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CHAPTER 1

Evolving Software Architecture

Building systems that age gracefully and effectively is one of the enduring challenges
of software development generally and software architecture specifically. This book
covers two fundamental aspects of how to build evolvable software: utilizing effective
engineering practices derived from the agile software movement and structuring
architecture to facilitate change and governance.

Readers will grow to understand the state of the art in how to manage change in
architecture in a deterministic way, unifying previous attempts at providing protec‐
tion for architecture characteristics and actionable techniques to improve the ability
to change architecture without breaking it.

The Challenges of Evolving Software
bit rot: also known as software rot, code rot, software erosion, software decay, or software
entropy, is either a slow deterioration of software quality over time or its diminishing
responsiveness that will eventually lead to software becoming faulty.

Teams have long struggled with building high-quality software that remains high
quality over time, including adages that reflect this difficulty, such as the varied defi‐
nitions of bit rot shown above. At least two factors drive this struggle: the problems of
policing all the various moving parts in complex software, and the dynamic nature of
the software development ecosystem.

Modern software consists of thousands or millions of individual parts, each of which
may be changed along some set of dimensions. Each of those changes has predict‐
able and sometimes unpredictable effects. Teams that attempt manual governance
eventually become overwhelmed by the sheer volume of parts and combinatorial side
effects.
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Managing the myriad interactions of software would be bad enough against a static
backdrop, but that doesn’t exist. The software development ecosystem consists of
all the tools, frameworks, libraries, and best practices—the accumulated state of the
art in software development at any given snapshot in time. This ecosystem forms
an equilibrium—much like a biological system—that developers can understand and
build things within. However, that equilibrium is dynamic—new things come along
constantly, initially upsetting the balance until a new equilibrium emerges. Visualize
a unicyclist carrying boxes: dynamic because the unicyclist continues to adjust to stay
upright, and equilibrium because they continue to maintain balance. In the software
development ecosystem, each new innovation or practice may disrupt the status quo,
forcing the establishment of a new equilibrium. Metaphorically, we keep tossing more
boxes onto the unicyclist’s load, forcing them to reestablish balance.

In many ways, architects resemble our hapless unicyclist, constantly both balancing
and adapting to changing conditions. The engineering practices of Continuous Deliv‐
ery represent such a tectonic shift in the equilibrium: incorporating formerly siloed
functions such as operations into the software development lifecycle enabled new
perspectives on what change means. Enterprise architects can no longer rely on static,
five-year plans because the entire software development universe will evolve in that
time frame, rendering every long-term decision potentially moot.

Disruptive change is hard to predict even for savvy practitioners. The rise of contain‐
ers via tools like Docker is an example of an unknowable industry shift. However, we
can trace the rise of containerization via a series of small, incremental steps. Once
upon a time, operating systems, application servers, and other infrastructure were
commercial entities, requiring licensing and great expense. Many of the architectures
designed in that era focused on efficient use of shared resources. Gradually, Linux
became good enough for many enterprises, reducing the monetary cost of operat‐
ing systems to zero. Next, DevOps practices like automatic machine provisioning
via tools like Puppet and Chef made Linux operationally free. Once the ecosystem
became free and widely used, consolidation around common portable formats was
inevitable: thus, Docker. But containerization couldn’t have happened without all the
evolutionary steps leading to that end.

The software development ecosystem constantly evolves, which leads to new architec‐
tural approaches. While many developers suspect that a cabal of architects retreat
to an ivory tower to decide what the Next Big Thing will be, the process is much
more organic. New capabilities constantly arise within our ecosystem, providing new
ways to combine with existing and other new features to enable new capabilities.
For example, consider the recent rise of microservices architectures. As open source
operating systems became popular, combined with Continuous Delivery–driven
engineering practices, enough clever architects figured out how to build more scala‐
ble systems that they eventually needed a name: thus, microservices.
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Why We Didn’t Have Microservices in the Year 2000
Consider an architect with a time machine who travels back in time to the year 2000
and approaches the head of operations with a new idea.

“I have a great new concept for an architecture that allows fantastic isolation between
each of the capabilities—it’s called microservices; we’ll design each service around
business capabilities and keep things highly decoupled.”

“Great,” says the head of operations. “What do you need?”

“Well, I’m going to need about 50 new computers, and of course 50 new operating
system licenses, and another 20 computers to act as isolated databases, along with
licenses for those. When do you think I can get all that?”

“Please leave my office.”

While microservices might have seemed like a good idea even back then, the ecosys‐
tem wasn’t available to support it.

A portion of an architect’s job is structural design to solve particular problems—you
have a problem, and you’ve decided that software will solve it. When considering
structural design, we can partition it into two areas: the domain (or requirements) and
architecture characteristics, as illustrated in Figure 1-1.

Figure 1-1. The entire scope of software architecture encompasses requirements plus
architecture characteristics: the “-ilities” of software

The requirements shown in Figure 1-1 represent whatever problem domain the
software solution addresses. The other parts are variously known as architecture char‐
acteristics (our preferred term), nonfunctional requirements, system quality attributes,
cross-cutting requirements, and a host of other names. Regardless of the name, they
represent critical capabilities required for project success, both for initial release
and long-term maintainability. For example, architecture characteristics such as scale
and performance may form success criteria for a market, whereas others such as
modularity contribute to maintainability and evolvability.
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The Many Names of Architecture Characteristics
We use the term architecture characteristics throughout the book to refer to nondo‐
main design considerations. However, many organizations use other terms for this
concept, among them nonfunctional requirements, cross-cutting requirements, and
system quality attributes. We don’t have a strong preference for one term over another
—feel free to translate our term to yours anywhere you see it in the book. These are
not distinct concepts.

Software is rarely static; it continues to evolve as teams add new features, integration
points, and a host of other common changes. What architects need are protection
mechanisms for architecture characteristics, similar to unit tests but focused on
architecture characteristics, which change at a different rate and are sometimes sub‐
ject to forces that are different from the domain. For example, technical decisions
within a company may drive a database change that is independent of the domain
solution.

This book describes the mechanisms and design techniques for adding the same kind
of continual assurance about architectural governance that high-performing teams
now have about other aspects of the software development process.

Architectural decisions are ones in which each choice offers significant trade-offs.
Throughout this book, when we refer to the role of architect, we encompass anyone
who makes architectural decisions, regardless of their title in an organization. Addi‐
tionally, important architecture decisions virtually always require collaboration with
other roles.

Do Agile Projects Need Architecture?
This is a common question asked of those who have utilized agile engineering practi‐
ces for a while. The goal of agility is to remove useless overhead, not necessary steps
such as design. As in many things in architecture, the scale dictates the level of archi‐
tecture. We use the analogy of building—if we want to build a dog house, we don’t
need an elaborate architecture; we just need materials. On the other hand, if we need
to build a 50-story office building, design must occur. Similarly, if we need a website
to track a simple database, we don’t need an architecture; we can find materials that
enable us to piece it together. However, we must carefully consider many trade-offs to
design a highly scalable and available website, such as a high-volume concert ticketing
website.

Rather than the question Do Agile projects need architecture?, the question for archi‐
tects lies in how little unnecessary design they can afford, while building the ability to
iterate on early designs to work toward more suitable solutions.
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Evolutionary Architecture
Both the mechanisms for evolution and the decisions architects make when design‐
ing software derive from the following definition:

An evolutionary software architecture supports guided, incremental change across
multiple dimensions.

The definition consists of three parts, which we describe in more detail below.

Guided Change
Once teams have chosen important characteristics, they want to guide changes to
the architecture to protect those characteristics. For that purpose, we borrow a
concept from evolutionary computing called fitness functions. A fitness function is an
objective function used to summarize how close a prospective design solution is to
achieving the set aims. In evolutionary computing, the fitness function determines
whether an algorithm has improved over time. In other words, as each variant of
an algorithm is generated, the fitness functions determine how “fit” each variant is,
based on how the designer of the algorithm defined “fit.”

We have a similar goal in evolutionary architecture: as architecture evolves, we
need mechanisms to evaluate how changes impact the important characteristics of
the architecture and prevent degradation of those characteristics over time. The
fitness function metaphor encompasses a variety of mechanisms we employ to ensure
architecture doesn’t change in undesirable ways, including metrics, tests, and other
verification tools. When an architect identifies an architectural characteristic they
want to protect as things evolve, they define one or more fitness functions to protect
that feature.

Historically, a portion of architecture has often been viewed as a governance activity,
and architects have only recently accepted the notion of enabling change through
architecture. Architectural fitness functions allow decisions in the context of the
organization’s needs and business functions, while making the basis for those deci‐
sions explicit and testable. Evolutionary architecture is not an unconstrained, irre‐
sponsible approach to software development. Rather, it is an approach that balances
the need for rapid change and the need for rigor around systems and architectural
characteristics. The fitness function drives architectural decision making, guiding the
architecture while allowing the changes needed to support changing business and
technology environments.

We use fitness functions to create evolutionary guidelines for architectures; we cover
them in detail in Chapter 2.
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Incremental Change
Incremental change describes two aspects of software architecture: how teams build
software incrementally and how they deploy it.

During development, an architecture that allows small, incremental changes is easier
to evolve because developers have a smaller scope of change. For deployment, incre‐
mental change refers to the level of modularity and decoupling for business features
and how they map to architecture. An example is in order.

Let’s say that PenultimateWidgets, a large seller of widgets, has a catalog page backed
by a microservices architecture and modern engineering practices. One of the page’s
features enables users to rate different widgets with star ratings. Other services within
PenultimateWidgets’ business also need ratings (customer service representatives,
shipping provider evaluation, etc.), so they all share the star rating service. One day,
the star rating team releases a new version alongside the existing one that allows half-
star ratings—a small but significant upgrade. The other services that require ratings
aren’t required to move to the new version but to gradually migrate as convenient.
Part of PenultimateWidgets’ DevOps practices include architectural monitoring of
not only the services but also the routes between services. When the operations group
observes that no one has routed to a particular service within a given time interval,
they automatically disintegrate that service from the ecosystem.

This is an example of incremental change at the architectural level: the original
service can run alongside the new one as long as other services need it. Teams can
migrate to new behavior at their leisure (or as need dictates), and the old version is
automatically garbage collected.

Making incremental change successful requires coordination of a handful of Contin‐
uous Delivery practices. Not all of these practices are required in all cases; rather, they
commonly occur together in the wild. We discuss how to achieve incremental change
in Chapter 3.

Multiple Architectural Dimensions
There are no separate systems. The world is a continuum. Where to draw a boundary
around a system depends on the purpose of the discussion.

—Donella H. Meadows

Classical Greek physicists gradually learned to analyze the universe based on fixed
points, culminating in classical mechanics. However, more precise instruments and
more complex phenomena gradually refined that definition toward relativity in
the early 20th century. Scientists realized that what they previously viewed as iso‐
lated phenomena in fact interact relative to one another. Since the 1990s, enlight‐
ened architects have increasingly viewed software architecture as multidimensional.
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Continuous Delivery expanded that view to encompass operations. However, soft‐
ware architects often focus primarily on technical architecture—how the software
components fit together—but that is only one dimension of a software project. If
architects want to create an architecture that can evolve, they must consider all
the interconnected parts of the system that change affects. Just like we know from
physics that everything is relative to everything else, architects know there are many
dimensions to a software project.

To build evolvable software systems, architects must think beyond just the technical
architecture. For example, if the project includes a relational database, the structure
and relationship between database entities will evolve over time as well. Similarly,
architects don’t want to build a system that evolves in a manner that exposes a
security vulnerability. These are all examples of dimensions of architecture—the parts
of architecture that fit together in often orthogonal ways. Some dimensions fit into
what are often called architectural concerns (the list of “-ilities” referred to earlier),
but dimensions are actually broader, encapsulating things traditionally outside the
purview of technical architecture. Each project has dimensions the architect role
must consider when thinking about evolution. Here are some common dimensions
that affect evolvability in modern software architectures:

Technical
The implementation parts of the architecture: the frameworks, dependent libra‐
ries, and implementation language(s).

Data
Database schemas, table layouts, optimization planning, and so on. The database
administrator generally handles this type of architecture.

Security
Defines security policies and guidelines, and specifies tools to help uncover
deficiencies.

Operational/System
Concerns how the architecture maps to existing physical and/or virtual infra‐
structure: servers, machine clusters, switches, cloud resources, and so on.

Each of these perspectives forms a dimension of the architecture—an intentional par‐
titioning of the parts supporting a particular perspective. Our concept of architectural
dimensions encompasses traditional architectural characteristics (“-ilities”) plus any
other role that contributes to building software. Each of these forms a perspective on
architecture that we want to preserve as our problem evolves and the world around
us changes.

When architects think in terms of architectural dimensions, it provides a mechanism
by which they can analyze the evolvability of different architectures by assessing how
each important dimension reacts to change. As systems become more intertwined
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with competing concerns (scalability, security, distribution, transactions, etc.), archi‐
tects must expand the dimensions they track on projects. To build an evolvable
system, architects must think about how the system might evolve across all the
important dimensions.

The entire architectural scope of a project consists of the software requirements plus
the other dimensions. We can use fitness functions to protect those characteristics
as the architecture and the ecosystem evolve together through time, as illustrated in
Figure 1-2.

Figure 1-2. An architecture consists of requirements and other dimensions, each pro‐
tected by fitness functions

In Figure 1-2, the architects have identified auditability, data, security, performance,
legality, and scalability as the additional architectural characteristics important for
this application. As the business requirements evolve over time, each of the architec‐
tural characteristics utilizes fitness functions to protect its integrity as well.

While the authors of this text stress the importance of a holistic view of architec‐
ture, we also realize that a large part of evolving architecture concerns technical
architecture patterns and related topics like coupling and cohesion. We discuss how
technical architecture coupling affects evolvability in Chapter 5 and the impacts of
data coupling in Chapter 6.
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Coupling applies to more than just structural elements in software projects. Many
software companies have recently discovered the impact of team structure on surpris‐
ing things like architecture. We discuss all aspects of coupling in software, but the
team impact comes up so early and often that we need to discuss it here.

Evolutionary architecture helps answer two common questions that arise among
architects in the modern software development ecosystem: How is long-term planning
possible when everything changes all the time? and Once I’ve built an architecture, how
can I prevent it from degrading over time? Let’s explore these questions in more detail.

How Is Long-Term Planning Possible When Everything
Changes All the Time?
The programming platforms we use exemplify constant evolution. Newer versions of
a programming language offer better APIs to improve the flexibility of or applicabil‐
ity to new problems; newer programming languages offer a different paradigm and
different set of constructs. For example, Java was introduced as a C++ replacement to
ease the difficulty of writing networking code and to improve memory management
issues. When we look at the past 20 years, we observe that many languages still
continually evolve their APIs while totally new programming languages appear to
regularly attack newer problems. The evolution of programming languages is demon‐
strated in Figure 1-3.

Figure 1-3. The evolution of popular programming languages

Regardless of the particular aspect of software development—the programming plat‐
form, languages, operating environment, persistence technologies, cloud offerings,
and so on—we expect constant change. Although we cannot predict when changes
in the technical or domain landscape will occur, or which changes will persist, we
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know change is inevitable. Consequently, we should architect our systems knowing
the technical landscape will change.

If the ecosystem constantly changes in unexpected ways, and if predictability is
impossible, what is the alternative to fixed plans? Enterprise architects and other
developers must learn to adapt. Part of the traditional reasoning behind making long-
term plans was financial; software changes were expensive. However, modern engi‐
neering practices invalidate that premise by making change less expensive through
the automation of formerly manual processes and other advances such as DevOps.

For years, many smart developers recognized that some parts of their systems were
harder to modify than others. That’s why software architecture is defined as “the parts
that are hard to change later.” This convenient definition partitioned the things you
can modify without much effort from truly difficult changes. Unfortunately, this defi‐
nition also evolved into a blind spot when thinking about architecture: developers’
assumption that change is difficult becomes a self-fulfilling prophecy.

Several years ago, some innovative software architects revisited the “hard to change
later” problem: what if we build changeability into the architecture? In other words,
if ease of change is a bedrock principle of the architecture, then change is no longer
difficult. Building evolvability into architecture in turn allows a whole new set of
behaviors to emerge, upsetting the dynamic equilibrium again.

Even if the ecosystem doesn’t change, what about the gradual erosion of architectural
characteristics that occurs? Architects design architectures but then expose them to
the messy real world of implementing things atop the architecture. How can architects
protect the important parts they have defined?

Once I’ve Built an Architecture, How Can I Prevent It from
Degrading Over Time?
An unfortunate decay, often called bit rot, occurs in many organizations. Architects
choose particular architectural patterns to handle the business requirements and
“-ilities,” but those characteristics often accidentally degrade over time. For example,
if an architect has created a layered architecture with presentation at the top, persis‐
tence at the bottom, and several layers in between, developers who are working
on reporting will often ask permission to directly access persistence from the presen‐
tation layer, bypassing the other layers, for performance reasons. Architects build
layers to isolate change. Developers then bypass those layers, increasing coupling and
invalidating the reasoning behind the layers.

Once they have defined the important architectural characteristics, how can archi‐
tects protect those characteristics to ensure they don’t erode? Adding evolvability as an
architectural characteristic implies protecting the other characteristics as the system
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evolves. For example, if an architect has designed an architecture for scalability, they
don’t want that characteristic to degrade as the system evolves. Thus, evolvability is a
meta-characteristic, an architectural wrapper that protects all the other architectural
characteristics.

The mechanism of evolutionary architecture heavily overlaps with the concerns and
goals of architectural governance—defined principles around design, quality, security,
and other quality concerns. This book illustrates the many ways that evolutionary
architecture approaches enable automating architectural governance.

Why Evolutionary?
A common question about evolutionary architecture concerns the name itself: why
call it evolutionary architecture and not something else? Other possible terms include
incremental, continual, agile, reactive, and emergent, to name just a few. But each of
these terms misses the mark. The definition of evolutionary architecture that we state
here includes two critical characteristics: incremental and guided.

The terms continual, agile, and emergent all capture the notion of change over time,
which is clearly a critical characteristic of an evolutionary architecture, but none of
these terms explicitly captures any notion of how an architecture changes or what
the desired end-state architecture might be. While all the terms imply a changing
environment, none of them covers what the architecture should look like. The guided
part of our definition reflects the architecture we want to achieve—our end goal.

We prefer the word evolutionary over adaptable because we are interested in archi‐
tectures that undergo fundamental evolutionary change, not ones that have been
patched and adapted into increasingly incomprehensible accidental complexity.
Adapting implies finding some way to make something work regardless of the ele‐
gance or longevity of the solution. To build architectures that truly evolve, architects
must support genuine change, not jury-rigged solutions. Going back to our biological
metaphor, evolutionary concerns the process of having a system that is fit for purpose
and can survive the ever-changing environment in which it operates. Systems may
have individual adaptations, but as architects, we should care about the overall
evolvable system.

Another useful comparison architects can make is between evolutionary architecture
and emergent design, and why there is not such a thing as an “emergent architecture.”
One common misconception about agile software development is the alleged lack
of architecture: “Let’s just start coding and the architecture will emerge as we go.”
However, this depends on how simple the problem is. Consider a physical building.
If you need to build a dog house, you don’t need an architecture; you can go to the
hardware store and buy lumber and bang it together. If, on the other hand, you need
to build a 50-floor office building, architecture is definitely required! Similarly, if you
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are building a simple catalog system for a small number of users, you likely don’t need
a lot of up-front planning. However, if you are designing a software system that needs
strict performance for a large number of users, planning is necessary! The purpose
of agile architecture isn’t no architecture; it’s no useless architecture: don’t go through
bureaucratic processes that don’t add value to the software development process.

Another complicating factor in software architecture is the different types of essential
complexity architects must design for. When evaluating trade-offs, it’s often not the
easy simple versus complex system distinction but rather systems that are complex in
different ways. In other words, each system has a unique set of criteria for success.
While we discuss architectural styles such as microservices, each style is a starting
point for a complex system that grows to look like no other.

Similarly, if an architect builds a very simple system, they can afford to pay little
attention to architectural concerns. However, sophisticated systems require purpose‐
ful design, and they need a starting point. Emergence suggests that you can start with
nothing, whereas architecture provides the scaffolding or structure for all the other
parts of the system; something must be in place to begin.

The concept of emergence also implies that teams can slowly crescendo their design
toward the ideal architectural solution. However, like building architecture, there is
no perfect architecture, only different ways architects deal with trade-offs. Architects
can implement most problems in a wide variety of different architecture styles and be
successful. However, some of them will fit the problem better, offering less resistance
and fewer workarounds.

One key to evolutionary architecture is the balance between how much structure
and governance is necessary to support long-term goals and needless formality and
friction.

Summary
Useful software systems aren’t static. They must grow and change as the problem
domain changes and the ecosystem evolves, providing new capabilities and complexi‐
ties. Architects and developers can gracefully evolve software systems, but they must
understand both the necessary engineering practices to make that happen and how
best to structure their architecture to facilitate change.

Architects are also tasked with governing the software they design, along with
many of the development practices used to build it. Fortunately, the mechanisms we
uncover to allow easier evolution also provide ways to automate important software
governance activities. We take a deep dive into the mechanics of how to make this
happen in the next chapter.
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Colophon
The animal on the cover of Building Evolutionary Architectures is the open brain
coral (Trachyphyllia geoffroyi). Also known as a “folded brain” or “crater” coral, this
large-polyp stony (LPS) coral is native to the Indian Ocean.

Known for its distinctive folds, bright colors, and hardiness, this free-living coral
subsists on the photosynthetic output of a surface layer of zooxanthellae during the
day, while at night it extends tentacles from its polyps to steer prey, which include
various plankton as well as small fish, into one of its mouths (some open brain corals
have two or three of them).

Because of its striking appearance and easy-to-accommodate diet, Trachyphyllia geof‐
froyi is a popular choice for aquariums, where it thrives in the bottom layer of sand
and/or silt resembling the shallow seafloors of its native habitat. They benefit from
an environment with moderate water flow and rich with plant and animal matter to
consume.

Trachyphyllia geoffroyi is listed on the IUCN Red List at Near Threatened status.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Jean Vincent Félix Lamouroux’s Exposition Methodique des genres de L’Ordre des
Polypiers. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.
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