
Luciano Ramalho

Second

Edition

Fluent
Python
Clear, Concise, and
Effective Programming

Free
Chapter

This excerpt contains Chapter 1. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Luciano Ramalho

Fluent Python
Clear, Concise, and

Effective Programming

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05635-5

[LSI]

Fluent Python
by Luciano Ramalho

Copyright © 2022 Luciano Ramalho. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Jeff Bleiel
Production Editor: Daniel Elfanbaum
Copyeditor: Sonia Saruba
Proofreader: Kim Cofer

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2022: Second Edition

Revision History for the Second Edition
2022-03-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056355 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fluent Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056355

Para Marta, com todo o meu amor.

Table of Contents

1. The Python Data Model. 1
What’s New in This Chapter 2
A Pythonic Card Deck 3
How Special Methods Are Used 6

Emulating Numeric Types 7
String Representation 10
Boolean Value of a Custom Type 11
Collection API 12

Overview of Special Methods 13
Why len Is Not a Method 15
Chapter Summary 16
Further Reading 16

v

1 “Story of Jython”, written as a foreword to Jython Essentials by Samuele Pedroni and Noel Rappin (O’Reilly).

CHAPTER 1

The Python Data Model

Guido’s sense of the aesthetics of language design is amazing. I’ve met many fine lan‐
guage designers who could build theoretically beautiful languages that no one would
ever use, but Guido is one of those rare people who can build a language that is just
slightly less theoretically beautiful but thereby is a joy to write programs in.

—Jim Hugunin, creator of Jython, cocreator of AspectJ, and architect of
the .Net DLR1

One of the best qualities of Python is its consistency. After working with Python for a
while, you are able to start making informed, correct guesses about features that are
new to you.

However, if you learned another object-oriented language before Python, you may
find it strange to use len(collection) instead of collection.len(). This apparent
oddity is the tip of an iceberg that, when properly understood, is the key to every‐
thing we call Pythonic. The iceberg is called the Python Data Model, and it is the API
that we use to make our own objects play well with the most idiomatic language
features.

You can think of the data model as a description of Python as a framework. It formal‐
izes the interfaces of the building blocks of the language itself, such as sequences,
functions, iterators, coroutines, classes, context managers, and so on.

When using a framework, we spend a lot of time coding methods that are called by
the framework. The same happens when we leverage the Python Data Model to build
new classes. The Python interpreter invokes special methods to perform basic object
operations, often triggered by special syntax. The special method names are always
written with leading and trailing double underscores. For example, the syntax

1

https://fpy.li/1-1
https://fpy.li/1-2

obj[key] is supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls my_collection.__getitem__(key).

We implement special methods when we want our objects to support and interact
with fundamental language constructs such as:

• Collections
• Attribute access
• Iteration (including asynchronous iteration using async for)
• Operator overloading
• Function and method invocation
• String representation and formatting
• Asynchronous programming using await
• Object creation and destruction
• Managed contexts using the with or async with statements

Magic and Dunder

The term magic method is slang for special method, but how do we
talk about a specific method like __getitem__? I learned to say
“dunder-getitem” from author and teacher Steve Holden. “Dun‐
der” is a shortcut for “double underscore before and after.” That’s
why the special methods are also known as dunder methods. The
“Lexical Analysis” chapter of The Python Language Reference warns
that “Any use of __*__ names, in any context, that does not follow
explicitly documented use, is subject to breakage without warning.”

What’s New in This Chapter
This chapter had few changes from the first edition because it is an introduction to
the Python Data Model, which is quite stable. The most significant changes are:

• Special methods supporting asynchronous programming and other new features,
added to the tables in “Overview of Special Methods” on page 13.

• Figure 1-2 showing the use of special methods in “Collection API” on page 12,
including the collections.abc.Collection abstract base class introduced in
Python 3.6.

2 | Chapter 1: The Python Data Model

https://fpy.li/1-3

Also, here and throughout this second edition I adopted the f-string syntax intro‐
duced in Python 3.6, which is more readable and often more convenient than the
older string formatting notations: the str.format() method and the % operator.

One reason to still use my_fmt.format() is when the definition of
my_fmt must be in a different place in the code than where the for‐
matting operation needs to happen. For instance, when my_fmt has
multiple lines and is better defined in a constant, or when it must
come from a configuration file, or from the database. Those are
real needs, but don’t happen very often.

A Pythonic Card Deck
Example 1-1 is simple, but it demonstrates the power of implementing just two spe‐
cial methods, __getitem__ and __len__.

Example 1-1. A deck as a sequence of playing cards

import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

The first thing to note is the use of collections.namedtuple to construct a simple
class to represent individual cards. We use namedtuple to build classes of objects that
are just bundles of attributes with no custom methods, like a database record. In the
example, we use it to provide a nice representation for the cards in the deck, as shown
in the console session:

>>> beer_card = Card('7', 'diamonds')
>>> beer_card
Card(rank='7', suit='diamonds')

A Pythonic Card Deck | 3

But the point of this example is the FrenchDeck class. It’s short, but it packs a punch.
First, like any standard Python collection, a deck responds to the len() function by
returning the number of cards in it:

>>> deck = FrenchDeck()
>>> len(deck)
52

Reading specific cards from the deck—say, the first or the last—is easy, thanks to the
__getitem__ method:

>>> deck[0]
Card(rank='2', suit='spades')
>>> deck[-1]
Card(rank='A', suit='hearts')

Should we create a method to pick a random card? No need. Python already has a
function to get a random item from a sequence: random.choice. We can use it on a
deck instance:

>>> from random import choice
>>> choice(deck)
Card(rank='3', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')
>>> choice(deck)
Card(rank='2', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the Python Data
Model:

• Users of your classes don’t have to memorize arbitrary method names for stan‐
dard operations. (“How to get the number of items? Is it .size(), .length(), or
what?”)

• It’s easier to benefit from the rich Python standard library and avoid reinventing
the wheel, like the random.choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of self._cards, our deck
automatically supports slicing. Here’s how we look at the top three cards from a
brand-new deck, and then pick just the aces by starting at index 12 and skipping 13
cards at a time:

>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4', suit='spades')]
>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

4 | Chapter 1: The Python Data Model

Just by implementing the __getitem__ special method, our deck is also iterable:

>>> for card in deck: # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
Card(rank='4', suit='spades')
...

We can also iterate over the deck in reverse:

>>> for card in reversed(deck): # doctest: +ELLIPSIS
... print(card)
Card(rank='A', suit='hearts')
Card(rank='K', suit='hearts')
Card(rank='Q', suit='hearts')
...

Ellipsis in doctests

Whenever possible, I extracted the Python console listings in this
book from doctest to ensure accuracy. When the output was too
long, the elided part is marked by an ellipsis (...), like in the last
line in the preceding code. In such cases, I used the # doctest:
+ELLIPSIS directive to make the doctest pass. If you are trying
these examples in the interactive console, you may omit the doctest
comments altogether.

Iteration is often implicit. If a collection has no __contains__ method, the in opera‐
tor does a sequential scan. Case in point: in works with our FrenchDeck class because
it is iterable. Check it out:

>>> Card('Q', 'hearts') in deck
True
>>> Card('7', 'beasts') in deck
False

How about sorting? A common system of ranking cards is by rank (with aces being
highest), then by suit in the order of spades (highest), hearts, diamonds, and clubs
(lowest). Here is a function that ranks cards by that rule, returning 0 for the 2 of clubs
and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

def spades_high(card):
 rank_value = FrenchDeck.ranks.index(card.rank)
 return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing rank:

A Pythonic Card Deck | 5

https://fpy.li/doctest

2 A C struct is a record type with named fields.

>>> for card in sorted(deck, key=spades_high): # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='clubs')
Card(rank='2', suit='diamonds')
Card(rank='2', suit='hearts')
... (46 cards omitted)
Card(rank='A', suit='diamonds')
Card(rank='A', suit='hearts')
Card(rank='A', suit='spades')

Although FrenchDeck implicitly inherits from the object class, most of its function‐
ality is not inherited, but comes from leveraging the data model and composition. By
implementing the special methods __len__ and __getitem__, our FrenchDeck
behaves like a standard Python sequence, allowing it to benefit from core language
features (e.g., iteration and slicing) and from the standard library, as shown by the
examples using random.choice, reversed, and sorted. Thanks to composition, the
__len__ and __getitem__ implementations can delegate all the work to a list
object, self._cards.

How About Shuffling?

As implemented so far, a FrenchDeck cannot be shuffled because it
is immutable: the cards and their positions cannot be changed,
except by violating encapsulation and handling the _cards

attribute directly. In Chapter 13, we will fix that by adding a one-
line __setitem__ method.

How Special Methods Are Used
The first thing to know about special methods is that they are meant to be called by
the Python interpreter, and not by you. You don’t write my_object.__len__(). You
write len(my_object) and, if my_object is an instance of a user-defined class, then
Python calls the __len__ method you implemented.

But the interpreter takes a shortcut when dealing for built-in types like list, str,
bytearray, or extensions like the NumPy arrays. Python variable-sized collections
written in C include a struct2 called PyVarObject, which has an ob_size field holding
the number of items in the collection. So, if my_object is an instance of one of those
built-ins, then len(my_object) retrieves the value of the ob_size field, and this is
much faster than calling a method.

6 | Chapter 1: The Python Data Model

More often than not, the special method call is implicit. For example, the statement
for i in x: actually causes the invocation of iter(x), which in turn may call
x.__iter__() if that is available, or use x.__getitem__(), as in the FrenchDeck
example.

Normally, your code should not have many direct calls to special methods. Unless
you are doing a lot of metaprogramming, you should be implementing special meth‐
ods more often than invoking them explicitly. The only special method that is fre‐
quently called by user code directly is __init__ to invoke the initializer of the
superclass in your own __init__ implementation.

If you need to invoke a special method, it is usually better to call the related built-in
function (e.g., len, iter, str, etc.). These built-ins call the corresponding special
method, but often provide other services and—for built-in types—are faster than
method calls. See, for example, Chapter 17.

In the next sections, we’ll see some of the most important uses of special methods:

• Emulating numeric types
• String representation of objects
• Boolean value of an object
• Implementing collections

Emulating Numeric Types
Several special methods allow user objects to respond to operators such as +. We will
cover that in more detail in Chapter 16, but here our goal is to further illustrate the
use of special methods through another simple example.

We will implement a class to represent two-dimensional vectors—that is, Euclidean
vectors like those used in math and physics (see Figure 1-1).

The built-in complex type can be used to represent two-
dimensional vectors, but our class can be extended to represent n-
dimensional vectors. We will do that in Chapter 17.

How Special Methods Are Used | 7

Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1)
results in Vector(4, 5).

We will start designing the API for such a class by writing a simulated console session
that we can use later as a doctest. The following snippet tests the vector addition pic‐
tured in Figure 1-1:

>>> v1 = Vector(2, 4)
>>> v2 = Vector(2, 1)
>>> v1 + v2
Vector(4, 5)

Note how the + operator results in a new Vector, displayed in a friendly format at the
console.

The abs built-in function returns the absolute value of integers and floats, and the
magnitude of complex numbers, so to be consistent, our API also uses abs to calcu‐
late the magnitude of a vector:

>>> v = Vector(3, 4)
>>> abs(v)
5.0

We can also implement the * operator to perform scalar multiplication (i.e., multi‐
plying a vector by a number to make a new vector with the same direction and a
multiplied magnitude):

>>> v * 3
Vector(9, 12)
>>> abs(v * 3)
15.0

8 | Chapter 1: The Python Data Model

Example 1-2 is a Vector class implementing the operations just described, through
the use of the special methods __repr__, __abs__, __add__, and __mul__.

Example 1-2. A simple two-dimensional vector class

"""
vector2d.py: a simplistic class demonstrating some special methods

It is simplistic for didactic reasons. It lacks proper error handling,
especially in the ``__add__`` and ``__mul__`` methods.

This example is greatly expanded later in the book.

Addition::

 >>> v1 = Vector(2, 4)
 >>> v2 = Vector(2, 1)
 >>> v1 + v2
 Vector(4, 5)

Absolute value::

 >>> v = Vector(3, 4)
 >>> abs(v)
 5.0

Scalar multiplication::

 >>> v * 3
 Vector(9, 12)
 >>> abs(v * 3)
 15.0

"""

import math

class Vector:

 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __repr__(self):
 return f'Vector({self.x!r}, {self.y!r})'

 def __abs__(self):
 return math.hypot(self.x, self.y)

 def __bool__(self):

How Special Methods Are Used | 9

 return bool(abs(self))

 def __add__(self, other):
 x = self.x + other.x
 y = self.y + other.y
 return Vector(x, y)

 def __mul__(self, scalar):
 return Vector(self.x * scalar, self.y * scalar)

We implemented five special methods in addition to the familiar __init__. Note that
none of them is directly called within the class or in the typical usage of the class
illustrated by the doctests. As mentioned before, the Python interpreter is the only
frequent caller of most special methods.

Example 1-2 implements two operators: + and *, to show basic usage of __add__ and
__mul__. In both cases, the methods create and return a new instance of Vector, and
do not modify either operand—self or other are merely read. This is the expected
behavior of infix operators: to create new objects and not touch their operands. I will
have a lot more to say about that in Chapter 16.

As implemented, Example 1-2 allows multiplying a Vector by a
number, but not a number by a Vector, which violates the commu‐
tative property of scalar multiplication. We will fix that with the
special method __rmul__ in Chapter 16.

In the following sections, we discuss the other special methods in Vector.

String Representation
The __repr__ special method is called by the repr built-in to get the string represen‐
tation of the object for inspection. Without a custom __repr__, Python’s console
would display a Vector instance <Vector object at 0x10e100070>.

The interactive console and debugger call repr on the results of the expressions eval‐
uated, as does the %r placeholder in classic formatting with the % operator, and the !r
conversion field in the new format string syntax used in f-strings the str.format
method.

Note that the f-string in our __repr__ uses !r to get the standard representation of
the attributes to be displayed. This is good practice, because it shows the crucial dif‐
ference between Vector(1, 2) and Vector('1', '2')—the latter would not work in
the context of this example, because the constructor’s arguments should be numbers,
not str.

10 | Chapter 1: The Python Data Model

https://fpy.li/1-4

The string returned by __repr__ should be unambiguous and, if possible, match the
source code necessary to re-create the represented object. That is why our Vector
representation looks like calling the constructor of the class (e.g., Vector(3, 4)).

In contrast, __str__ is called by the str() built-in and implicitly used by the print
function. It should return a string suitable for display to end users.

Sometimes same string returned by __repr__ is user-friendly, and you don’t need to
code __str__ because the implementation inherited from the object class calls
__repr__ as a fallback. Example 5-2 is one of several examples in this book with a
custom __str__.

Programmers with prior experience in languages with a toString
method tend to implement __str__ and not __repr__. If you only
implement one of these special methods in Python, choose
__repr__.
“What is the difference between __str__ and __repr__ in
Python?” is a Stack Overflow question with excellent contributions
from Pythonistas Alex Martelli and Martijn Pieters.

Boolean Value of a Custom Type
Although Python has a bool type, it accepts any object in a Boolean context, such as
the expression controlling an if or while statement, or as operands to and, or, and
not. To determine whether a value x is truthy or falsy, Python applies bool(x), which
returns either True or False.

By default, instances of user-defined classes are considered truthy, unless either
__bool__ or __len__ is implemented. Basically, bool(x) calls x.__bool__() and uses
the result. If __bool__ is not implemented, Python tries to invoke x.__len__(), and
if that returns zero, bool returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns False if the mag‐
nitude of the vector is zero, True otherwise. We convert the magnitude to a Boolean
using bool(abs(self)) because __bool__ is expected to return a Boolean. Outside of
__bool__ methods, it is rarely necessary to call bool() explicitly, because any object
can be used in a Boolean context.

Note how the special method __bool__ allows your objects to follow the truth value
testing rules defined in the “Built-in Types” chapter of The Python Standard Library
documentation.

How Special Methods Are Used | 11

https://fpy.li/1-5
https://fpy.li/1-5
https://fpy.li/1-6

A faster implementation of Vector.__bool__ is this:
 def __bool__(self):
 return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__, the
squares, and square root. The explicit conversion to bool is needed
because __bool__ must return a Boolean, and or returns either
operand as is: x or y evaluates to x if that is truthy, otherwise the
result is y, whatever that is.

Collection API
Figure 1-2 documents the interfaces of the essential collection types in the language.
All the classes in the diagram are ABCs—abstract base classes. ABCs and the collec
tions.abc module are covered in Chapter 13. The goal of this brief section is to give
a panoramic view of Python’s most important collection interfaces, showing how
they are built from special methods.

Figure 1-2. UML class diagram with fundamental collection types. Method names in
italic are abstract, so they must be implemented by concrete subclasses such as list
and dict. The remaining methods have concrete implementations, therefore subclasses
can inherit them.

Each of the top ABCs has a single special method. The Collection ABC (new in
Python 3.6) unifies the three essential interfaces that every collection should
implement:

12 | Chapter 1: The Python Data Model

• Iterable to support for, unpacking, and other forms of iteration
• Sized to support the len built-in function
• Container to support the in operator

Python does not require concrete classes to actually inherit from any of these ABCs.
Any class that implements __len__ satisfies the Sized interface.

Three very important specializations of Collection are:

• Sequence, formalizing the interface of built-ins like list and str
• Mapping, implemented by dict, collections.defaultdict, etc.
• Set, the interface of the set and frozenset built-in types

Only Sequence is Reversible, because sequences support arbitrary ordering of their
contents, while mappings and sets do not.

Since Python 3.7, the dict type is officially “ordered,” but that only
means that the key insertion order is preserved. You cannot
rearrange the keys in a dict however you like.

All the special methods in the Set ABC implement infix operators. For example,
a & b computes the intersection of sets a and b, and is implemented in the __and__
special method.

The next two chapters will cover standard library sequences, mappings, and sets in
detail.

Now let’s consider the major categories of special methods defined in the Python
Data Model.

Overview of Special Methods
The “Data Model” chapter of The Python Language Reference lists more than 80 spe‐
cial method names. More than half of them implement arithmetic, bitwise, and com‐
parison operators. As an overview of what is available, see the following tables.

Table 1-1 shows special method names, excluding those used to implement infix
operators or core math functions like abs. Most of these methods will be covered
throughout the book, including the most recent additions: asynchronous special
methods such as __anext__ (added in Python 3.5), and the class customization hook,
__init_subclass__ (from Python 3.6).

Overview of Special Methods | 13

https://fpy.li/1-7
https://fpy.li/dtmodel

Table 1-1. Special method names (operators excluded)

Category Method names
String/bytes representation __repr__ __str__ __format__ __bytes__ __fspath__

Conversion to number __bool__ __complex__ __int__ __float__ __hash__
__index__

Emulating collections __len__ __getitem__ __setitem__ __delitem__
__contains__

Iteration __iter__ __aiter__ __next__ __anext__ __reversed__

Callable or coroutine execution __call__ __await__

Context management __enter__ __exit__ __aexit__ __aenter__

Instance creation and destruction __new__ __init__ __del__

Attribute management __getattr__ __getattribute__ __setattr__ __delattr__
__dir__

Attribute descriptors __get__ __set__ __delete__ __set_name__

Abstract base classes __instancecheck__ __subclasscheck__

Class metaprogramming __prepare__ __init_subclass__ __class_getitem__
__mro_entries__

Infix and numerical operators are supported by the special methods listed in
Table 1-2. Here the most recent names are __matmul__, __rmatmul__, and __imat
mul__, added in Python 3.5 to support the use of @ as an infix operator for matrix
multiplication, as we’ll see in Chapter 16.

Table 1-2. Special method names and symbols for operators

Operator category Symbols Method names
Unary numeric - + abs() __neg__ __pos__ __abs__

Rich comparison < <= == != > >= __lt__ __le__ __eq__ __ne__
__gt__ __ge__

Arithmetic + - * / // % @
divmod() round() **
pow()

__add__ __sub__ __mul__ __truediv__
__floordiv__ __mod__ __matmul__ __div
mod__ __round__ __pow__

Reversed arithmetic (arithmetic operators with swapped
operands)

__radd__ __rsub__ __rmul__ __rtrue
div__ __rfloordiv__ __rmod__ __rmat
mul__ __rdivmod__ __rpow__

Augmented
assignment
arithmetic

+= -= *= /= //= %=
@= **=

__iadd__ __isub__ __imul__ __itrue
div__ __ifloordiv__ __imod__ __imat
mul__ __ipow__

Bitwise & | ^ << >> ~ __and__ __or__ __xor__ __lshift__
__rshift__ __invert__

Reversed bitwise (bitwise operators with swapped
operands)

__rand__ __ror__ __rxor__
__rlshift__ __rrshift__

14 | Chapter 1: The Python Data Model

Operator category Symbols Method names
Augmented
assignment bitwise

&= |= ^= <<= >>= __iand__ __ior__ __ixor__
__ilshift__ __irshift__

Python calls a reversed operator special method on the second
operand when the corresponding special method on the first
operand cannot be used. Augmented assignments are shortcuts
combining an infix operator with variable assignment, e.g., a += b.
Chapter 16 explains reversed operators and augmented assignment
in detail.

Why len Is Not a Method
I asked this question to core developer Raymond Hettinger in 2013, and the key to
his answer was a quote from “The Zen of Python”: “practicality beats purity.” In
“How Special Methods Are Used” on page 6, I described how len(x) runs very fast
when x is an instance of a built-in type. No method is called for the built-in objects of
CPython: the length is simply read from a field in a C struct. Getting the number of
items in a collection is a common operation and must work efficiently for such basic
and diverse types as str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special treatment as part
of the Python Data Model, just like abs. But thanks to the special method __len__,
you can also make len work with your own custom objects. This is a fair compromise
between the need for efficient built-in objects and the consistency of the language.
Also from “The Zen of Python”: “Special cases aren’t special enough to break the
rules.”

If you think of abs and len as unary operators, you may be more
inclined to forgive their functional look and feel, as opposed to the
method call syntax one might expect in an object-oriented lan‐
guage. In fact, the ABC language—a direct ancestor of Python that
pioneered many of its features—had an # operator that was the
equivalent of len (you’d write #s). When used as an infix operator,
written x#s, it counted the occurrences of x in s, which in Python
you get as s.count(x), for any sequence s.

Why len Is Not a Method | 15

https://fpy.li/1-8

Chapter Summary
By implementing special methods, your objects can behave like the built-in types,
enabling the expressive coding style the community considers Pythonic.

A basic requirement for a Python object is to provide usable string representations of
itself, one used for debugging and logging, another for presentation to end users.
That is why the special methods __repr__ and __str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of the most
common uses of the special methods. For example, database libraries often return
query results wrapped in sequence-like collections. Making the most of existing
sequence types is the subject of Chapter 2. Implementing your own sequences will be
covered in Chapter 12, when we create a multidimensional extension of the Vector
class.

Thanks to operator overloading, Python offers a rich selection of numeric types, from
the built-ins to decimal.Decimal and fractions.Fraction, all supporting infix
arithmetic operators. The NumPy data science libraries support infix operators
with matrices and tensors. Implementing operators—including reversed operators
and augmented assignment—will be shown in Chapter 16 via enhancements of the
Vector example.

The use and implementation of the majority of the remaining special methods of the
Python Data Model are covered throughout this book.

Further Reading
The “Data Model” chapter of The Python Language Reference is the canonical source
for the subject of this chapter and much of this book.

Python in a Nutshell, 3rd ed. by Alex Martelli, Anna Ravenscroft, and Steve Holden
(O’Reilly) has excellent coverage of the data model. Their description of the mechan‐
ics of attribute access is the most authoritative I’ve seen apart from the actual
C source code of CPython. Martelli is also a prolific contributor to Stack Overflow,
with more than 6,200 answers posted. See his user profile at Stack Overflow.

David Beazley has two books covering the data model in detail in the context of
Python 3: Python Essential Reference, 4th ed. (Addison-Wesley), and Python Cook‐
book, 3rd ed. (O’Reilly), coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (MIT Press) by Gregor Kiczales, Jim des Rivieres,
and Daniel G. Bobrow explains the concept of a metaobject protocol, of which the
Python Data Model is one example.

16 | Chapter 1: The Python Data Model

https://fpy.li/dtmodel
https://fpy.li/pynut3
https://fpy.li/1-9
https://dabeaz.com/per.html
https://fpy.li/pycook3
https://fpy.li/pycook3
https://mitpress.mit.edu/books/art-metaobject-protocol

Soapbox

Data Model or Object Model?

What the Python documentation calls the “Python Data Model,” most authors would
say is the “Python object model.” Martelli, Ravenscroft, and Holden’s Python in a
Nutshell, 3rd ed., and David Beazley’s Python Essential Reference, 4th ed. are the best
books covering the Python Data Model, but they refer to it as the “object model.” On
Wikipedia, the first definition of “object model” is: “The properties of objects in gen‐
eral in a specific computer programming language.” This is what the Python Data
Model is about. In this book, I will use “data model” because the documentation
favors that term when referring to the Python object model, and because it is the title
of the chapter of The Python Language Reference most relevant to our discussions.

Muggle Methods

The Original Hacker’s Dictionary defines magic as “yet unexplained, or too compli‐
cated to explain” or “a feature not generally publicized which allows something other‐
wise impossible.”

The Ruby community calls their equivalent of the special methods magic methods.
Many in the Python community adopt that term as well. I believe the special methods
are the opposite of magic. Python and Ruby empower their users with a rich metaob‐
ject protocol that is fully documented, enabling muggles like you and me to emulate
many of the features available to core developers who write the interpreters for those
languages.

In contrast, consider Go. Some objects in that language have features that are magic,
in the sense that we cannot emulate them in our own user-defined types. For exam‐
ple, Go arrays, strings, and maps support the use brackets for item access, as in a[i].
But there’s no way to make the [] notation work with a new collection type that you
define. Even worse, Go has no user-level concept of an iterable interface or an iterator
object, therefore its for/range syntax is limited to supporting five “magic” built-in
types, including arrays, strings, and maps.

Maybe in the future, the designers of Go will enhance its metaobject protocol. But
currently, it is much more limited than what we have in Python or Ruby.

Metaobjects

The Art of the Metaobject Protocol (AMOP) is my favorite computer book title. But I
mention it because the term metaobject protocol is useful to think about the Python
Data Model and similar features in other languages. The metaobject part refers to the
objects that are the building blocks of the language itself. In this context, protocol is a
synonym of interface. So a metaobject protocol is a fancy synonym for object model:
an API for core language constructs.

Further Reading | 17

https://fpy.li/1-10
https://fpy.li/dtmodel
https://fpy.li/1-11

A rich metaobject protocol enables extending a language to support new program‐
ming paradigms. Gregor Kiczales, the first author of the AMOP book, later became a
pioneer in aspect-oriented programming and the initial author of AspectJ, an exten‐
sion of Java implementing that paradigm. Aspect-oriented programming is much
easier to implement in a dynamic language like Python, and some frameworks do it.
The most important example is zope.interface, part of the framework on which the
Plone content management system is built.

18 | Chapter 1: The Python Data Model

https://fpy.li/1-12
https://fpy.li/1-13

About the Author
Luciano Ramalho was a web developer before the Netscape IPO in 1995, and
switched from Perl to Java to Python in 1998. He joined Thoughtworks in 2015,
where he is a Principal Consultant in the São Paulo office. He has delivered keynotes,
talks, and tutorials at Python events in the Americas, Europe, and Asia, and also pre‐
sented at Go and Elixir conferences, focusing on language design topics. Ramalho is a
fellow of the Python Software Foundation and cofounder of Garoa Hacker Clube, the
first hackerspace in Brazil.

Colophon
The animal on the cover of Fluent Python is a Namaqua sand lizard (Pedioplanis
namaquensis), found throughout Namibia in arid savannah and semi-desert regions.

The Namaqua sand lizard has a black body with four white stripes running down its
back, brown legs with white spots, a white belly, and a long, pinkish-brown tail. It is
one of the fastest of the lizards active during the day and feeds on small insects. It
inhabits sparsely vegetated sand gravel flats. Female Namaqua sand lizards lay
between three to five eggs in November, and these lizards spends the rest of winter
dormant in burrows that they dig near the base of bushes.

The current conservation status of the Namaqua sand lizard is of “Least Concern.”
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing from Wood’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Chapter 1. The Python Data Model
	What’s New in This Chapter
	A Pythonic Card Deck
	How Special Methods Are Used
	Emulating Numeric Types
	String Representation
	Boolean Value of a Custom Type
	Collection API

	Overview of Special Methods
	Why len Is Not a Method
	Chapter Summary
	Further Reading

	About the Author
	Colophon

