usage
of mobile devices. Indeed, the web analytics company Global Stats announced in
2016 that their data showed mobile and tablet internet usage across the globe had
surpassed desktop usage. So, the ability to test mobile applications and the com‐
patibility of websites across mobile devices is a critical skill today.

Although all of the previously mentioned skills are required for testing mobile
applications, it requires a change in mindset too. Additionally, a whole set of
mobile-specific testing tools have to be learned in order to perform various qual‐
ity checks on mobile applications. Therefore, mobile testing is carved out as a
separate skill here. We will traverse the nuances of the mobile landscape in Chap‐
ter 11.

Together, these 10 full stack testing skills will enable you to test the full scope of holis‐
tic quality aspects of web and mobile applications. As mentioned earlier, it’s impor‐
tant for every role in the team to acquire some degree of competency in each of these
skills. The book will show you how, skill by skill, with practical examples.

Ten Full Stack Testing Skills | 11

https://oreil.ly/L47MG
https://oreil.ly/mL3YF

Key Takeaways
Here are the key takeaways from this chapter:

• Software quality cannot be equated to just bug-free functionality anymore. An
application can be deemed suboptimal in quality if its holistic quality dimensions
(security, performance, visual quality, etc.) are not on par.

• Full stack testing refers to testing all the quality dimensions of an application
holistically at every layer, thereby delivering high-quality software.

• For full stack testing to meet its goal of delivering high-quality software, teams
should shift testing to the left, so that it begins in parallel with analysis and con‐
tinues throughout the delivery cycle.

• Shift-left testing embodies the aphorism “Quality is the team’s responsibility,” as it
demands that every role in the team take ownership of performing certain qual‐
ity checks at different phases of delivery. This requires all team members to
upskill themselves, acquiring relevant testing skills at varied competency levels.

• The two classic monolithic categories of testing skills, manual and automated,
mask a vast set of new testing skills required to perform full stack testing effi‐
ciently. This chapter introduced 10 different testing skills that are essential for
delivering high-quality web and mobile applications today, which we will explore
over the course of the following chapters.

12 | Chapter 1: Introduction to Full Stack Testing

About the Author
Gayathri Mohan is a passionate technology leader with expertise across multiple
software development roles and technical and industrial domains. Gayathri has pro‐
ven her mettle by successfully managing large quality assurance (QA) teams for cli‐
ents at Thoughtworks, where she is now principal consultant at Thoughtworks. While
working as the company’s global QA SME, she defined career pathways and the
desired skill development structure for QAs at Thoughtworks. As office tech princi‐
pal, Gayathri cultivated local tech communities, organized technical events and devel‐
oped thought leadership across technical themes.

Gayathri is also coauthor of Perspectives of Agile Software Testing, released by
Thoughtworks on Selenium’s 10th anniversary.

Colophon
The animal on the cover of Full Stack Testing is a lowland streaked tenrec (Hemicen‐
tetes semispinosus). These small insectivorous mammals are one of many species of
tenrecs found on the island of Madagascar. Lowland streaked tenrecs are typically
found in scrubland, tropical lowland rainforests, agricultural land, and even some
rural gardens on the eastern side of the island.

Lowland streaked tenrecs are easily identified by their long, pointed black snouts and
small, tailless bodies striped with black and yellow quills. A crest of yellow spines cov‐
ers the back of their necks. Their barbed quills are detachable and can be used as a
defense mechanism; tenrecs also use the quills to communicate by rubbing them
together, producing a high-pitched sound. Fully grown lowland streaked tenrecs are
about five to seven inches long and weigh between four and ten ounces.

Lowland streaked tenrecs are social and gather in groups of up to 20. They dig con‐
nected burrows for nesting and forage for earthworms and insects individually or in
small groups. In the winter, they go into torpor, a state of reduced body temperature
and decreased metabolism. Females are only fertile for one year and are reproduc‐
tively active at 25 days old, making them the only species of tenrec that can breed in
the same season in which they were born. Lowland streaked tenrecs are classified as a
species of least concern by the IUCN due to their widespread distribution, high abun‐
dance, and high tolerance to areas with large numbers of humans. Many of the ani‐
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from English Cyclopedia. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

https://oreil.ly/PoAST

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction to Full Stack Testing
	Full Stack Testing for High Quality
	Shift-Left Testing
	Ten Full Stack Testing Skills
	Key Takeaways

	About the Author
	Colophon

