
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137961009
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137961009
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137961009

Praise for Wild West to Agile

“Jim Highsmith is the Forrest Gump of software development. What made the 1994
movie so entertaining was how frequently Forrest found himself in the right spot as
history was being made. Unlike Forrest, though, Jim’s actions influenced that history.

“Jim tells us stories from his early-career involvement in the Gemini and Apollo
space projects and then working as a leader to bring about the shift to structured
methods. From there he outlines how approaches such as Rapid Application Devel-
opment planted the seeds that became agile software development.

“Throughout, Jim played a part in bringing about the changes that moved soft-
ware development out of its Wild West beginnings and into its Agile present. The
stories Jim tells in this book are entertaining and educational, and will be important
to remember as we move into whatever the future holds for software development.”

—Mike Cohn, co-founder of the Agile Alliance and the

Scrum Alliance; author of Succeeding with Agile

“Jim provides a unique perspective not just from the sidelines, but from out on the
playing field. If you want to understand the shape of software development today,
this is the book for you. If you want to understand how to navigate a turbulent career
with grace and style, this is also the book for you. If you enjoy memoirs, ditto. Since
I first encountered him in the 1990s, Jim has been my model of a steady, thoughtful
leader. Enjoy his story.”

—Kent Beck, Chief Scientist, Mechanical Orchard; author,
Extreme Programming Explained: Embrace Change

“A magnum opus from master storyteller, adventurer, nonconformist, and adaptable
agile maven Jim Highsmith. With this braided narrative, Jim defines what it means
to be truly agile, both personally and organizationally. A must-read for a fascinating
first-person perspective and invaluable insights into the past, present, and future of
agility. I haven’t enjoyed a book as much in a very long, long time.”

—Sanjiv Augustine, Founder and CEO, LitheSpeed

“The phrase ‘been there, done that’ has rarely been as true as it is for Jim Highsmith
and his long and varied career in software. Jim is a great storyteller, and this book tells
great stories about many of the leaders of our industry. Enjoy the ride!”

—Rebecca Parsons, Chief Technology O�cer, Thoughtworks

“The evolution of the software industry from its humble beginnings is captured in a
way that only Jim Highsmith can. His coupling of the historical evolution of the soft-
ware industry with his own personal experiences helps to bring greater insight to the
reader as he explains the driving business factors that led to the creation and evolu-
tion of the agile software movement. This is not just a walk down memory lane. As an

industry leader, Jim clearly demonstrates the next evolution for business and how the
software industry is leading the change. Well done, Jim!”

—Ken Delcol, Former Director, Product Development, Sciex;

Advanced Program Manager, MDA

“Wild West to Agile is an exhilarating ride through the landscape of IT history. Accom-
panied by personal stories and humorous anecdotes, Jim Highsmith shares his reflec-
tions on the good, the bad, and the ugly of agile software development. By knowing
the heroes of days gone by, and understanding what came before, you can prepare
yourself for a better future in the technology business.”

—Jurgen Appelo, creator of unFIX; author of

Management 3.0 and Managing for Happiness

“More than 70% of agile transformations fail, and many more fall short of expecta-
tions. In his book, Jim reflects on decades of learnings on technology innovation and
encourages business leaders to embark in the ultimate transformation journey: the com-
pany-wide adoption of an agile mindset to achieve sustainable business success.”

—Marcelo De Santis, Chief Digital O�cer, Thoughtworks

“What happened over the last six decades in the software field? How did our meth-
ods, methodologies, and mindsets evolve? Who played a key role along the way, and
where are we headed today? Only a veteran practitioner, industry legend, master sto-
ryteller, and agile pioneer like Jim Highsmith could tell this tale with such detail and
depth.”

—Joshua Kerievsky, CEO, Industrial Logic; author, Joy of Agility

“It is not often you get to read a front-lines view of the explosive software industry,
running from 1966 to 2023—nearly 60 years of being an eyewitness to history! Not
just witnessing history, but also driving it. This is an eminently readable narrative by
a figure in our history.”

—Alistair Cockburn, co-author, the Agile Manifesto

“More people every day join the digital workforce to enjoy the agile paradise, but
they have not experienced a single real day of being inside a waterfall project or expe-
riencing hardcore command-and-control management delivered in inhuman facili-
ties in dark basements.

“What they enjoy today is the result of courageous battles against powerful exec-
utives fought by thought leaders like Jim, who believed that a better status quo was
possible. Jim’s braided approach in Chapters 1 to 6 sheds light on this past and will
help the newcomers more meaningfully value the status quo they enjoy today.

“The last chapters of the book contain valuable keys for unlocking future chal-
lenges for both digital practitioners and analog C-executives who are willing to
unlearn so that they can have a seat at the table in the future.”

—Ricard Vilà, Chief Digital O�cer, Latam Airlines (Chile)

“An entertaining and insightful book full of nostalgia and advice from a true leader
in this space. This book has firsthand experiences and stories of the real struggles of
becoming an adaptive organization. Coverage of topics such as the implementation
of EDGE is a valuable addition.”

—Linda Luu, Enterprise Strategy, IBM;

co-author, EDGE: Value-Driven Digital Transformation

“Since I just retired from the company I founded 15 years ago, Jim’s memoir comes
a day late for me. Wild West to Agile would have been the perfect vehicle to help this
‘courageous executive’ address the biggest challenge that I was facing at the time
of my departure: the need to evangelize the agile mindset to the next generation of
employees, whose focus is primarily on the pedantic pursuit of agile methods.

“Jim has been there and done that, and in Wild West to Agile he gives us an educa-
tional and entertaining ring-side seat to his historical travels and his many contribu-
tions to the software development industry. I’m honored to have played a small part
in Jim’s matriculation as an agilist and grateful for the mentoring he provided as I
was transitioning out of the laboratory and into this century’s most exciting business
opportunity—creating valuable software for humanity.”

—Sam Bayer, Founder and former CEO, Corevist

“This is a valuable retrospective on a journey from Apollo to SpaceX, through the
evolution of technologies from vacuum tubes to billions of transistors on a chip, from
the perspective of a leader in software methodologies and a signatory of the Agile
Manifesto. Jim Highsmith’s work with other experts on adaptive approaches to busi-
ness and technology has turned agile software development from a great idea into an
essential tool for business survival in the modern world for all successful technology
companies.”

—Je� Sutherland, inventor and co-creator of Scrum and Scale;

signatory of the Agile Manifesto

“I began working with Jim when we both joined Exxon in the early 1970s. He and
I were in the same systems group. I was a business guy by education; Jim was an
engineer who was already moving forward in the software development world. I
eventually became a manager in the accounting department and Jim a key player in
implementing a new, quite complex financial system, which was an arduous task in
those early days. Jim spent many days and nights as the driving force during imple-
mentation. A brilliant software developer, he had the dedication and work ethic to
‘get the job done,’ and was highly eªective at working with all involved, from the
accounting folks to the division executive.”

—John Fahlberg, executive leadership coach; previous CFO, COO,

and CEO of early-stage growth companies

“Jim Highsmith is truly a pioneer who inspired and led the evolution of software
development through the past six decades. Wild West to Agile is an enlightening and
entertaining trip down memory lane, built on the stories and the people who were
lucky enough to collaborate with Jim on that journey.”

—Gary Walker, Former Manager, Software Development, MDS Sciex

“I thoroughly enjoyed Wild West to Agile, which chronicles Jim Highsmith’s fascinat-
ing career. When I met Jim in the late 1990s, I felt I had finally met someone who was
talking about software management in a way that made sense. His stories of success
and failure are engaging and show how he constantly evolved to better ways. Highly
recommended.”

—Todd Little, Chairman, Kanban University

“Do you like listening to family elders tell their history? If you’re a member of the
software development community, here is your opportunity to hear its wild and won-
derful history from a leader who’s spent six decades aªecting it.”

—Gil Broza, author, The Agile Mindset

“Jim Highsmith was literally in the middle of the maelstrom that was the birth and
evolution of agile software development. His perspective and stories are fascinating
and telling. This book is a must-read for those who prefer to learn from history, rather
than repeat it.”

—David Robinson, Digital Transformation Partner, Thoughtworks;

co-author EDGE: Value-Driven Digital Transformation

“I have hoped for a book like this, an accurate historical accounting of the software
development world, for quite some time. And Jim has certainly delivered. Any seri-
ous agilist, or serious software professional, needs to breathe in Jim’s words. You
won’t be disappointed.”

—Scott Ambler, author

Wild West to Agile

This page intentionally left blank

Wild West to Agile
Adventures in Software Development
Evolution and Revolution

JIM HIGHSMITH

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: ShutterOK/Shutterstock

Author photo: Janet Meyer Photography

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023934207

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-796100-9
ISBN-10: 0-13-796100-6

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of
all learners. We embrace the many dimensions of diversity, including but not
limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual
orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has
the potential to deliver opportunities that improve lives and enable economic
mobility. As we work with authors to create content for every product and
service, we acknowledge our responsibility to demonstrate inclusivity and
incorporate diverse scholarship so that everyone can achieve their potential
through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a
better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through
learning.

• Our educational products and services are inclusive and represent the
rich diversity of learners.

• Our educational content accurately reflects the histories and experi-
ences of the learners we serve.

• Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from
you about any concerns or needs with this Pearson product so that we can
investigate and address them.

• Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

For their inspiration, encouragement, and support

Grandkids: Zach, Ellie, Ruby

Daughters: Nikki, Debbie, and goddaughter Amy

My life partner, Wendie, who kept me sane by periodically prying me
from my writing desk.

This page intentionally left blank

xiii

Contents

Foreword by Martin Fowler .xvii
Foreword by Heidi J. Musser . xix
Preface . xxi
Acknowledgments . xxv
About the Author . xxvii

Chapter 1 The Adventure Begins .1

Career overview .4

Software .7

Software development .8

Software development eras .10

Six decades of change .13

Observations .17

Chapter 2 Wild West .21

Apollo .21

Technology and the world .25

Esso Business Systems .28

Exxon to Oglethorpe .33

Software development .35

Management trends .37

Era observations .42

Chapter 3 Structured Methods and Monumental Methodologies45

Era overview .49

Software methods .50

xiv Contents

Methods, methodologies, and mindsets .57

CSE/Telco .58

Structured pioneers .59

Information Architects, Inc .66

Technology .68

Monumental Methodologies .70

Waterfall .72

Management .76

CASE tools .79

Era observations .83

Chapter 4 The Roots of Agile .85

Era overview .86

Structured methods to RAD .88

Microsoft .90

RAD to RADical .92

Portland Mortgage Software .92

Information technology .93

Nike .98

Consultants’ Camp and Jerry Weinberg .101

RADical to adaptive .105

Collaboration .105

Complex adaptive systems .106

Adaptive software development book .109

Additional agile roots . 113

Era observations . 116

Chapter 5 The Agile Era .119

New challenges .120

Martin Fowler .122

Trimble Navigation .124

The Agile Manifesto .126

Agile organizations .131

Agile ecosystems .141

xvContents

Agile methodologies .142

Agile periods .145

Era observations .147

Chapter 6 Rogue Teams .149

Cutter and travels .152

The Mustang Team at Cellular, Inc . .155

Technology (1995–2007) .157

Three agile stories .163

Agile project management .165

Period observations .169

Chapter 7 Courageous Executives .173

Sciex .174

A new generation of pioneers .178

Integrated Financial Software .180

Southern Systems Software .186

Agile project management .187

Organizational change .196

Software development .200

Scaling agile .203

Athleta .208

Period observations .208

Chapter 8 Digital Transformation. .211

Thoughtworks .214

A world accelerating .217

Digital transformation .219

Tech@Core .224

EDGE operating model .226

The unFIX organization model .228

Empathetic and adaptive leadership .232

Period observations .235

xvi Contents

Chapter 9 Prepare to Engage the Future .237

Why history? .238

Agile and agility .239

Afterword .245

Appendix .251

References .257

Bibliography .263

Index .265

xvii

Foreword

i still remember when I first saw Jim, in the late 1990s on a stage at
a software conference in far-away Wellington, New Zealand. As someone
immersed in Extreme Programming, I didn’t expect much from someone
steeped in the traditional software engineering processes of the time. Yet I
experienced a talk full of refreshing thinking, giving credible reasons and cit-
ing experiences that resonated with my own sense of modern software man-
agement.

Jim’s conference biography only hinted at his experiences thus far—a
programmer from the early days of computers, who went deep into struc-
tured methods, but also saw their weaknesses. The decade before this talk,
he’d been actively exploring a new route, one that had a lot of similarities
with my very diªerent community.

After that time in New Zealand, our paths crossed more often, although
it became a running joke that we rarely met in the country in which we both
lived. Jim’s book Adaptive Software Development was an influence on many
people in my circles. A few years later, we were together in Snowbird writ-
ing the Manifesto for Agile Software Development. Since then, it’s been a
mixed couple of decades. The approach we advocate has come further than
we thought it would, but it continues to run into obstacles, often caused by
the common human inclination to favor surface impressions over deeper
understanding. Jim has helped tackle this challenge head on, rethinking the
dreaded project management triangle, teaching managers to live with ambi-
guity, and mentoring new generations of software developers to work in this
new style.

Jim’s history in the software industry has put him at the forefront of a
wave of changes, and I’ve enjoyed learning about his full story as I’ve read
drafts of this book. It’s a personal book, one that can only be written by

xviii Foreword by Martin Fowler

someone who values adventure but also understands that you need the right
training and equipment to get down from the mountain safely. Reading this
memoir of someone who worked in the heart of Monumental Methodolo-
gies but recognized their limitations and cut a path out of them, I’m learn-
ing about many things that influence our current world. I’ve always felt
that understanding history is important, because it’s hard to understand
where we are unless you understand the path that we took to get here. Jim’s
memoir is an entertaining and astute odyssey through this history.

—Martin Fowler, Chief Scientist, Thoughtworks

xix

Foreword

i’ve spent most of my career—which included five diªerent C-level
roles encompassing six diªerent business models—leading and advising
businesses on designing new operating and engagement models to drive
digital transformation and achieve enterprise agility through the adoption
of fundamentally diªerent ways of working, thinking, and being. Like Jim,
what I’ve learned—sometimes quickly, sometimes slowly—is that “Waiting
for something to happen and relying on your ability to adapt is one thing,
but building a sustainable enterprise having a greater capability to adapt is
even better.” I can assure you, Jim never waited for something to happen: He
was a true adventurer and pioneer throughout his career.

This book is an extraordinary trip down memory lane! Jim meticulously
describes the evolution of software methods, methodologies, and mindsets
through the eras of software development that occurred during his extraor-
dinary six-decades-long career. A prolific storyteller, Jim guides us through
this journey from the perspectives of both his personal experiences and the
experiences of the adventurous pioneers he encountered along the way, and
through the lenses of technical innovation and management trends during
these periods.

Jim’s last book, EDGE: Value-Driven Digital Transformation, which he
co-authored with David Robinson and Linda Luu, helped leaders unleash
the promise of agile development. It also helped leaders build the capabili-
ties to transform and demanded that one develop the capacity to embrace
and lead change. This book, Wild West to Agile: Adventures in Software Devel-
opment Evolution and Revolution, will help all of us who are interested in
learning about how agile practices evolved to the pillars of agility: to con-
sistently deliver customer value, to foster enterprise benefits, and to build a

xx Foreword by Heidi J. Musser

sustainable enterprise. Agile methods and methodologies will continue to
adapt and evolve, but the need for enterprise agility will not lessen.

What strikes me most about this book is Jim’s commitment to preparing
for the future by learning from the past. Not only does he honor the pioneers
of software development, but he does so in a way that gives both my genera-
tion and younger generations insights into the events that we lived through,
events that we may have missed, so that the seeds of agility planted and ger-
minated decades ago will continue to flower in the future.

Finally, I would be remiss if I did not note the underlying thread that
is interwoven through Jim’s braided narratives. This entire journey—begin-
ning with the Wild West era of software development through the Agile era
to today’s Digital Transformation era—is entirely empowered by people. Thank
you, Jim, for sharing these beautiful stories and honoring the people who
were a part of this amazing journey.

—Heidi J. Musser, Board Member, Board Advisor,
Executive Consultant, Vice President and CIO,

 USAA, retired

xxi

Preface

why WILD WEST TO AGILE? As I retired and began writing a family-centered
memoir for my grandkids, I realized I was taking a trip back through time
in all-embracing ways I’d not done before. These reminiscence trips through
my outdoor and career adventures were both revealing and thought provok-
ing. Every now and then, I would stop and ask younger colleagues if they
knew of Tom DeMarco or Jerry Weinberg or Ken Orr. They didn’t. They knew
about Azure and Ruby, and agile practices, but little about software develop-
ment history. Technology blazes forward, leaving little time to contemplate
the past.

I wanted to write about the history of software development, embellish
it with my personal experiences, and introduce the people, the pioneers, who
strived to make the world a better place, by building better software. Pio-
neers—whether 1800s fur trapper Jim Bridger, Apollo astronauts, structured
software developer Ken Orr, or agile methodologist Kent Beck—displayed
adventurousness, adaptability, and nonconformity. I wanted to resurrect
experiences shared with colleagues of earlier generations and oªer a sense of
perspective to colleagues of a more recent generation.

COVID-19. Lockdown. Retirement. Building project completed. Lan-
guishing. What next? These were the thoughts running through my mind as
2022 got under way. As I began to remember, research, and find old emails
and documents, the idea of turning a family memoir into a book began to
take shape. I had the idea of organizing the book around diªerent eras of
software development and writing about my work, stories, experiences,
and observations during each era. So, little by little this book evolved from a
few fuzzy narrative chunks. I wanted to explore how and why the software
industry evolved from the ad hoc code scribbling of the 1960s to the blizzard
of methods, methodologies, and tools available in 2022.

xxii Preface

Both my career and software development in general were hugely
impacted by changes in information technology (IT). One simple illustra-
tion: An iPhone with 64 gigabytes of memory has 250,000 times more bytes
of memory than the IBM 360 mainframe computer that I worked on in the
early 1970s. In 2021, a gigabyte of memory cost about $10. In the Wild West
era, although a gigabyte of memory was technologically1 impossible, the cost
for that gigabyte would be nearly $734 million!2 We need to remember that
methods, methodologies, and mindsets all evolved to solve the problems of
each era, and were both enabled and constrained by the technology of that
time.

As I explored this history, Wild West to Agile evolved into a work of
braided, creative nonfiction. Nonfiction, as the name suggests, is the oppo-
site of fiction. I’ve always wondered why this genre was named the “non”
of something else. Books about technology and science are usually nonfic-
tion and, regrettably, sometimes tedious to a non-researcher. Enter “creative”
nonfiction, whose writers use literary craft elements of character, story, struc-
ture, tension, and plot to make nonfiction readable and enjoyable. Simply
put, they are “true stories, well told.”

Braided narrative is the name bestowed on a nonfiction (or fiction) sub-
type. One braid tells the author’s personal story, while another explores an
environmental or social justice issue, or a historical event. These two story
lines weave together over time, each enhancing the other to create a cohesive
whole.

Wild West to Agile weaves together several braids. The first includes the
overall evolution and various revolutions occurring in software develop-
ment over four distinct eras. The second describes my personal and client
experiences during each era. The third pays tribute to the adventurous, inno-
vative pioneers. The fourth and fifth braids are technology innovations and
management trends.3

Writing in this braided narrative genre provided two benefits: scope and
stories. A book that purported to be about “the” history of software devel-
opment would be far beyond my interest or capability. Limiting the scope
to events I participated in narrowed the coverage substantially. My career
was exclusively involved with business systems (except in my early years

1. The maximum memory available for the popular IBM 360/30 was 64K.
2. https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-

storage?country=~OWID_WRL
3. These braids are further explained in Chapter 1.

https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL

xxiiiPreface

as an electrical engineer). I wasn’t involved in scientific or engineering
computing, never wrote compilers or operating systems, never wrote com-
plex algorithms, never worked on Unix systems. What I did work on were
business systems, such as those used for accounting, finance, order process-
ing, inventory management, and transportation. What I did work on were
methods and methodologies that improved software development. What I
did work on were technical, project management, organizational, and leader-
ship issues.

Terminology was a challenge. Today’s popular terminology was prob-
ably not yesterday’s. Should I use the term software development, software
delivery, or software engineering? Controversy over terms was, and remains,
rampant. Is software engineering really engineering? Is software develop-
ment a subset of software engineering or a superset? And on and on. My
first inclination was to jump into the definitional fray, but then I rethought
this decision: “That’s the road to lunacy!” So, considering my own personal
preference, I used software development as a broad term and threw in a few
software engineering labels when it felt appropriate. In Wild West to Agile, my
definition of software development encompasses a complete range of activi-
ties—from product and project management, to requirements, design, pro-
gramming, testing, and deployment.

Another conundrum was topic timing. For example, the term object-
oriented programming first appeared in the mid-1960s, but had limited use
until the 1990s, when the market expanded rapidly. Technical debt followed
a similar path. My guideline was to delve into topics during their market
expansion period.

I was lucky, fortunate, and humbled to collaborate with two generations
of software development pioneers. In the early eras, I was colleagues with
people like Ken Orr, Tom DeMarco, Tim Lister, Ed Yourdon, Larry Constan-
tine, and Jerry Weinberg. As 1999 turned the corner into this century, I added
agilists Alistair Cockburn, Pat Reed, Kent Beck, Mike Cohn, Ken Schwaber,
Jeª Sutherland, and Martin Fowler to this list.4

My goals for this book are as follows:

• Document the evolution and revolutions of software methods,
methodologies, and mindsets.

• Remember and honor the pioneers of software development.

4. More about each of these people in later chapters.

xxiv Preface

• Prepare for the future, by learning from the past.

• Give my generation a vehicle to reminisce about events we lived
through.

• Give younger generations a peek into events they may have missed.

Additionally, I wanted my grandkids to know more about me, to understand
my career and explore its purpose.

Finally, a word about my lens into software development history. “Per-
spective is the point of view that a person sees a historical event from. . . .
Every source has a perspective.”5 I’ve approached this history from my per-
spective, which of course includes my age, education, work experience, and
geography, but also race, gender, sexual preference, and religion. A software
history written by a New Yorker would look diªerent from one written by
a Silicon Valley alum. The lens of a marginalized person—female, BIPOC,
LBGTQ+, or a person with a disability—would be diªerent from mine,
very diªerent. I can only write from my perspective, my lens, but I can also
acknowledge and support the blossoming goals around diversity, equity,
and inclusion.6

The braids of this book weave together to tell a story. For mountaineers,
a tightly braided climbing rope binds them together into a collaborative, self-
organizing team. There are many kinds of braids that bring people together.

5. historyskills.com, https://www.historyskills.com/2019/03/22/what-s-the-diªerence-
between-perspective-and-bias/

6. More about diversity in the Afterword.

Register your copy of Wild West to Agile on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780137961009) and click Submit. Look on the Regis-
tered Products tab for an Access Bonus Content link next to this product, and
follow that link to access any available bonus materials. If you would like to be
notified of exclusive oªers on new editions and updates, please check the box
to receive email from us.

http://historyskills.com
https://www.historyskills.com/2019/03/22/what-s-the-di�erence-between-perspective-and-bias/
https://www.historyskills.com/2019/03/22/what-s-the-di�erence-between-perspective-and-bias/
http://informit.com/register

xxv

Acknowledgments

how does one write an acknowledgments section when the time span
is six decades? My solution was to hack away at it and hope I didn’t leave
anyone out. I owe much to many.

A special thanks to my consulting clients who, over many years, have
courageously endeavored to try new methods, methodologies, and mindsets.

The best products come from collaborative eªorts. The content, struc-
ture, and flow of this book were greatly enhanced by the invaluable contribu-
tions of Heidi Musser, Amy Irvine, Martin Fowler, Barton Friedland, Freddy
Jandeleit, Pat Reed, Ken Collier, and Mike Cohn.

Thanks to my industry colleagues, some of whom I have worked with
over a span of years: Sam Bayer, Donna Fitzgerald, Jurgen Appelo, Josh
Kerievsky, Ken Schwaber, Kent Beck, Anne Mullaney, Sanjiv Augustine,
Scott Ambler, Linda Luu, Kevin Tate, Jerry Gordon, Morris Nelson, Lynne
Nix, Steve Smith, Gary Walker, Jeª Sutherland, Chris Guzikowski, Mac
Lund, Ken Delcol, Larry Constantine, Israel Gat, Tom DeMarco, Tim Lister,
Ken Orr, Martyn Jones, Michael Mah, Ricard Vilà, Todd Little, Dave Higgins,
John Fahlberg, Karen Coburn, Gil Broza, Alistair Cockburn, Ed Yourdon,
Jerry Weinberg, and Wendy Eakin.

Although I retired from Thoughtworks in 2021, a number of Thought-
works colleagues contributed to this book: Chad Wathington, Rebecca
Parsons, Angela Ferguson, Mike Mason, Neal Ford, Roy Singham, David
Robinson, Marcelo De Santis, and Xiao Guo.

Thanks to graphics designer Mustafa Hacalaki, who provided just the
style and tone I wanted for the book’s graphics.

Thanks also to the wonderful staª at Pearson who shepherded me
through the editing and production process—executive editor Haze Hum-
bert, developmental editors Adriana Cloud and Sheri Replin, copy editor Jill
Hobbs, and the rest of the production team.

This page intentionally left blank

xxvii

About the Author

Jim Highsmith retired as Executive Consultant at
Thoughtworks, Inc., in 2021. Prior to his tenure at
Thoughtworks, he was director of Cutter Consortium’s
Agile Project Management practice. He has nearly 60
years’ experience as an IT manager, product manager,
project manager, consultant, software developer, and
storyteller. Jim has been a leader in the agile software
development community for the past three decades.

Jim is the author of EDGE: Value-Driven Digital Transformation (2020; with
Linda Luu and David Robinson); Adaptive Leadership: Accelerating Enterprise
Agility (2013); Agile Project Management: Creating Innovative Products (2009);
Agile Software Development Ecosystems (2002); and Adaptive Software Develop-
ment: A Collaborative Approach to Managing Complex Systems (2000), winner
of the prestigious Jolt Award. Jim is the recipient of the 2005 international
Stevens Award for outstanding contributions to software engineering.

Jim is a co-author of the Agile Manifesto, a founding member of the Agile
Alliance, co-founder and first president of the Agile Leadership Network,
and co-author of the Declaration of Interdependence for project leaders. Jim
has consulted with information technology organizations and software com-
panies worldwide.

This page intentionally left blank

21

2
Wild West
(1966–1979)

”a small step for man, one giant leap for
mankind,” said Neil Armstrong, venturing onto
the lunar landscape for the first time. Upon col-
lege graduation in 1966, I had several electrical
engineering job oªers—Westinghouse in Pitts-

burgh, Pennsylvania; IBM in Poughkeepsie, New York; and Pan American
World Airways Aerospace in Coco Beach, Florida, working on the Apollo
moon landing program. My selection process was not di�cult. Pan Am had
a contract with the Air Force to manage the missile flight operations at Cape
Canaveral (not at the Kennedy Space Center, a National Aeronautics and
Space Administration [NASA] facility), so I jumped at the chance to be a tiny
part of Apollo.

Apollo
My first assignment was looking over engineering drawings and calculat-
ing component and system mean-time-to-failure (MTTF) and mean-time-to-
repair (MTTR). One time, I flew to the primary downrange missile tracking
station on Ascension Island in the middle of the Atlantic Ocean to oversee a
computer memory upgrade and test. What I remember most about the trip
was the discomfort of flying in an Air Force C-130, losing an engine in-flight,
overnighting in Antigua, and the happy hour at the o�cer’s club on Ascen-
sion when drinks were 10 cents.

Wild West

Chapter 2 Wild West22

Figure 2.1 Apollo downrange tracking ship.1

In the early 1960s when Apollo was being designed, global communica-
tions was iªy, so five ships were retrofitted with radars, telemetry, inertial
navigation systems, and a fully functioning, but smaller, mission control cen-
ter mirroring the one in Houston. These ships were to be deployed to the
Pacific Ocean to acquire and track the command module as it returned to
Earth. I worked on two of these ships, like the one shown in Figure 2.1.1

“Work” was somewhat of a misnomer for my job. In reality, I reviewed
and approved others’ work. The number of entities involved in the Apollo
mission was startling to a newbie like me. As you would expect, there were
multiple contractors for the ships themselves, for everything from anchor
chains to computers. What I did not expect was the contract management
flotilla—NASA, NASA prime contractors building things, other contractors to
monitor the primary contractors, and the Air Force, with the same menagerie

1. Photo courtesy of CPC Collection/Alamy Stock Photo

Apollo 23

of which Pan Am was a part. For a computer test, for example, there might be
a contractor running the test and several observers, each of whom supplied
their own hierarchy with reports about the success or failure of the test.

Patrick Air Force Base (AFB), near Cocoa Beach, was the primary launch
site for the Mercury and Gemini missions (and military vehicles like Titan),
while the launch complex for Apollo was being constructed on Merritt
Island, north of Patrick AFB. My o�ce was located at Patrick. One morn-
ing, as a friend and I walked into work, we saw tourists standing around
the life-sized missile display in front of the building (Figure 2.2). We were
dressed for the times in white shirts, thin dark ties, and—the sure sign of an
engineer—pocket protectors jammed with pens. We walked over to one of
the missiles, looking seriously up and down and around, and started yelling,
“Ten, nine, eight, ….” as we ran in the other direction. Wow, the tourists took
oª! We laughed all the way into the o�ce. 2

By the time I arrived, the Mercury program was completed, Gemini
was under way, and Apollo was getting ready for early test launches of the
Saturn rocket. My next-door neighbor was an Air Force camera operator, and

Figure 2.2 Missiles outside Patrick Airforce Base.2

(Courtesy of Air Force Space and Missile Museum.)

2. https://afspacemuseum.org/sites/patrick-air-force-base-florida/

https://afspacemuseum.org/sites/patrick-air-force-base-�orida/

Chapter 2 Wild West24

he invited me to accompany him to watch launches from extremely close
up—almost hair-scorchingly close. We were about a mile in front of the news
media cameras. I made it to the top of a Saturn rocket on the launch pad
and got to look inside the Apollo command module (but unfortunately did
not go in). During the first Saturn test flight (at the Patrick site), the ground
shook so violently that three separate power feeds to the primary computer
facility shut down—they were down for the first 2 to 3 minutes of the flight.

The ships had C-band and S-band radar, telemetry for data downloads,
and inertial navigation (secret at the time, used on nuclear subs, and predat-
ing the Global Positioning System [GPS]). The computer was a reduced-size,
hardened military computer used on Navy ships. It had a red “battle” but-
ton so it could run past its temperature limits (and literally burn up) while
a battle was under way. This 8-bit machine had a 32-bit word length and an
eye-popping 36K of memory (36K was the maximum at the time). At sea,
our programming interface was punched paper tape (on land, punch cards).
There was a control panel with 3 or 4 columns across and about 10 to 12 rows
down—each intersection was a button that signaled currently unneeded pro-
grams to roll out of memory so others could be read in.

Consider trying to program complex orbital mechanics calculations to
acquire a tiny command module as it came up over the distant horizon given
the memory and processing speed constraints. Besides radar and navigation
data, another calculation input was ship flex data.3 The command module
acquisition calculation was so sensitive it required ship flexure data in the
calculation—all programmed in 36K.

For six months, I was on temporary duty at a shipyard in New Orleans,
where two ships were being built. We went out on sea trials—down the
Mississippi River to the Gulf of Mexico to test the systems by trying to find
airplanes. In an actual mission, the command module would enter the atmo-
sphere at 24,000 miles per hour, then slow down by using retro-burn engines
to less than 350 miles per hour. Our target planes flew right over the ship at
several hundred miles per hour. The first few tests we couldn’t even find the
planes.

The entire Apollo program was huge, and its success was a testament to
a big vision, creativity, collaboration, learning through failure, engineering
expertise, and management talent. It was a fun, but busy time, and it was

3. Obtained by measurements in a narrow tunnel between the radars through which a laser was
beamed to measure the ship’s flex.

25Technology and the World

great for me to play even a small part in this event. Looking back, it was an
exciting way to begin my career adventure. However, by the first manned
Apollo flight, the ships had been repurposed due to advances in communica-
tions.

before continuing with my career stops, a couple of leading-edge
projects, the state of software methods, and establishing a management con-
text for the entire six decades, I first need to set the technology stage for this
Wild West era.

Technology and the world
Apollo was an electric piece of the wider world during the early part of the
Wild West era, which included events like the Beatles, the Vietnam War,
flower children, antiwar protests, President Richard Nixon and Watergate,
and rising inflation. While the global geopolitical and social changes were
significant, business leaders continued much as before. The economy was
hit by oil crises in 1973–1974 and 1979, whose major impacts included rapid
wage and price inflation, which slowed business growth. The combination of
these conditions inspired the term stagflation. Retail sales sank, and corporate
profit margins suªered.

Some big businesses suªered. In particular, manufacturing titans like
General Motors and Ford lost ground to European and Japanese car mak-
ers, whose vehicles oªered both higher mileage ratings and lower costs. But
there was another emerging trend. New companies like Apple (1976), Star-
bucks (1971), Microsoft (1975), and Nike (1964) showed smaller, nimble com-
panies might have a future.

The 1950s had laid the groundwork for 50 years of corporate myopia.
The economy boomed, people had jobs, prosperity seemed inevitable, and
the future appeared to stretch out into a grand undertaking (unless, of
course, you were female, BIPOC [Black, Indigenous, and people of color],
LBGTQ+, or a person with a disability). Corporate executives planned for
the future as if the progression was predictable and linear. Some things did
change, however, so businesses had to adapt, but within acceptable limits.
This assumption of predictability infused everything from business plan-
ning to project management. “Plan the work and Work the plan” was the
corporate mantra. This predictability and internal focus led to trends like

Chapter 2 Wild West26

management by objectives (MBO) and cost and schedule as the primary
objectives of project management. Even into the mid-1980s, big corporations
had large planning departments.

In the late 1960s and all of the 1970s, IBM dominated the mainframe
business computer market. Prior to that time, IBM oªered diªerent lines of
computers depending on how much processing power a customer required.
Unfortunately, these computers, which had designations like 1620 and 7064,
were incompatible, so upgrading from one size to the next was di�cult and
expensive. The IBM 360/30, released in 1964, was the first of the 360 series of
computers having, among many innovations, a common operating system.
Magnetic tape drives provided external storage for these early systems.

Beginning in the 1970s, IBM began delivering random-access disk drives
with its 360 computers. A small configuration of 2314 disk drives, with
146 MB of storage, sold for $175,0004 (today that much storage would cost
about ½ cent, not adjusting for inflation). Commensurate with the develop-
ment of disk drives, IBM introduced an early database management system,
called Information Management System (IMS). Random-access drives and
IMS introduced new complexity, and new opportunities, into software
development.

The rise to prominence of minicomputers began in the 1970s and
extended into the 1980s, led by Digital Equipment Corporation (DEC), which
released the PDP-8 in the late 1960s. DEC developed ever more power-
ful minis, driving Data General, another major manufacturer, to release its
Eclipse superminicomputer in 1980. The intense development eªort of the
Eclipse was documented in a Pulitzer Prize–winning book, Tracy Kidder’s
The Soul of a New Machine (1981). Still, IBM mainframe computers dominated
business computing during this entire era.

Interactions with computers during this time were primitive and imper-
sonal (as illustrated in Figure 1.5). Large mainframe computers resided in
specially constructed rooms with raised floors, overhead wire bins, and seri-
ous air conditioning.5 Computer operators input card decks, mounted and
dismounted tape and disk drives, and gathered and distributed printouts.
Because disk storage was so expensive, most systems used a combination of
storage forms—magnetic tape for high-volume data, disks for lower-volume
data. Online, time-sharing systems were available on minicomputer systems

4. 2314 drive performance and cost in 1970, IBM Archives, www.ibm.com/ibm/history/
exhibits/storage/storage_2314.html.

5. No one worried about energy costs or environmental impacts in those days.

http://www.ibm.com/ibm/history/exhibits/storage/storage_2314.html
http://www.ibm.com/ibm/history/exhibits/storage/storage_2314.html

27Technology and the World

using Unix and some mainframes, but were primarily reserved for academic
and engineering applications.

Software was poorly understood by business executives. They could see
the mammoth computers, but the software was hidden. In addition, most
of the vendor-supplied software during this time was included in the price of
the hardware—software appeared to be free!

wanting to design and build rather than audit, I quit Pan Am and relo-
cated to Saint Paul, Minnesota, to work for Univac Federal Systems Divi-
sion, which manufactured computers for the Navy and Apollo ships. I was
involved in designing gates and registers for computers and early commu-
nication modem design. After two engineering jobs, I began to see myself
as more a generalist than a specialist and decided to pursue an MBA degree,
attending night school at the University of Minnesota for the prerequisite
accounting and economics courses. I had anticipated the cold weather in
Minnesota but driving to work one morning, after hacking ice oª the car
windows, with a windchill of minus 78 degrees proved too much. Having
braved the cold for one winter, I decided to high-tail it out of there.

Back to the warmth of the South in Tampa, I graduated with a master of
science in management degree from the University of South Florida in 1970.
For my master’s project, I developed a simulation application for analyzing
barge tra�c from Tampa to ports along the Mississippi River. While I was
working as an intern for a local company, the model proved useful, and man-
agers were pleased with the results. The simulation utilized a package called
the General-Purpose Simulation System (GPSS). This software was new, so
none of my professors could help. I learned how it worked from incomplete
manuals and trial and error. Since this was still the punch card and printout
era, with slow turnarounds, I spent many evenings in the school computer
center. However, there was a flaw in my analysis, which one of the managers
caught in my final presentation. One of the data tables contained bad data,
throwing oª the final results a bit. The bad data was given to me, but I should
have been more diligent in reviewing it. In projects to follow, I made sure
someone on the team was as detail oriented as I was big picture oriented—I
sought to ensure the team had the diversity of skills required to do the work
and optimize team performance.

Chapter 2 Wild West28

Esso Business Systems
In 1970, fresh out of graduate business school, I moved to Baytown, Texas,
just east of Houston, to work in the Esso6 refinery as a business systems
analyst. But the job wasn’t just analysis: It also included design, program-
ming, testing, documentation, and—at crunch times—mainframe computer
operator.

One leading-edge project I worked on would in the future be called a
management information system (MIS). A study team consisting of young
gung-ho, mostly MBA types did the analytical work to identify manage-
ment’s needs. John Fahlberg,7 a colleague from that period, was on the team
and reminded me of details in a 2022 call. John’s first recollection was our
regular Friday night retreat to the top-floor bar in the then-new Galleria
Hotel, where we commiserated about long work hours and management, of
course. When our report was presented and approved, I was a team of one
who wrote the software system, which consisted of COBOL8 and Mark IV (a
high-level reporting language) code that extracted data from various opera-
tional systems and generated the new reports. The system was a big kluge,
but it worked, and the executives benefited from the data. The information
included barrels of refinery products produced, staª levels, maintenance
activities, costs, and other financial analyses. It was the first time, at least in
the Baytown location, data was extracted from multiple operating systems
and consolidated for management. Previously, managers received transac-
tion data from operating systems, but no cross-system data in a consolidated
manner.

I was still new to programming, with no formal training, and I’m sure
my COBOL programs were a maintenance nightmare. We did have a few
pattern-like models, such as updating a primary file with transaction files—
all of which contained serial data stored on magnetic tape. This was an era
in which the last record in files had to contain all 9s as an end-of-file indi-
cator.9 The only interaction tools at the time were punch card input and
printed reports. Turnaround for running and testing programs was usually
overnight. It often took several iterations to get a clean compile, at 12 hours

6. Esso became Exxon while I worked there.
7. John went on to become the CFO at Target and CEO of several Silicon Valley start-ups.
8. COBOL: Common Business-Oriented Language.
9. Without the 9s record, file read processing would abort when it tried to read past the last

record.

Esso Business Systems 29

per try. In addition to programs, linking a series of programs together with
needed data files and tape drives required knowing IBM’s arcane Job Control
Language (JCL).

“JCL is a clumsy and cumbersome system that is hard to
learn, full of inconsistencies, and avoided by anyone with
an iota of common sense and access to an alternative.”

—Mainframes.com

Testing in those days was a trip. Testing tools were nonexistent. Once you
had a clean compile, test data was developed and key-punched into cards,
JCL was modified, and the test was run. Of course, if the file was greater
than 80 characters, first you ran a program to combine multiple cards into an
extended file format. Not surprisingly, many transaction files were 80 charac-
ters in length. If you were lucky, the test results were printed and analyzed. If
you were unlucky—which was most of the time in the beginning—execution
terminated, resulting in a core dump. This 144 characters per line printout of
the entire computer memory in hexadecimal10 looked like “01 A9 34 5A D2
88 88” and went on for page after page. Figuring out where your program
started and then tracing the execution path was loads of fun!

In those days we had a vision of what management wanted, but the tech-
nology was severely limiting.

10. The hexadecimal (hex) numbering system used in computing has 16 symbols (base 16)
rather than the standard decimal (base 10) system. The 16 symbols are 0–9 and A–F.

A Wild West Story
At Esso, my colleague and early mentor, Ed, was in his 60s. His desk, shelves, and
floor overflowed with punch card decks. Instead of the stacked books of a univer-
sity professor, every surface in his office was covered with computer printouts.
Ed was responsible for maintaining accounting systems. He had a box of “secret”
one-time “card” decks that he would tweak each year to complete year-end finan-
cial books. There was no backup for Ed. If he wasn’t there, the books didn’t close!
None of us had any backup in those days. It really was the Wild West of IT.

http://Mainframes.com

Chapter 2 Wild West30

I managed the implementation of a new accounting system scheduled to
replace both the software application and the entire account coding system
(another team developed the software). Because of the new coding system,
the operational systems, such as payroll, would begin using new codes dur-
ing the month. As a result, when we turned the old month-end system oª,
and switched the new one on, there was no going back. The project involved
modifying and integrating many subsystems, which pushed the implemen-
tation to a nine-month project.

My innovation as the project manager was to build a test program that
compared the outputs of the existing subsystems (payroll, accounts payable,
cost allocation) with the outputs of the new or modified ones. My compari-
son program was complex, since it involved mappings for all the data in the
operational systems feeding data to the accounting application. As diªerent
subsystems (for example, the maintenance cost system) became ready and
started generating new codes, the testing program would map the new codes
back to the old, and compare them with the correct mapping—and we would
find tons of errors. It was my first insight into how critical, and hard, testing
was.

As we neared our dreaded conversion date, working nights and week-
ends, we often helped the operators in the computer center, mounting tape
drives, making card deck corrections on the fly, and rerunning the system.
In subsequent years, developers were banned from operations due to audit
“separation of duties” controls.

One evening toward the end of the project, the team returned from din-
ner, and I parked my car in a director’s reserved spot. I worked all night and
completely forgot about the parking. The next morning, one of my colleagues
informed me I was in big trouble and needed to go see the director post haste.
He was a gruª, traditional executive, so I was nervous as I entered his o�ce,
apologized, and told him my story of working all night. He surprised me by
being gracious: “Anyone who works 24 hours straight gets to park anywhere
they damn well please. Just leave your car where it is.” He also thanked me
and the team for our hard work.

Closing the accounting books for the month, even with the new system,
took three nights.11 The morning after the first day, things weren’t looking
good: The dreaded, and complex, cost accounting system, named BUPS

11. Computing resources were costly, so balancing loads over a 24-hour period was necessary.
Therefore, jobs for many operational systems such as accounting were run overnight.

Esso Business Systems 31

(Burden, Utilities, and Plant Services),12 wasn’t working correctly. There were
only two or three people who knew this system well enough to troubleshoot
it, so we took a small conference room to hash out solutions. My manager at
the time was an old-school micromanager, and he walked into the room and
started trying to “fix” things. Having worked two days with almost no sleep,
I had little tolerance for his interference, but I did have enough sense not to
confront him directly. I went to my friend, John Fahlberg, who was on my
manager’s level. “Get him out of there before I lose it,” I tried to say some-
what civilly. John, being the suave guy he was, guided my manager out of
the room and convinced him to let the team fix the problem—which we did
shortly thereafter.

The project was a huge success, and everyone was relieved after nine
months of 60- to 80-hour workweeks. My friend John planned a party for the
team and their significant others. Ignoring his boss’s suggestion to keep the
cost of the party down, he put on a first-class event, replete with surf-and-
turf entrees. Considering the enormous number of overtime hours put in by
the project team, this was a minor concession.

While my title on this eªort was Project Manager, I knew nothing about
project management, except perhaps what a Gantt chart looked like. As with
programming, I’d had no formal education and there was little material on
the topic available. But I knew other team members had programming expe-
rience, knew their systems, and didn’t need me micromanaging. We had a
deadline, lots to do; the team just needed an overall game plan. It was the
Wild West of project management, but I was starting to develop an inkling of
management style.

During this period, most systems users were clueless, and most of us
computer pioneers were marginally less clueless. A project with the refinery
maintenance department provided a couple of clues. Managers there wanted
a rudimentary system to keep track of maintenance tickets. Like a good ana-
lyst, I talked to several maintenance people who currently performed the task
manually, wrote down a few specifications, and then developed and tested
a system in Mark IV in about three months. I showed the various reports
to the managers, which they liked, and then showed them the input forms

12. This was a state-of-the-art cost allocation system that allocated administrative costs, based
on various factors such as people count, square footage of warehouse space, and many
more, to production units, which were eventually reflected in product (e.g., gasoline,
heating oil) costs. However, before allocation to the production units, admin costs were
allocated among the admin groups—for example, accounting costs to IT, and the reverse,
and around and around it went! This single system took 3–4 hours to run on our IBM 360
computer.

Chapter 2 Wild West32

they would need to fill out and get keypunched. “Cease” was the response.
“You mean we have to fill out these forms?” I tried to explain that producing
reports required input data. They were not happy and ended up abandoning
the eªort. The knowledge on both sides about computers and how to make
them eªective was in its infancy.

The successful accounting system implementation led to my first man-
agement job—promotion to supervisor of an accounting group responsible
for payroll, accounts payable, and materials accounting, among other areas. I
was 28 years old, and the next youngest person in the group was 45, and they
were all unionized. In this role, I learned the diªerence between being in IT
and being on the business side of the IT–user interface. In IT, we were always
asking for business users’ time to learn about what they did, so we could
build systems to support their eªorts. Due to the long IT project timelines,
there wasn’t always daily stress—until the end, of course. On the business
user side, there were daily stresses of making deadlines for payroll, account-
ing closes, and invoice payments. I’ve never forgotten the diªerent dynamics
of these interactions.

Once, when a staª member complained about a rude, disrespectful ven-
dor demanding immediate payment (it wasn’t overdue), I called the vendor
vice president. I said if his staª were ever rude again, they would never do
business with Exxon in the future! Of course, I had no such authority, but he
didn’t know that, and my staª loved it. This episode added another bit to my
nascent management style—you treat everyone with equal respect.

In the early 1970s, there were seven Exxon refineries: four large and three
smaller ones. The business systems group in the large ones had developed
systems independently and the accounting system mentioned earlier was
an initial step in instituting commonality. This reconciliation of diªerences
wasn’t easy, as each location had its own way of doing business and was
reluctant to change.

To assist in rationalizing IT systems throughout the refining department,
the position of business systems coordinator was established in the Refin-
ing Controller’s o�ce in Houston.13 As in many companies at that time, IT
reported to the controller. Later, as IT became an integral part of businesses,
IT organizations would report to a chief information o�cer (CIO), who then
reported to the chief executive o�cer (CEO). Accepting the coordinator’s job,

13. Because the most important applications at that time were accounting and finance oriented,
most IT departments reported to the controller (now we use the term chief financial o�cer
[CFO]).

33Exxon to Oglethorpe

I worked to consolidate business systems, of which the accounting system
was an excellent start. Consolidation of the software systems eventually led
to consolidation of the refinery’s computer facilities—a major accomplish-
ment in those days.

Since we were in the controller’s organization, one of my infrequent tasks
was consolidating quarterly refinery financial reports. One day, I received
a call from my counterpart at the corporate level who consolidated reports
from all the divisions—refining, exploration, production: “Congratulations,
your numbers are oª by only a billion dollars.” “Well,” I said, “it was only
one digit.”

This was an influence job, not a managerial job, as the business systems
supervisors in each refinery didn’t work for me. Even so, I needed their
help in planning how to bring the refinery IT systems into a modicum of
commonality.

Exxon to Oglethorpe
In 1976, after nearly six years with Exxon, I moved to Atlanta, where, after a
couple of short-term jobs, I ended up at Oglethorpe Power Company as soft-
ware development manager.

During a brief stint in an Atlanta bank, where computer operations staª
deposited piles of computer printouts on the president’s desk each day, I
worked on their first international banking system. This project included a
trip to Citibank in New York City to investigate its state-of-the-art interna-
tional banking system running on a DEC superminicomputer. Combining
what I learned at Citibank with the knowledge I had gleaned in my discus-
sions with our international bankers, I wrote a proposal for moving forward
with new international banking systems for processing foreign exchange, let-
ters of credit, and other international banking transactions. I liked working
with international staª, as they were laid-back as bankers go.

But others were not so laid back, as I learned when confronted about my
adherence to standards and procedures in a conservative bank. It seems my
travel and proposal costs had exceeded my budget by more than the 10%
limit. I hadn’t even known I had a budget, but I received a dunning letter
from a guy in accounting. I would have ignored it were it not for the five to
six pages copied from an accounting book and stapled to the letter, which
suggested I bone up on my cost accounting. I invited the guy to my o�ce for
a chat.

Chapter 2 Wild West34

“What is that on my wall?” I asked, pointing to a framed document.
“It looks like a CPA certificate,” he replied.
“Do you have one?” was my second question.
“No.”
“Well, until you do, don’t send me more pages from accounting books!”
Although my proposal on developing an international banking system

was well received, by that time my nonconformist side conflicted with a
banking career, so I quickly moved on to a less rigid culture.

oglethorpe power was a newly formed power generation, transmis-
sion, and distribution cooperative serving power companies in rural Georgia
(in my undergraduate program, I majored in power systems engineering).
My software development manager job was like a start-up position, as I got
to build my staª and implement methods.

My department manager had worked for Andersen Consulting14 in the
past, so we adopted that firm’s Method/1 methodology, which was advanced
for the times. While Method/1 was intended as a project management tool
for software projects, it didn’t include specific development methods. For
example, it contained tasks like “Define a file format” and “Complete a file
layout form,” but had no methods for actually defining them.

I had taken a few courses in structured techniques from Yourdon, Inc.,
and wanted to incorporate them into our company’s development process.
In a structured techniques discussion with one of the Andersen consultants,
he suggested we look at the Warnier-Orr approach in addition to the Your-
don one. Subsequently, I brought Ken Orr in to teach us about his methodol-
ogy and methods. While these methods were initially created by Frenchman
Jean-Dominique Warnier, Ken Orr added to the original ideas and popular-
ized them in the United States. The diagrams showed constructs such as hier-
archy, sequence, repetition, and alternation. The methodology focused on
starting with the outputs and working out the flows that produced those out-
puts. This emphasis on outputs rather than inputs was a concept that stuck
with me, eventually extending to the concept of outcomes in the Agile era.

My staª embraced the Warnier-Orr approach, and we delivered sev-
eral applications using it. We also purchased and used Ken’s software
package called Structure(s), a precursor to computer-aided software engi-
neering (CASE) tools. One member of my staª got excited. An experienced

14. Arthur Andersen was primarily an accounting firm. The Andersen Consulting group grew
and was eventually spun oª as Accenture.

Software Development 35

programmer, he remarked, “This is the first time I’ve ever written a COBOL
program that didn’t have a compiler error the first time through.” This system
was our first complete life-cycle use of the Warnier-Orr techniques. It was
successful and well designed. However, it sowed a tiny seed of doubt in the
back of my mind: “It sure took a longer development time than I expected.”

During 1978, my writing career began with a published article, when
“Solving Design Problems More Eªectively” appeared in Management Infor-
mation Systems Quarterly. Interestingly, this paper was not about software
development, but rather about a process for group problem solving. Dur-
ing the 1970s and 1980s, I published other articles in MISQ, Auerbach Reports,
Datamation (Highsmith, 1981), and Business Software Review (Highsmith,
1987).

Software development
In the early Wild West era, software processes, tools, reference books, and
training were scarce. I learned from the IBM COBOL manual and rushed fre-
quently into Ed’s (from Esso) o�ce to ask questions. Most of my knowledge
acquisition came through experiences—both good and bad. Owing to his
quiet style Ed was di�cult to communicate with, but his experience made
him an invaluable early mentor to me.

In the Exxon business group, there was a programmer who transferred
in from technical systems. His technical programming had been in Fortran,15

so he wrote his first business application, a payroll system, in COBOL, but
used Fortran-like data names. Fortran programmers were accustomed to
using data names like “EMPRT2” because of language restrictions,16 rather
than COBOL data names like “Employee-Pay-Rate2.” His COBOL programs
using Fortran data names caused untold maintenance headaches when he
moved on. More Wild West.

One infamous, insidious, and even dangerous COBOL statement epit-
omizes the nature of this era—the ALTER statement. Think of a program
statement—Go To CALC-Pay-Status. Okay, so far. Now comes the fun part.

15. Fortran (FORMula TRANslator) was an early computer language used for scientific and
engineering applications.

16. Variable names in Fortran were limited to six digits, a–z and 0–9. In a large system, this
limitation led to bizarre variable names. In addition, COBOL was a file-oriented language,
designed for business systems. Fortran was a variable-oriented language designed for
scientific and engineering calculations. IBM oªered PL/1 as a one-language solution to
replace both Fortran and COBOL, but it was not widely used.

Chapter 2 Wild West36

Three pages down on the program printout (remember, only paper output
in those days), an ALTER statement, based on some variable, modifies the
initial GO TO destination to something like Go To ALT-CAL-PAY-STATUS.
Wow. Now think of a COBOL program of 1,000 statements containing 50 of
these ALTER-GOTO constructs and the di�culty in following the logic. You
needed at least 25 fingers to keep up. Maintenance of these programs was a
nightmare—usually passed along to the next poor soul.

During the time of serial tape files, prior to random-access databases, we
used techniques like assigning a single data field multiple data types depend-
ing on a variable such as the record type. Field 4 might be used for “color”
if the record type was “commercial” and for “size” if it was “retail.” Date
fields were often two digits, which precipitated the Y2K problem 30 years
later. Why? Why would programmers create these maintenance nightmares?

Today, cell phones have 128 MB of memory and access to inexpensive
terabytes of cloud data. The first Intel chip, introduced in 1971, had a clock
speed of a little less than 1 megahertz.17 Today, chip clock speeds can exceed 5
gigahertz.18 In the Wild West era, computer speeds were glacial and memory
was exorbitantly expensive. As programmers during this period, we needed
to save every byte and hertz we could. We had to know which COBOL state-
ments were fast and which were slow. This contributed to the overuse of
ALTER statements, because they were fast.

During this period, development tools included flowcharts and hierar-
chical input–output (HIPO) diagrams. In the mid- to late 1970s, data flow
diagrams and other structured methods emerged.19

In 1978 I read Tom DeMarco’s (1978) book, Structured Analysis and Sys-
tem Specification, and attended a Yourdon class on structured analysis taught
by Steve McMenamin.20 I was an instant convert to this systematic approach
to uncovering and documenting requirements. This “engineering” approach
fueled my enthusiasm. When I accepted the job as software development
manager at Oglethorpe, I knew incorporating these methods was part of my
mission.

17. In this context, hertz is not a car rental company, but rather a frequency measure of cycles
per second. One megahertz (MHz) equals 1 million Hz; 1 gigahertz equals 1,000 MHz or 1
million Hz.

18. In 2022, Oakridge National Labs supercomputer exceeded 1 petahertz (1 × 1015 Hz).
19. These diagrams are explained in Chapter 3.
20. More on these topics in Chapter 3.

Management Trends 37

Management trends
My pursuit of a management degree arose from curiosity and a growing
sense I wanted a better understanding of management and leadership as a
context for software development. General and project management trends
shaped software development in the early years, as well as in following eras.

Inflexible cultures were the norm during the Wild West era—hierarchi-
cal, command-control, focused on planning and execution of those plans.
Great strides were being made in engineering, and its assumed predictability
crept into management thinking. Businesses were universally measured in
financial terms—as always, driven by Wall Street. Software project success
was measured by completion and cost. Just getting software delivered was
considered a success, but schedule was also essential for projects. Cost was
certainly important, but was secondary to getting systems up and operating.

Businesses operated on the premise—correct or not—that the world was
nominally predictable and if plans failed to materialize, the problem was exe-
cution, not planning. Good managers and executives got things done—end
of story. The nascent IT world was less predictable, which put IT executives
in the hot seat because little allowance was given by general management for
the still experimental nature of computers and software.

Looking at how management evolution impacted software develop-
ment, four factors appeared important: industry evolution, work type, man-
agement style, and worker category.

As the industrial age blossomed in the early twentieth century, research-
ers like Frederick Winslow Taylor introduced the term scientific management,
extolling the virtues of precise measurements and rigorous, prescriptive job
duties. The view of the organization as machine became embedded in the
management culture, and optimizing those machines became a key manage-
ment goal.

Later, management theory began to change based on the work of indi-
viduals like Douglas McGregor and Peter Drucker. We hear about GOATs
(greatest of all time) in various categories—but who would take the prize
in literature? While it might depend on whose list you use, the general con-
sensus is In Search of Lost Time by Marcel Proust.21 If there is a GOAT in man-
agement theory, it could well be Peter Drucker. In his time, Drucker wrote
39 books and coined the term knowledge work in 1959. Called the father of
modern management, he defined management as follows: “Management is

21. Depends on which Google list one concurs with.

Chapter 2 Wild West38

a multi-purpose organ that manages business and manages managers and
manages workers and work” (Drucker, 1954). This succinct definition helps
us assess changes over time as work changes, workers change, managers
change, and managers of managers change. Drucker’s coining of the term
knowledge work signaled that the very nature of work was changing.

“Organization as machine”—this imagery from our industrial past con-
tinues to cast a long shadow over management. Managers assumed stability
was the normal situation and change was the “unusual state,” writes Rita
McGrath in a 2014 Harvard Business Review article. McGrath identifies three
ages of management—execution, expertise, and empathy. “If organizations
existed in the execution era to create scale and in the expertise era to pro-
vide advanced services, today many are looking to organizations to create
complete and meaningful experiences” (McGrath, 2014). These management
style categories bring another dimension to our discussion of the software
development eras.22

Unfortunately, I never found further McGrath material other than her
Harvard Business Review article. Moreover, there is debate about the empa-
thetic style.23 Even so, I liked the words McGrath used to categorize man-
agement periods. While the label command-control has often been applied
to traditional management, none of the recent style names has emerged as
“the” term. Names such as leadership-collaboration, adaptive leadership,
Agile leadership, Management 3.0, savant leadership, and others have all
appeared in the last two decades. So, I will nominate McGrath’s “empathy”
as the best name for modern management.

klaus schwab, ceo of the World Economic Forum, proposed a way of
looking at the evolution of work. Schwab’s four ages are centered on the
advances of science and technology:

• First: The Age of Mechanical Production

• Second: The Age of Science and Mass Production

• Third: The Digital Revolution

• Fourth: The Imagination Age

22. McGrath’s styles are revisited in Chapter 8.
23. “Easily one of the most debated topics currently, the trend of increasing empathy in

leadership has two very opinionated sides” (www.business.com).

http://www.business.com

Management Trends 39

As the Age of Science and Mass Production24 got under way, organiza-
tions got bigger and needed a way to manage multilayered organizations,
from ground-level supervisors to executives. Practices such as standardized
processes, quality control, and specialization of labor were widely applied.
Optimization—e�ciency, consistency, measurability, predictability—was
the goal. This approach, dubbed command-control management, defined the
Execution Age. This was the age in which industrial workers were perform-
ing physical work.

With the Digital Revolution, computer technology evolved from main-
frames to minicomputers to personal computers, broadening access to com-
puting power. Concepts from other disciplines such as psychology and
sociology began to creep into management theory, but this age primarily
brought expertise into play, characterized by the concepts of reengineering,
Six Sigma, and MBO.

Software development would add its own terms in this period—namely,
waterfall and Monumental Methodologies. As the use of technology, including
software, medicine, computers, materials, and computing devices, exploded,
so did the need for knowledge workers. As knowledge work expanded,
employees rebelled against existing manager–subordinate relationships,
which drove early agilists to focus on building person-centric workplaces. In
recognition of this change, Adaptive Software Development (Highsmith, 2000)
used the term “leadership-collaboration” management, in contrast to the ear-
lier “command-control,” to characterize practices of this age.

Schwab doesn’t set the time frame for the fourth industrial age, nor does
he explicitly name it the Imagination Age, although there are references to
imagination and innovation in his work. He defines this age by the velocity
of change, the breadth and depth of change caused by the rapid evolution and
integration of technology, and the systems impact, referring to international
sociological systems. To prosper in this era, we will need to define “work”
yet again, understand the diªerences between knowledge workers and inno-
vation workers, and know how to lead, organize, and manage in an empa-
thetic way that encourages imagination and creativity.

The Imagination Age is the period beyond the Digital Revolution, where
creativity and imagination become the primary creators of economic value,
as technologies such as artificial intelligence, biotechnology, robotics, quan-
tum computing, and robotics become integrated into our world.

24. I didn’t describe the First Age because it wasn’t relevant to software development.

Chapter 2 Wild West40

“We stand on the brink of a technological revolution
that will fundamentally alter the way we live, work,
and relate to one another. In its scale, scope, and
complexity, the transformation will be unlike
anything humankind has experienced before.”

— Klaus Schwab, January 14, 2016

Eventually, workers were classified into three types: industrial, knowl-
edge, and innovation. As the nature of work changed, the types of workers
required changed, which in turn changed the way managers and executives
(managers of managers) viewed and interacted with the workforce.

remember how you might have felt about the certainty of the future
before the COVID-19 pandemic. And now? The ripple eªects of the pan-
demic are unknown and largely unknowable until they fully play out. Many
of these changes were emerging before 2020, and the pandemic just acceler-
ated them. As uncertainty has increased, people have begun to theorize ways
to model uncertainty and devise tools and methods to manage it.

Stephan H. Haeckel, who worked at the IBM Advanced Business Insti-
tute, published a Harvard Business Review article in 1993 and went on to fur-
ther explain his ideas in his book Adaptive Enterprise in 1999 (Haeckel, 1999).
His message: Organizations needed to move from a plan-and-execute to a
sense-and-respond approach to the future. Sense-and-respond enables orga-
nizations to sense the outside world, respond quickly, and use feedback to
initiate the next cycle. Organizations dedicated to plan-and-execute become
so plan obsessed that deviations from the plans are considered mistakes
rather than opportunities.

Why didn’t Kodak respond to the digital camera threat? Did digital
cameras appear overnight, or did Kodak miss market cues? Why did Netflix
oust Blockbuster? Didn’t the latter pick up on Netflix’s rising market share
of movie rentals? Sensing, in our fast-moving business and technology envi-
ronment, can be extremely di�cult. What is noise? When does accumulated
noise raise to the level of alarm? In her latest book, Seeing Around Corners: How
to Spot Inflection Points in Business Before They Happen (2019), Rita McGrath
provides insight into this di�cult question. In attempting to sort through and
analyze streams of data, you need context—what arena are you playing in?

Dave Snowden devised a way to think about uncertainty in a context
that supports decision making. In 1999, Snowden introduced the Cynefin
model derived from his study of complexity theory. Snowden’s model has

Management Trends 41

been embraced and widely used by the agile community. With each category
of change, Snowden proposed a practice type to use. His model identifies
five categories, or types, of change:

• Obvious, for which best practices su�ce

• Complicated, for which good practices are used

• Complex, for which emergent practices are best

• Chaotic, which requires novel practices

• Disorder, for which practices might be unknown

As economies, businesses, and technologies evolved from somewhat
complicated in the 1980s to complex, and then to chaotic in the 2000s,
Snowden’s framework helps us understand the role that combating uncer-
tainty played in the transition from structured to agile development. In this
book, I will use the Cynefin model as an indicator of strategic, high-level
changes in the business and technology worlds. At the tactical, project, and
product levels, I will introduce the exploration factor (EF) in Chapter 6. These
two “methods”—Cynefin and EF—provide tools for managing uncertainty.

Table 2.1 summarizes the changes in these factors over the four software
development eras and helps us understand why methods and methodolo-
gies evolved as they did. During my evolution from structured to agile meth-
ods, these frameworks helped me put useful context around my work.

Table 2.1 Management and Work Evolution

Key Factors and Thinkers

Software Era Management
Style (McGrath)

Work Type
(Schwab)

Worker
Category
(Drucker)

Type of Change
(Snowden)

Wild West Execution Science and Mass
Production

Industrial Obvious/
complicated

Structured Execution/
expertise

Digital Revolution Knowledge Complicated

Roots of Agile Expertise Digital Revolution Knowledge Complex

Agile Empathy Imagination Innovation Chaotic/disorder

Chapter 2 Wild West42

toward the latter half of the Wild West era, I began to delve into
project management practices. While project management had a long history,
practices relevant to software development emerged only in the 1950s and
1960s. Gantt charts (task and schedule) were used successfully on projects
such as the Hoover Dam in the early 1930s. Other large projects in these early
years included the Manhattan Project to develop nuclear bombs in the 1940s.
Bernard Shriever, while in the U.S. Air Force, was credited with originating
the term project management in 1954.

The cornerstone of modern project management techniques was the
Program Evaluation Technique (PERT), popularized by the Navy’s success-
ful use building Polaris submarines. PERT and Critical Path Method (CPM),
invented in 1958 at Du Pont, began to be used in the U.S. aerospace, con-
struction, and defense industries. The use of work breakdown structures
(WBS) began in the early 1960s. The Project Management Institute (PMI)
was founded in 1969 to do research into and promote project management
practices. The most famous project undertaken in the 1960s was the Apollo
Project (1963–1972), in which NASA successfully led six missions to explore
the moon. Even though I had an exceedingly small part in the Apollo mis-
sion, this experience provided me with a happy quip: “My first project was
a success.”

Era observations
The 1960s and 1970s set the stage for subsequent eras in software develop-
ment. Computer performance began to realize exponential improvements.
Random-access storage devices multiplied. Core memory evolved from
workers manually feeding wires through sets of tiny toroid “doughnuts.”
Person–computer interactions began their steady evolution.

Through the early years of this era, we might label software development
as “ad hoc,” but pioneers worked on early methods they envisioned turning
into an engineering discipline. By the end of the era, structured methods and
project management methodologies began to bring better organization and
control to bear on the process of delivering working software; we might label
them “advanced ad hoc.” The next era would build on this base.

In the Wild West era, optimizing computer resources took precedence
over optimizing people resources.25 The costs of computer processing cycles,
core memory, and external memory were enormous compared to those today.

25. Thanks to David Robinson, my EDGE book co-author, for this concept.

Era Observations 43

Hardware began its Moore’s law26 performance improvement march. In
early years, computing power was expensive compared to personnel costs,
which led to compromises, some of which caused problems for years (such
as the Y2K issue). Today, in a world mired in the digital revolution, the situ-
ation has reversed: People costs are high compared to computer resources.

Although software development was in its infancy in the Wild West era,
valuable solutions were delivered. Some of these systems, modified repeat-
edly, still exist today. Systems were primitive by today’s standards, but they
worked.

26. In 1965, Gordon Moore, the co-founder of Intel, observed what became known as Moore’s
law: “The number of transistors in an integrated circuit doubles about every two years.”

This page intentionally left blank

265

Index

A
adapt

adaptability, 219, 224, 241–242
adaptation, 108-109, 187
adapting, 191

adaptive agility, 199
adaptive approach, 153, 156–157, 191. See also

ASD (Adaptive Software Development)
Adaptive Software Development. See ASD

(Adaptive Software Development)
adventurous, 1, 17, 86
Age of Science and Mass Production, 39
agile, 5, 17, 46, 65, 86, 90, 116, 117, 119, 120.

See also Agile era; methodology/ies
certification, 139–141
collaboration, 169–170
Fowler on, 122–124
“lite” practices, 184–185
management, 179
mindset, 240–241
prescriptive, 199–200
project management, 174. See also agile

project management; project
management

Agile Alliance, 127–128, 133–134
Agile Development Conference, 136–138

Executive Forum, 178
Agile era, 13

Agile Manifesto, 78, 105, 126–131, 132
agile organizations, 131–141

Agile Alliance, 133–134
agile conferences, 134–138, 153
APLN (Agile Project Leadership

Network), 138–141
Courageous Executive period, 145–146,

173–174, 178–180, 208–210. See also
courageous executives

Digital Transformation period, 146–147
IT (information technology), challenges,

120–122. See also IT (information
technology)

Rogue Team period, 145, 151, 169–171. See
also rogue teams Trimble Navigation,
124–126

Agile Manifesto, 4, 13, 78, 120, 124–125, 154
agile organizations, 131-141

Agile Alliance, 133–134
agile conferences, 134–138, 153
APLN (Agile Project Leadership

Network), 138–141
agile project management, 165–169, 187–196

constraints, 191–194
iterative planning, 188
under-planning, 195
style, 194
value, and cost, 188–189

Agile Triangle, 191–192
Alias Systems, 149
Amazon, 93, 96, 164
Ambler, Scott, 100, 161
American Programmer journal, 87, 90
APLN (Agile Project Leadership Network),

134–135, 138–141, 178, 187
Apollo program, 4, 21, 23, 24–25, 42

programming, 24
Appelo, Jurgen, 228-229

unFIX model, 17, 229–232
Apple, 84, 157, 173–174
architecture, 162

serverless, 159
transition from mainframe to client-server,

158
arrival-of-the-fittest, 108–109
Arthur, Brian, 107

Index266

ASD (Adaptive Software Development), 12,
13, 39, 85, 101, 107, 109–110, 156–157

Athleta, 208
Augustine, Sanjiv, 138–139

B
Bayer, Sam, 4, 89, 90, 95, 99
Beck, Kent, 4, 98, 114, 123, 126, 127, 141, 144,

147, 148, 151, 165
on CAS theory, 233–234

belief, and mindset, 241
Big Data, 157, 160–162, 225
Boehm, Barry, 75
Booch, Grady, 123, 133, 154
BPR (business process reengineering),

87–88
Brooks, Fred, 77

C
Carr, Nicolas, 121, 122
CAS (complex adaptive systems) theory, 4,

86, 105, 106–109
arrival-of-the-fittest, 108–109
Beck on, 233–234
complexity theory, 4, 40-41
edge of chaos, 108, 109
emergence, 109
sense-and-respond, 40

CASE (computer-aided software engineer-
ing) tools, 5, 34–35, 49, 79–80

Design Machine, 81–82
Excelerator, 79
silver bullet issue, 80–81

CD (continuous delivery), 1–2, 150–151, 170,
191

Cellular, Inc., Mustang team, 155–157
Centerlink, 153–154
CEO (chief executive o�cer), 32–33, 122,

146–147, 166, 219. See also courageous
executives

change, 120, 144, 182, 210, 223–224
categories, 40–41
management, 196–200
Satir model, 197–198
velocity, 39, 189, 222

CIO (chief information o�cer), 32–33, 67,
122, 146–147, 164–165, 174, 212

client-server architecture, 158
cloud computing, 159

CMM (Capability Maturity Model), 71–72,
95, 124, 141, 154, 204

COBOL, 28–29, 35–36
Cockburn, Alistair, 98, 114, 127, 128, 130, 132,

134, 135, 138–139, 145
Shu-Ha-Ri model, 198–199

code, 9, 30, 75, 155, 161, 175
comments, 61
-and-fix methodology, 125
-freeze, 184–185
machine language, 9
technical debt, 121–122, 175, 201–203

Cohn, Mike, 138–139, 151, 195, 231
collaboration, 105–106, 153, 169–170
Collier, Ken, 100, 161, 164

on the data schism, 161–162
command-control, 38
computer. See also software

Data General Eclipse, 26
DEC PDP-8, 26
GUI (graphical user interface), 69, 96–97
IBM 360/30, 26
IBM PS/2, 69
mainframe, 26–27, 66, 68–69
memory, 36
minicomputer, 26
PC (personal computer), 55
performance, 15–16
–person interaction, 14–15, 70
processing, 42–43
random access drive, 26

connectivity, 16-17, 70, 93-94, 252-254
Constantine, Larry, 4, 59, 63–65, 72–73, 89,

154, 239
coupling and cohesion, 63, 65, 239

constraint/s, 78, 150, 169, 189–190, 191, 193,
194

Consultants’ Camp, 101–103
consulting, 4, 5, 34, 47, 81, 88, 95–96, 153,

154–155, 163. See also KOA (Ken Orr and
Associates)

Athleta, 208
enterprise digital transformations, 192
Integrated Financial Software, 180–185
Latam Airlines, 211–214
Mustang team at Cellular, Inc., 155–157
Sciex, 174–178
Southern Systems Software, 186–187
Telecom China, 203–204

continuous integration, 196

Index 267

cost
accounting, 30–31, 33–34
value and, 188–189

coupling and cohesion, 63, 64, 239
Courageous Executive period, 145–146,

208–210
courageous executives, 173–174, 210, 224
COVID-19 pandemic, 40, 120, 129, 211, 213,

218
CPM (Critical Path Method), 42, 78
crews, unfix model, 229–230. See also team/s
CRISPR, 129
critical chain, 78
CRM (customer resource management), 95
Crystal, 46, 144-145, 164
culture, 37, 116, 125, 221
Cunningham, Ward, 141
customer

focus groups, 89–90
value, 224–225, 228

Cutter Consortium, 5, 45, 112, 135, 152,
154–155, 164, 175, 192–193, 214.
See also consulting

Cutter Business Technology Council,
152–153

cycle time, 224–225
Cynefin model, 40–41, 49, 120, 167, 217

D
data schism, 160–162
data stores, 53
database system, 61
DBA (database administrator), 75
DBMS (database management systems), 53
DEC (Digital Equipment Corporation), 26, 33
decision making, 101, 163
defined processes, 143–144
Delcol, Ken, 177
DeMarco, Tom, 36, 46, 51, 53, 59–61, 83, 112,

117–118, 152, 154
Design Machine, CASE tool, 81–82
DevOps, 196
DFD (data flow diagram), 51–55, 70, 79
diagram, 34, 55, 129

DFD (data flow). See DFD (data flow
diagram)

ER (entity-relationship), 53-54, 70
HIPO (hierarchical input-output), 36
program structure chart, 12, 55
structure chart, 11, 58

Warnier-Orr, 56, 58
digital business strategy, 220–221
Digital Revolution, 39
digital transformation, 219–220

digital business strategy, 220–221
EDGE operating model, 226–228
empathetic and adaptive leadership,

232–234
measures of success, 223–224
sustainability, 222–223
Tech@Core, 224–225, 243
unFIX organizational model, 228–232

Digital Transformation period, 146–147, 205,
235

Athleta, 208
Latam Airlines, 211–214

DEI (Diversity, Equity, and Inclusion), 246,
247

documentation, 88, 89, 105–106, 123, 129, 155
Drucker, Peter, 38
DSDM (Dynamic System Development

Method), 12–13, 114
DSSD (Data Structured Systems

Development), 48, 54–55, 77
Dweck, Carol S., 241

E
Eastman Kodak, 40, 206
EDGE operating model, 212, 213–214,

216–217, 219, 226–228
edge of chaos, 108, 109
EF (exploration factor), 41, 167–168
emergence, 109
empathetic management, 38, 39, 41, 211, 221,

232-233
Beck on, 233-234
Bower on, 233
McGrath on, 232-233

empirical processes, 143
end-user computing, 95–96
enterprise digital transformations, 192. See

also digital transformation
measures of success, 223–224
sustainability, 222–223

envision-explore approach, 150–151
ER (entity-relationship) diagram, 53-54, 70
ERP (enterprise resource planning), 95
evolutionary model, 75
Excelerator, CASE tool, 79
execution, 176

Index268

Extreme Programming. See XP (Extreme
Programming)

Exxon (formerly Esso), 5, 28-33, 124

F
Fahlberg, John, 28, 30–31
FDD (feature-driven development),

113–114
Ford, Neal, 225
Fortran, 2, 35
fourth industrial age, 39
Fowler, Martin, 4, 98, 120, 123, 132, 133, 214,

239
on the agile movement, 122–124

Friedman, Thomas, 157

G
Gantt chart, 42
Gilb, Tom, 75, 103
Goldratt, Eliyahu, 78
Google, 93, 157
GPS (global positioning system), 124
GUI (graphical user interface), 69, 96–97

H
Hackers, agile methodologies as, 129
Hadoop, 157
Haeckel, Stephan H., 40
Herzog, Maurice, 243–244
hierarchical organization chart, 73
Higgins, Dave, 48, 80
Highsmith, Jim, 35, 85, 87, 92, 101, 109-113,

132, 133, 138–139, 141, 166, 171, 178, 191,
206, 215-216, 219, 221, 225

HIPO (hierarchical input-output) diagram,
36

history, 241
learning from, 237–238
software development, 238–239

Hock, Dee, 108
Holland, John, 107, 108-109, 148

I
IaaS (Infrastructure as a Service), 160
IBM, 66, 77, 79

360/30 computer, 26, 225
DB2, 161
JCL (Job Control Language), 28–29
PS/2, 69
Watson, 68–69

ICT (information and communications
technology), 212

Imagination Age, 39–40
Industrial Logic, Inc., 179
industrial work, 40
Information Architects, Inc., 66–68
innovation, 40, 189, 211–214
innovator’s dilemma, 207
Integrated Financial Software, 180–185
interface design, 97
International Stevens Award, 154
Internet, 86, 93–94, 96–97, 120, 152, 158, 159,
163, 174

legacy systems, 200
Iron Triangle, 192–193, 194
Isaacson, Walter, 129, 238
ISO (International Organization for

Standardization), 72, 175–176
IT (information technology), 32-33, 37, 71,

121
bimodal, 200–201
challenges, 121–122
legacy groups, 200
outsourcing, 95, 122

iterative planning, 75, 156, 168–169, 188,
195–196

J
JCL (Job Control Language), 28–29
Jeªries, Ron, 98, 130, 144, 147, 151, 234
Jepson, Ole, 138–139
Johnson, George, 107, 109
Jones, Martyn, 114–115

K
Kanban board, 151
Kelley, Kevin, 238
Kerievsky, Josh, 151–152, 164, 179, 203–204
Kidder, Tracy, 26
knowledge work, 38, 40
KOA (Ken Orr and Associates), 5, 45–46, 47,

81–82

L
Latam Airlines, 211–214
leadership, 85–86, 185, 215, 216, 243. See also

courageous executives
adaptive, 215–216
empathetic, 232–233
style, 234

Index 269

Lean, 87–88, 114, 228
legacy systems, 200
life cycle. See also waterfall life cycle agile

project management, 167
ASD (adaptive software development),

107
iterative, 75, 168–169
product, 228
RUP (Rational Unified Process), 131

software development, 17
waterfall, 39, 49, 56, 65, 71–76, 80, 88, 166,

176
lightweight methodology, 13, 125–126, 127
Lister, Tim, 61, 83, 112, 152
“lite” practices, 184–185
Little, Todd, 124, 134–135, 138–139
Luu, Linda, 216, 217, 219
LVT (Lean Value Tree), 226–227

M
mainframe computer, 26–27, 66, 68–69
management, 37–38, 76–77. See also project

management
ages, 38
change, 196–200
“empathy”, 38
trends, 37–42

marketing, 47, 48, 89–90, 187–188
Martin, Bob, 98, 127, 130, 133
Mason, Mike, 225
matrix organization, 74–75
MBO (management by objectives), 25–26
McGrath, Rita, 38, 40, 121, 232–233
McGregor, Douglas, 38, 83
McMenamin, Steve, 36, 51, 59
measures of

dysfunction, 193
performance, 193–194
productivity, 221–222
success, 79, 192–193, 194, 220, 222, 223

Method/1, 34, 67–68
methodology/ies, 3, 56, 57, 107, 119, 129, 142,

174, 239–240. See also agile; RAD (Rapid
Application Development)

agile
Crystal, 145
Scrum, 142–143
XP (Extreme Programming), 144

code-and-fix, 125

combination, 174, 187
lightweight, 13, 125–126, 127

method/s, 3, 4, 50–51, 57, 119. See also struc-
tured methods

Microsoft, 90–91, 138
Project (DOS), 78
Windows, 93

mindset, 3, 57, 92, 106–107, 116, 117–118, 119,
129, 175, 198, 240, 241

agile, 240–241
belief and, 241

minicomputer, 26
MIS (management information system), 28
MIT (Massachusetts Institute of Technology),

63–64, 126, 135, 205, 217
Monumental Methodologies, 39, 70–72, 131,

154, 171, 210. See also methodology/ies
model and modeling, 64, 129

Cynefin, 40–41, 167, 217
EF (exploration factor), 41, 167-168
evolutionary, 75
operating, 220
organizational, 221
Satir change, 197–198
Shu-Ha-Ri, 198–199
spiral, 75
unFIX, 17, 229–232

mountaineering/mountain climbing as anal-
ogy, 7, 50, 87, 111–112, 206, 243–244

N
Nike, RADical development, 98–101
Nonaka, Ikujiro, 113
nonconformist, 5, 17, 127–128, 199, 241

O
obsolescence, 201, 202–203
Oglethorpe Power Company, 33–35
OOP (object-oriented programming), 94, 98
operating model, 220
organizational change, 196–200
organizational structure, 17

matrix, 74–75
unFIX model, 228–232

organization-wide strategy, 184–185
Orr, Ken, 2, 4, 34, 45–46, 47, 53, 59, 81, 112,

117–118, 152, 239-240
outsourcing, 95, 122

Index270

P
PaaS (Platform as a Service), 160
package software, 55
PC (personal computer), 39
PCI (Publishing Company, Inc.), 163
PE (punctuated equilibrium), 218, 237, 238
performance

assessment, 182
computer, 15–16
measuring, 193–194

person–computer interaction, 14–15, 70
PERT (Program Evaluation and Review

Technique), 42
Phase-Gate system, 203–204
pioneers, 4, 239

Agile era
Ambler, Scott, 161, 162, 205
Augustine, Sanjiv, 138
Bayer, Sam, 89, 90-92
Beck, Kent, 98, 114, 117, 126-127, 144
Cockburn, Alistair, 114, 127-128, 130,

132, 134, 140, 144-145, 198-199
Cohn, Mike, 151, 164, 195
Delcol, Ken, 176-177, 210
Fowler, Martin, 98, 120, 122-124, 132
Jones, Martyn, 114
Kerievsky, Josh, 164, 179–180, 187, 203
Little, Todd, 124, 134
Reed, Pat, 178–179
Schwaber, Ken, 75, 113, 142, 143
Sutherland, Jeª, 113, 142

Structured and Roots eras
Constantine, Larry, 59, 63–65, 72-73, 117,

131, 239
DeMarco, Tom, 36, 51-52, 53, 59–62, 141
Lister, Tim, 62, 83,
McMenamin, Steve, 36, 59
Orr, Ken, 34, 45, 53, 54, 59, 117
Palmer, John, 59
Weinberg, Jerry, 17, 64, 81, 83, 91, 101-

105, 110, 117, 170, 197-198
Yourdon, Ed, 36, 59, 64, 72-73

plan-do approach, 149–150
planning

iterative, 75, 156, 168–169, 188, 195–196
release, 187

PMBoK (Project Management Body of
Knowledge), 101

PMI (Project Management Institute), 71, 187,
194–195

PMO (project management o�ce), 209
portfolio management, 189
Portland Mortgage Software, 92–93
prescriptive agility, 199–200
PRINCE methodology, 77–78
principles

agile, 13, 128
BUFD (Big Up-Front Design), 176

process/es
defined, 143
empirical, 143
reliable, 75–76

product
delivery team, 228
owner, 166

Product Owner (Scrum), 209
productivity, 79, 95–96, 221–222
programming. See also XP (Extreme

Programming)
Apollo program, 24
COBOL, 28–29, 35–36
Fortran, 35
JCL (Job Control Language), 28–29
modular, 64
object-oriented, 94, 98
XP (Extreme), 12–13, 46, 57, 122–123, 131,

177
project/s

Adaptive, 153
schedule, 37, 183, 190-192
scope, 169

project management, 31, 42, 71, 74, 90–91,
143, 163

adaptive approach, 1–2, 153, 156–157
agile, 165–169, 187–196
constraints, 78, 189–190, 191, 193

cost, 189-190, 191, 194
scope, 169, 194
time, 150, 190

fear and, 168
organization-wide strategy, 184–185
project teams, 74, 107, 168-169,

195, 228
rogue teams, 151–152
scaling, 203–207, 216–217
Structured era, 77–79
time constraint, 150
under-planning, 195
wish-based planning, 182, 190, 205

Index 271

Project Management Body of Knowledge. See
PMBoK (Project Management Body of
Knowledge)

project management o�ce. See PMO (project
management o�ce)

publishing, print to online transition,
163–164

Q
quality, 170–171, 181, 183, 191, 222

degradation, 201
software, 90–91

R
RAD (Rapid Application Development), 4,

12–13, 17, 85–86, 88, 89–90, 94
RADical, 92, 98–101
random access drive, 26, 42
Reed, Pat, 178–179, 194–195, 208
release planning, 187
reliable processes, 75–76
requirements analysis, 51, 155–156, 176
Ries, Eric, 117
risk, 17, 77–78, 87, 167–168
Robinson, David, 42, 102, 212, 216, 217, 219
rogue teams, 145, 148, 151–152
ROI (return on investment), 79, 138, 222
Roots of Agile era, 12–13, 86–88, 198

CAS (complex adaptive systems) theory,
105, 106–109

Consultants’ Camp, 101–103
Microsoft, 90–91
Portland Mortgage Software, 92–93
RAD (Rapid Application Development),

89–90
RADical, 92
structured methods, 88–89
Weinberg, Jerry, 103–105

RUP (Rational Unified Process), 131

S
SaaS (Software as a Service), 159–160
SAFe (Scaled Agile Framework), 205, 231,

232
Satir change model, 197–198
scaling

agile, 203–207, 216–217
innovation at enterprise levels, 211–214

schedule, 190. See also time
Schwab, Klaus, 38, 39, 40

Schwaber, Ken, 75, 113, 133, 134, 141, 143
scientific management, 37
Sciex, 174–178, 209–210. See also agile
Scrum, 12–13, 46, 57, 117, 142–143, 151, 209
SEI (Software Engineering Institute), 180
sense-and-respond, 40
serial thinking, 76
Shu-Ha-Ri model, 198–199
Singham, Roy, 166, 216
Sketchbook Pro

envision-explore approach, 150–151
features, 149–150
team, 151
testing, 149–150, 151

Smalltalk, 123
SME (subject-matter expert), 75
Snowbird, Utah, meeting, 4, 13, 126-130
Snowden, Dave, 40–41
software, 7, 27

application package, 67–68
conferences, 100
LOC (lines of code), 8
tech stack, 225

software development, 2, 3, 8–9, 76, 88. See
also methodology/ies

adaptive approach, 153, 156–157. See also
ASD (Adaptive Software
Development)

CASE (computer-aided software
engineering) tools, 34–35, 79–83

Design Machine, 81–82
Excelerator, 79
silver bullet issue, 80–81

data schism, 160–162
envision-explore approach, 150–151
history, 238–239
method, 50–51, 57
Monumental Methodologies, 39
outsourcing, 95
plan-do approach, 149–150
productivity, 79
RADical, 92, 98–101
Roots of Agile era, 12–13, 86–87
structured methods, 34, 51. See also

structured method/s
Structured Methods and Monumental

Methodology era, 11–12, 79
trends

computer performance, 15–16
organizational structure, 17

Index272

person–computer interaction, 14–15
Wild West era, 10–11, 35–36

Apollo program, 21–25
Esso (later renamed Exxon), 28–33
management trends, 37–42
Oglethorpe Power Company, 33–35
project management, 31
technology, 25–27

software engineering, 76, 83
Software Quality Dynamics, 90–91
Southern Systems Software, 186–187
spiral model, 75
Sprint, 142, 143
storytelling, 215
STRADIS, 88–89
structured analysis, 36
structured method/s, 34, 51, 56–57

DFD (data flow diagram), 51–55
DSSD (Data Structured Systems

Development), 54–55
requirements analysis, 51

Structured Methods and Monumental
Methodology era, 11–12, 49–50

CSE (Chicago Stock Exchange), 58–59
Information Architects, Inc., 66–68
IT (information technology) trends, 67–68
Monumental Methodologies, 70–72
project management, 77–79
telco, 59
waterfall life cycle, 72–76

style
leadership, 234
project management, 194

success, 185, 187, 192–193, 210, 210, 222
survival of the fittest, 218–219
sustainability, 222–223
Sutherland, Je�, 113, 142

T
Takeuchi, Hirotaka, 113
Tate, Kevin, 151
Taylor, Frederick Winslow, 37
TDD (test-driven development), 164
team/s, 91, 93, 100, 144, 209, 242–243

agile, 130–131, 195
Integrated Financial Software, 182–183,

184
Mustang, 155–157
product delivery, 228
rogue, 145, 148, 151–152

Sketchbook Pro, 151
Trimble Navigation, 125–126

Tech@Core, 224, 243
technical debt, 121–122, 175, 175, 201–203
technology, 7, 8, 25-27, 39, 68-70, 76, 225

chronology (1995-2007), 157-162
computing performance, 15-16
as core of business, 224-225
digital transformation, 219–221
information, 93-98, 238
information and communications, 212
Moore’s law, 42–43

Telecom China, 203–204
testing, 28–29

code, 155
integration, 177
Sketchbook Pro, 149–150, 151
software development, 29, 30

Thoughtworks, 188–189, 212, 214–217
time

benchmarking, 190
-boxing, 156, 191
constraint, 150, 190
cycle, 224–225
elapsed, 190
planned versus actual, 190

TQM (total quality management), 87–88
transformation, transforming and, 213–214.

See also digital transformation
trend/s, 119, 153

software development computer
performance, 15–16

life cycle, 17
organizational structure, 17
person–computer interaction, 14–15

Trimble Navigation, 119–120, 124–126

U
UML (Unified Modeling Language), 131.

See also model and modeling
uncertainty, 40–41, 167–168
unFIX organizational model, 17–18, 228–232

V
value, 138, 149, 191, 193

and cost, 188–189
customer, 224–225, 228
-stream mapping, 228
tree, 226–227

velocity, 189, 222

Index 273

W
Walker, Gary, 175, 209–210
Warnier-Orr approach, 34–35, 58
waterfall life cycle, 39, 49, 56, 65, 71–76, 80,

82, 88, 166, 176, 183
WBS (work breakdown structure), 42
Weinberg, Jerry, 17, 64, 81, 83, 90–91, 101–102,

103–104, 110, 117–118, 154, 170, 197, 198,
242–243

quality workshop, 222
Wild West era, 10–11, 35–36

Apollo program, 21, 23, 24–25
management trends, 37–42
Oglethorpe Power Company, 33–35
project management, 31, 42
technology, 25–27

workshop/s
adaptive development, 124–125
adaptive leadership, 216
Agile Project Management, 139, 140,

153–154, 164–165

ASD (Adaptive Software Development),
155–156

DSSD (Data Structured Systems Develop-
ment), 48, 54-55, 77

Fujitsu Consulting, 153
Microsoft, 90–91
quality, 222
RADical, 99
storytelling, 215
STRADIS, 88–89

World Economic Forum, 38
World Wide Web, 93
writing, 8, 9, 35, 62, 104, 109, 214-215

X-Y-Z
XP (Extreme Programming), 12–13, 46, 57,

122–123, 131, 139, 144, 147, 151, 177,
187, 214

Y2K, 3, 51, 121, 202
Young, Paul, 187–188
Yourdon, Ed, 15, 46, 49, 51, 59, 61, 64, 72–73,

87, 92, 112, 117–118

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 2: Wild West
	Apollo
	Technology and the world
	Esso Business Systems
	Exxon to Oglethorpe
	Software development
	Management trends
	Era observations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	X
	Z

