
TECHNOLOGY
RADAR NOV ‘15

Our thoughts on the
technology and trends that

are shaping the future

thoughtworks.com/radar

https://thoughtworks.com/radar

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 1

WHAT’S NEW?
Here are the themes highlighted in this edition:

DOCKER INCITES CONTAINER ECOSYSTEM EXPLOSION
Containerization, exemplified by Docker, is wildly popular in a growing number of organizations. The interest varies
widely across and within organizations; our recommendations range from Assess to Adopt. The ecosystem (tools,
platforms and techniques) is growing and maturing, further accelerating interest. Astute readers will note related
topics across our radar, ranging from Docker as a development tool for managing dependencies to large cloud
platforms such as Mesos and AWS ECS that use containers as their “unit of scaling”.

MICROSERVICES AND RELATED TOOLS GAIN IN POPULARITY
Interest continues unabated around this architectural style, which transitively boosts interest in supporting tools
and techniques: DevOps practices like containerization, lessons learned such as the perils of programming in your
CI/CD tool, the maturity of service discovery tools, and so on. We expect to see even more growth and maturity in
this space in the near future.

JAVASCRIPT TOOLING SETTLES TO MERELY CHAOTIC
We have highlighted the churn in the JavaScript tool space before, but the community is gradually calming and
coalescing around some common practices. Teams are discovering the best combination (including none) for build
tools and package management, and we hear less disagreement across teams on effective practices.

CONTRIBUTORS
The Technology Radar is prepared by the ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO)

Martin Fowler(Chief Scientist)

Anne J Simmons

Badri Janakiraman

Brain Leke

Claudia Melo

Dave Elliman

Erik Doernenburg

Evan Bottcher

Hao Xu

Ian Cartwright

James Lewis

Jonny LeRoy

Mike Mason

Neal Ford

Rachel Laycock

Sam Newman

Scott Shaw

Srihari Srinivasan

Thiyagu Palanisamy

SECURITY IS EVERYBODY’S PROBLEM
Security is an issue that uniquely affects all roles across the software development lifecycle. We highlighted
improvement in the security space in the last Technology Radar, and we’re pleased to see teams baking security
practices into their SDLC. In this edition we also highlight innovative approaches such as bug bounties, threat
modelling, HSTS, TOTP and Let’s Encrypt. We hope traction continues to improve in this space.

https://thoughtworks.com/radar/tools/docker
https://thoughtworks.com/radar/techniques/docker-for-builds
https://thoughtworks.com/radar/platforms/apache-mesos
https://thoughtworks.com/radar/platforms/aws-ecs
https://thoughtworks.com/radar/techniques/programming-in-your-ci-cd-tool
https://thoughtworks.com/radar/techniques/programming-in-your-ci-cd-tool
http://www.thoughtworks.com/profiles/rebecca-parsons
http://www.thoughtworks.com/profiles/martin-fowler
http://www.thoughtworks.com/profiles/anne-j-simmons
http://www.thoughtworks.com/profiles/badrinath-janakiraman
http://www.thoughtworks.com/profiles/brain-leke
http://www.thoughtworks.com/profiles/brain-leke
http://www.thoughtworks.com/profiles/claudia-melo
http://www.thoughtworks.com/profiles/dave-elliman
http://www.thoughtworks.com/profiles/erik-dornenburg
http://www.thoughtworks.com/profiles/evan-bottcher
http://www.thoughtworks.com/profiles/xu-hao
http://www.thoughtworks.com/profiles/xu-hao
http://www.thoughtworks.com/profiles/ian-cartwright
http://www.thoughtworks.com/profiles/james-lewis
http://www.thoughtworks.com/profiles/jonny-leroy
http://www.thoughtworks.com/profiles/mike-mason
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/rachel-laycock
http://www.thoughtworks.com/profiles/sam-newman
http://www.thoughtworks.com/profiles/scott-shaw
http://www.thoughtworks.com/profiles/srihari-srinivasan
http://www.thoughtworks.com/profiles/thiyagu-palanisamy
https://thoughtworks.com/radar/techniques/bug-bounties
https://thoughtworks.com/radar/techniques/threat-modelling
https://thoughtworks.com/radar/techniques/threat-modelling
https://thoughtworks.com/radar/platforms/hsts
https://thoughtworks.com/radar/platforms/totp-two-factor-authentication
https://thoughtworks.com/radar/tools/let-s-encrypt

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 2

ABOUT THE TECHNOLOGY RADAR
ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it,
and constantly aim to improve it – for everyone. Our mission is to champion software excellence and revolutionize
IT. We create and share the ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks
Technology Advisory Board, a group of senior technology leaders in ThoughtWorks, creates the radar. They meet
regularly to discuss the global technology strategy for ThoughtWorks and the technology trends that significantly
impact our industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a
wide range of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage
you to explore these technologies for more detail. The radar is graphical in nature, grouping items into techniques,
tools, platforms, and languages & frameworks. When radar items could appear in multiple quadrants, we chose the
one that seemed most appropriate. We further group these items in four rings to reflect our current position on
them. The rings are:

Items that are new or have had significant changes since the last radar are represented as triangles, while items that
have not moved are represented as circles. We are interested in far more items than we can reasonably fit into a
document this size, so we fade many items from the last radar to make room for the new items. Fading an item does
not mean that we no longer care about it.

For more background on the radar, see thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

We feel strongly that the industry should be
adopting these items. We use them when
appropriate on our projects.

Worth pursuing. It is important to
understand how to build up this
capability. Enterprises should try
this technology on a project that can
handle the risk.

Worth exploring
with the goal of
understanding how
it will affect your
enterprise.

Proceed with
caution.

https://thoughtworks.com/radar/faq

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 3

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

THE RADAR
TECHNIQUES
ADOPT
1.	 	 Consumer-driven contract testing
2.	 	 Decoupling deployment from release
3.	 	 Generated infrastructure diagrams
4.	 	 NoPSD
5.	 	 Products over projects
6.	 	 Threat Modelling
	
TRIAL
7.	 	 BEM
8.	 	 BFF - Backend for frontends
9.	 	 Docker for builds
10.	 Event Storming
11.	 Flux
12.	 Idempotency filter
13.	 iFrames for sandboxing
14.	 NPM for all the things
15.	 Offline first web applications
16.	 Phoenix Environments
17.	 QA in production

ASSESS
18.	 Accumulate-only data
19.	 Bug bounties
20.	 Data Lake
21.	 Hosted IDE’s
22.	 Monitoring of invariants
23.	 Reactive Architectures

HOLD
24.	 Gitflow
25.	 High performance envy/web scale envy
26.	 Microservice envy
27.	 Pace-layered Application Strategy
28.	 Programming in your CI/CD tool
29.	 SAFe™
30.	 Separate DevOps team

PLATFORMS
ADOPT
31.	 TOTP Two-Factor Authentication

TRIAL
32.	 Apache Mesos
33.	 Apache Spark
34.	 AWS Lambda
35.	 Cloudera Impala
36.	 Fastly
37.	 H2O
38.	 HSTS

ASSESS
39.	 Apache Kylin
40.	 AWS ECS
41.	 Ceph
42.	 CoreCLR and CoreFX
43.	 Deis
44.	 Kubernetes
45.	 Linux security modules
46.	 Mesosphere DCOS
47.	 Microsoft Nano Server
48.	 Particle Photon/Particle Electron
49.	 Presto
50.	 Rancher
51.	 Time series databases

HOLD
52.	 Application Servers
53.	 Over-ambitious API Gateways
54.	 SPDY
55.	 Superficial private cloud

New or moved
No change

new

new

new
new

new
new

new
new

new

new

new

new
new

new
new

new

new

new
new

new

new
new

new
new

new

new

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 4

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

THE RADAR
TOOLS
ADOPT
56.	 Composer
57.	 Mountebank
58.	 Postman

TRIAL
59.	 Browsersync
60.	 Carthage
61.	 Consul
62.	 Docker Toolbox
63.	 Gitrob
64.	 GitUp
65.	 Hamms
66.	 IndexedDB
67.	 Polly
68.	 REST-assured
69.	 Sensu
70.	 SysDig
71.	 ZAP

ASSESS
72.	 Apache Kafka
73.	 Concourse CI
74.	 Espresso
75.	 Gauge
76.	 Gor
77.	 ievms
78.	 Let’s Encrypt
79.	 Pageify
80.	 Prometheus
81.	 Quick
82.	 RAML
83.	 Security Monkey
84.	 Sleepy Puppy
85.	 Visual Studio Code

HOLD
86.	 Citrix for development

LANGUAGES & FRAMEWORKS
ADOPT
87.	 ECMAScript 6
88.	 Nancy
89.	 Swift

TRIAL
90.	 Enlive
91.	 React.js
92.	 SignalR
93.	 Spring Boot

ASSESS
94.	 Axon
95.	 Ember.js
96.	 Frege
97.	 HyperResource
98.	 Material UI
99.	 OkHttp
100.	 React Native
101.	 TLA+
102.	 Traveling Ruby

HOLD
New or moved
No change

new

new

new

new
new

new

new

new
new

new

new
new

new

new

new
new

new

new

new

new
new

new
new

new
new

new

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 5

Implementing Continuous Delivery continues to be
a challenge for many organizations, and it remains
important to highlight useful techniques such as
decoupling deployment from release. We recommend
strictly using the term Deployment when referring to the
act of deploying a change to application components or
infrastructure. The term Release should be used when a
feature change is released to end users, with a business
impact. Using techniques such as feature toggles and
dark launches, we can deploy changes to production
systems more frequently without releasing features.
More-frequent deployments reduce the risk associated
with change, while business stakeholders retain control
over when features are released to end users.

‘Just In Time Design’ is an important and useful concept
for visual design that the NoPSD movement attempts to
capture. You don’t need to design the whole application

or every UI element up front. Design things as you
need them with as lightweight tools as you can use.
We have seen a corresponding growth in simpler tools
with faster learning curves, such as Sketch, as well as
an increasing return to pen-and-paper (especially when
paired with an existing robust digital style guide).
Because of the limitations of flat mock-ups when you’re
designing for screens, creating prototypes of varying
fidelity with tools such as Invision, FramerJS and
Origami - or simply HTML/CSS and a bit of JavaScript -
has also become increasingly common and valuable for
communicating design intent.

We’ve long been championing the idea that thinking of
software development as a project - something budgeted
and delivered during a limited time slot - doesn’t fit the
needs of the modern business. Important software
efforts need to be an ongoing product that supports
and rethinks the business process it is supporting. Such
efforts are not complete until the business process, and
its software, cease to be useful. Our observation of this
products over projects approach, both with our own
projects and outside, makes us determine that it is the
approach to use for all but exceptional cases.

With the number of high-profile security breaches in the
past months, software development teams no longer
need convincing that they must place an emphasis on
writing secure software and dealing with their users’
data in a responsible way. The teams face a steep
learning curve, though, and the vast number of potential
threats - ranging from organized crime and government
spying to teenagers who attack systems ‘for the lulz’
can be overwhelming. Threat Modelling provides a
set of techniques, mostly from a defensive perspective,
that help you understand and classify potential threats.
Turned into ‘evil-user stories’, threat models can give a
team a manageable and effective approach to making
their systems more secure. HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

TECHNIQUES

ADOPT
1.	 	 Consumer-driven contract testing
2.	 	 Decoupling deployment from release
3.	 	 Generated infrastructure diagrams
4.	 	 NoPSD
5.	 	 Products over projects
6.	 	 Threat Modelling

TRIAL
7.	 BEM
8.	 	 BFF - Backend for frontends
9.	 	 Docker for builds
10.	 Event Storming
11.	 Flux
12.	 Idempotency filter
13.	 iFrames for sandboxing
14.	 NPM for all the things
15.	 Offline first web applications
16.	 Phoenix Environments
17.	 QA in production

ASSESS
18.	 Accumulate-only data
19.	 Bug bounties
20.	 Data Lake
21.	 Hosted IDE’s
22.	 Monitoring of invariants
23.	 Reactive Architectures

HOLD
24.	 Gitflow
25.	 High performance envy/web scale envy
26.	 Microservice envy
27.	 Pace-layered Application Strategy
28.	 Programming in your CI/CD tool
29.	 SAFe™
30.	 Separate DevOps team

http://martinfowler.com/bliki/ContinuousDelivery.html
https://www.thoughtworks.com/p2magazine/issue02/continuous-design/
http://www.sketchapp.com/
https://www.thoughtworks.com/radar/techniques/living-css-style-guides
http://www.invisionapp.com/
http://framerjs.com/
https://www.thoughtworks.com/radar/tools/origami
https://www.owasp.org/index.php/Category:Threat_Modeling

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 6

Debugging CSS problems can be painful. How many times
have you had to trawl through thousands of overridden
styles to work out the source of your problem? This has
led many of our teams to introduce various guidelines
such as avoiding cascading and overrides, making styles
opt-in and emphasizing thoughtful naming. BEM is
a simple CSS naming convention (standing for Block,
Element, Modifier) that helps give semantic clarity and
structure to your CSS. By using BEM, it becomes much
easier to understand which CSS rules are influencing
the appearance of an element and, more importantly,
the intent of those rules. This approach can be seen
as moving the OO lesson of favoring composition over
inheritance to the world of CSS.

Valuable services support many variations in clients,
such as mobile versus web and different forms of web
interface. It’s tempting to design a single back-end API to
support all clients with a reusable API. But client needs
vary, as do constraints such as bandwidth for mobile
devices versus the desire for lots of data on fast web
connections. Consequently it’s often best to define
different back-end services for each kind of front-
end client. These back ends should be developed by
teams aligned with each front end to ensure that each
back end properly meets the needs of its client.

One of the many innovative uses of Docker that we’ve
seen on our projects is a technique to manage build-
time dependencies. In the past, it was common to run
build agents on an OS, augmented with dependencies
needed for the target build. But with Docker it is possible
to run the compilation step in an isolated environment
complete with dependencies without contaminating the
build agent. This technique of using Docker for builds
has proven particularly useful for compiling Golang
binaries, and the golang-builder container is available for
this very purpose.

Event Storming is a useful way to do rapid “outside-in”
domain modeling: starting with the events that occur
in the domain rather than a static data model. Run as
a facilitated workshop, it focuses on discovering key
domain events, placing them along a timeline, identifying
their triggers and then exploring their relationships. This
approach is particularly useful for people taking a CQRS

TECHNIQUES continued

or Event Sourcing approach. Getting the right people in
the room is important - a blend of business and technical
people who bring both the questions and the answers.
Ensuring that you have enough wall space for modeling
is the second key to success. Look to discover the big
picture, with the goal of collectively understanding
the domain in all of its complexity, before diving into
solutions.

Flux is an application architecture introduced by
Facebook. Usually mentioned in conjunction with React.
js, Flux is based on a one-way flow of data up through
the rendering pipeline. Flux embraces the modern web
landscape of client-side JavaScript applications in a way
that avoids the venerable MV* clichés. ThoughtWorks
teams are now starting to gain some experience with
this architectural style and find that it meshes well with
service orientation and solves some of the problems
inherent in two-way data binding.

Many services, especially legacy services, are written with
the assumption that any request will occur only once.
Networks being what they are, this can be difficult to
arrange. An idempotency filter is a simple component
that merely checks for duplicate requests and ensures
that they are sent to the supplier service only once. Such
a filter should do only this one task and be used as a
decorator over existing service calls.

Modern web pages tend to contain a plethora of
JavaScript widgets and snippets coming from a variety of
third-party sources. This can have a negative impact on
both security and performance. While we are still waiting
for fuller JavaScript isolation with web components, our
teams have benefited from using HTML5 iFrames for
sandboxing untrusted JavaScript.

The JavaScript world has a plethora of dependency and
package-management tools, all of which rely on the
Node Package Manager (NPM). Teams are starting to see
these extra tools as redundant and are recommending
that if you can use solely NPM for package and
dependency management, you should. The simplification
of using NPM for all the things helps reduce some of
the churn in the JavaScript tools space.

http://getbem.com/
https://www.docker.com/
https://github.com/CenturyLinkLabs/golang-builder
http://ziobrando.blogspot.be/2013/11/introducing-event-storming.html
https://www.thoughtworks.com/radar/techniques/event-sourcing
https://facebook.github.io/flux/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 7

The time taken to provision and update environments
continues to be a significant bottleneck on many
software projects. Phoenix Environments can help with
this delay by extending the idea of Phoenix Servers
to cover entire environments. We feel this is such a
valuable and time-saving technique that you should
consider trialing this approach. Using automation, we
can create whole environments - including network
configuration, load balancing and firewall ports - for
example by using CloudFormation in AWS. We can
then prove that the process works by tearing the
environments down and recreating them from scratch
on a regular basis. Phoenix Environments can
support provisioning new environments for testing,
development, UAT and disaster recovery. As with
Phoenix Servers, this pattern is not always applicable,
and we need to think carefully about things like state
and dependencies. Treating the whole environment as
a blue/green deployment can be one approach when
environment reconfiguration needs to be done.

Traditionally, QA roles have focused on assessing
the quality of a software product in a pre-production
environment. With the rise of Continuous Delivery, the
QA role is shifting to include analyzing software product
quality in production. This involves monitoring of the
production systems, coming up with alert conditions
to detect urgent errors, determining ongoing quality
issues and figuring out what measurements you can
use in the production environment to make this work.
While there is a danger that some organizations will go
too far and neglect pre-production QA, our experience
shows that QA in production is a valuable tool for
organizations that have already progressed to a
reasonable degree of Continuous Delivery.

Immutable data structures are becoming more popular,
with functional languages such as Clojure and Scala
providing immutability by default. Immutability allows
code to be more easily written, read and reasoned
about. Using an accumulate-only data store can
confer some of these benefits in the database
layer, as well as make audit and historical querying
simple. Implementation options vary, from specific
accumulative data stores such as Datomic to simply
using an “append-don’t-update” approach with a
traditional database. Accumulate-only is a design
strategy whereby data is removed via retraction rather
than update; append-only is an implementation
technique.

More and more organizations are starting to use bug
bounties to encourage reporting of what are often
security-related bugs, and in general help improve the
quality of their software. To support these programs,
companies like HackerOne and BugCrowd can help
organizations manage this process more easily. We have
limited experience with these offerings ourselves, but
we like the idea of encouraging people to help come
forward and highlight what can often be damaging
vulnerabilities in an open and transparent way. It’s
worth noting that there might be some legal issues
with encouraging users to find vulnerabilities in your
software, so please do check that out first.

A Data Lake is an immutable data store of largely
unprocessed ‘raw’ data, acting as a source for data
analytics. Whereas the more familiar Data Warehouse
filters and processes the data before storing it, the lake
just captures the raw data, leaving it to the users of that
data to carry out the particular analysis that they need.
Examples include HDFS or HBase within a Hadoop,
Spark or Storm processing framework. Usually only a
small group of data scientists work on the raw data,
developing streams of processed data into lakeshore
data marts for most users to query. A Data Lake
should only be used for analytics and reporting. For
collaboration between operational systems we prefer
using services designed for that purpose.

Many organizations want to leverage distributed or
offshore development but have security concerns with
their code and other intellectual property sitting outside
their control. The result is often to use high-latency
remote-desktop solutions for development, adhering
to an organization’s security controls but crippling
developer productivity. An alternative is to use a Hosted
IDE delivered to a browser via VPN. The IDE, code and
build environment are hosted within the organization’s
private cloud, easing security concerns, and the
developer experience is significantly improved. Tools
in this space include Orion and Che from the Eclipse
Foundation, Cloud9 and Code Envy.

In monitoring, the common approach is to conceive of
erroneous conditions and set alerts when these appear.
But it’s often difficult to enumerate the myriad failure
modes in a software system. Monitoring of invariants
is a complementary approach to setting expected normal
ranges, often by examining historical behavior, and
alerting whenever a system goes outside those bounds.

TECHNIQUES continued

http://martinfowler.com/bliki/PhoenixServer.html
https://aws.amazon.com/cloudformation/
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://www.datomic.com/
https://hackerone.com/
https://bugcrowd.com/
http://martinfowler.com/bliki/DataLake.html
https://hadoop.apache.org/
http://spark.apache.org/
https://storm.apache.org/
https://orionhub.org/
http://www.eclipse.org/che/
https://c9.io/
https://codenvy.com/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 8

We firmly believe that long-lived version-control
branches harm valuable engineering practices such
as continuous integration, and this belief underlies
our dislike for Gitflow. We love the flexibility of Git
underneath but abhor tools that encourage bad
engineering practices. Very short-lived branches
hurt less, but most teams we see using Gitflow feel
empowered to abuse its branch-heavy workflow, which
encourages late integration (therefore discouraging true
continuous integration).

We see many teams run into trouble because they have
chosen complex tools, frameworks or architectures
because they ‘might need to scale’. Companies such
as Twitter and Netflix need to be able to support
extreme loads and so need these architectures, but
they also have extremely skilled development teams
able to handle the complexity. Most situations do not
require these kinds of engineering feats; teams should
keep their web scale envy in check in favor of simpler
solutions that still get the job done.

Gartner’s Pace-layered Application Strategy approach
appears to be creating an unhelpful focus on the idea of
layers within an architecture. We find thinking about the
pace of change within different business capabilities

(which can be made up of several architectural layers)
to be a more useful concept. The danger in focusing on
layers is that many types of change cut across multiple
layers. For example, being able to add new class of stock
to a website is not just about having an easy-to-change
CMS; you also need to update the database, integration
points, warehouse systems, etc. The recognition
that some parts of an architecture need to be more
maneuverable than others is useful. However, a focus on
layers is proving unhelpful.

The Scaled Agile Framework® (aka SAFe™) continues
to gain mindshare in many organizations at scale.
In addition, tools and certification are becoming a
significant aspect of the adoption of SAFe™. We continue
to be concerned that actual adoptions are prone to
over-standardization and are tending towards large
release practices, resulting in practices that hinder
agile adoption. In its place, we continue to recommend
lean approaches that include experimentation and
incorporate continuous improvement practices like the
Improvement Katas offer organizations a better model
for scaling agile.

Scaled Agile Framework® and SAFe™ are trademarks of
Scaled Agile, Inc.

TECHNIQUES continued

https://git-scm.com/
http://www.scaledagileframework.com/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 9

Password security is still a hotly debated topic with
the UK government advocating technical controls
that let users remember simpler passwords and
Edward Snowden’s password advice being described
as only ‘borderline secure’. Passwords are generally
one of the weakest links in the security chain, so we
recommend employing two-factor authentication,
which can significantly improve security. Time-based
One-Time Password (TOTP) is the standard algorithm
in this space, with straightforward server-side
implementations and free smartphone authenticator
apps from Google and Microsoft.

Mesos is a platform that abstracts out underlying
computing resources to make it easier to build massively
scalable distributed systems. It can be used to provide a
scheduling layer for Docker, or to act as an abstraction
layer to things like AWS. Twitter has used it to great

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

PLATFORMS
effect to help it scale its infrastructure. Tools built on
top of Mesos are starting to appear, such as Chronos,
which is a distributed, fault-tolerant cron replacement.
Prominent success stories are appearing, such as Apple’s
Siri rearchitecting to use Mesos.

AWS releases a huge number of new features on what
seems like a monthly basis, so it can sometimes be hard
for any new service offering to rise above the noise, but
Lambda certainly manages to attract notice. Initially
just supporting JavaScript, but now adding support for
JVM-based applications (with more no doubt to follow),
Lambda allows you to fire up very short-lived processes
either in reaction to an event, or via a call from the
related API Gateway. For stateless services, this means
you don’t need to worry about running any long-lived
machines, potentially reducing costs and improving
security. Despite other forays into the PaaS space by
AWS, Lambda looks the closest to getting this right.

Fastly, one of a number of CDNs on the market, has a
large and growing following on ThoughtWorks projects
and is used by many web-scale household names, such
as GitHub and Twitter. Its feature set, speed and price
point combine to make it a very attractive option when
you’re looking for an edge caching solution. We have also
seen significant cost savings on projects that move to
this platform from another CDN. If you are in the market
for a CDN, you could do worse than investigate this one.

Predictive analytics are used in more and more products,
often directly in end user-facing functionality. H2O is
an interesting open source package (with a startup
behind it) that makes predictive analytics accessible to
development teams, offering straightforward use of a
wide variety of analytics, great performance and easy
integration on JVM-based platforms. At the same time it
integrates with the data scientists’ favorite tools, R and
Python, as well as Hadoop and Spark.

ADOPT
31.	 TOTP Two-Factor Authentication

TRIAL
32.	 Apache Mesos
33.	 Apache Spark
34.	 AWS Lambda
35.	 Cloudera Impala
36.	 Fastly
37.	 H2O
38.	 HSTS

ASSESS
39.	 Apache Kylin
40.	 AWS ECS
41.	 Ceph
42.	 CoreCLR and CoreFX
43.	 Deis
44.	 Kubernetes
45.	 Linux security modules
46.	 Mesosphere DCOS
47.	 Microsoft Nano Server
48.	 Particle Photon/Particle Electron
49.	 Presto
50.	 Rancher
51.	 Time series databases

HOLD
52.	 Application Servers
53.	 Over-ambitious API Gateways
54.	 SPDY
55.	 Superficial private cloud

https://www.gov.uk/government/publications/password-policy-simplifying-your-approach/password-policy-executive-summary
https://www.youtube.com/watch?v=yzGzB-yYKcc
http://www.wired.com/2015/04/snowden-sexy-margaret-thatcher-password-isnt-so-sexy/
http://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
http://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
http://www.windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
http://mesos.apache.org/
https://www.docker.com/
http://nerds.airbnb.com/introducing-chronos/
https://mesosphere.com/blog/2015/04/23/apple-details-j-a-r-v-i-s-the-mesos-framework-that-runs-siri/
https://mesosphere.com/blog/2015/04/23/apple-details-j-a-r-v-i-s-the-mesos-framework-that-runs-siri/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://www.fastly.com/
http://h2o.ai/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 10

PLATFORMS continued

HTTP Strict Transport Security (HSTS) is a now widely
supported policy that allows websites to protect
themselves from downgrade attacks. A downgrade
attack in the context of HTTPS is one that can cause
users of your site to fall back to HTTP rather than HTTPS,
allowing for further attacks such as man-in-the-middle
attacks. By using the server header, you inform browsers
that they should only use HTTPS to access your website,
and should ignore downgrade attempts to contact
the site via HTTP. Browser support is now widespread
enough that this easy-to-implement feature should be
considered for any site using HTTPS.

The Elastic Container Service (ECS) is AWS’ entry into
the multihost Docker space. Although there is a lot of
competition in this area, there aren’t many off-premises
managed solutions out there yet. Although ECS seems
like a good first step, we are worried that it is overly
complicated at the moment and lacks a good abstraction
layer. If you want to run Docker on AWS, though, this tool
should certainly be high on your list. Just don’t expect it
to be easy to get started with.

Ceph is a storage platform that can be used as object
storage, as block storage, and as a file system, typically
running on a cluster of commodity servers. With its
first major release having been in July 2012, Ceph is
certainly not a new product. We do want to highlight it
on this Technology Radar as an important building block
for private clouds. It is particularly attractive because
its RADOS Gateway component can expose the object
store through a RESTful interface that is compatible with
Amazon S3 and the OpenStack Swift APIs.

Kubernetes is Google’s answer to the problem of
deploying containers into a cluster of machines, which
is becoming an increasingly common scenario. It is not
the solution used by Google internally, but an open-
source project that originated at Google and has seen a
fair share of external contributions. Docker and Rocket
are supported as container formats and services offered
include health management, replication, and discovery. A
similar solution in this space is Rancher, an open-source
solution that also allows deployment of containers
into a cluster of machines. It provides services such
lifecycle management, monitoring, health checks, and
discovery. Also included is a completely containerized
operating system based on Docker. The broad focus
on containerization and very small footprint are key
advantages for Rancher.

Mesosphere DCOS is a platform built on top of Mesos. It
provides an abstraction over underling machines, giving
you a pool of storage and compute that allows services
built for DCOS to operate at massive scale (Support is
already there for Hadoop, Spark and Cassandra, among
others). This is probably overkill for more modest
workloads at the moment (where plain old Mesos could still
be a good fit), but it will be interesting to see if Mesosphere
starts trying to position DCOS as a general-purpose system.

In contrast to modern cloud and container solutions
based on Linux, even Windows Server Core is large
and unwieldy. Microsoft is reacting and has provided
the first previews of Nano Server, a further-stripped-
down version of Windows Server that drops the GUI
stack, 32-bit Win32 support, local logins and remote
desktop support, resulting in an on-disk size of about
400MB. The early previews are difficult to work with,
and the final solution will be restricted to using the
CoreCLR, but for companies that are interested
in running .NET-based solutions, Nano Server is
definitely worth a look at this stage.

Presto is an open source distributed SQL query
engine designed and optimized for running interactive
analytics workloads. Presto’s massively parallel
processing architecture - combined with advanced
code-generation techniques and in-memory processing
pipelines - makes it highly scalable. It supports a large
subset of ANSI SQL including complex queries, joins,
aggregations and window functions. Presto comes with
support for a wide range of data sources including
Hive, Cassandra, MySQL and PostgreSQL, thereby
unifying the interactive analytics interface across data
stores of an organization. Applications can connect to
Presto using its JDBC interface.

One of our common complaints is the pushing of
business smarts into middleware, resulting in application
servers and enterprise service buses with ambitions
to run critical application logic. These require complex
programming in environments not well suited to the
purpose. We’re seeing a worrying re-emergence of this
disease with overambitious API Gateway products. API
Gateways can provide utility in dealing with some generic
concerns - for example, authentication and rate-limiting
- but any domain smarts such as data transformation
or rule processing should live in applications or services
where they can be controlled by product teams working
closely with the domains they support.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://www.docker.com/
http://ceph.com/
https://aws.amazon.com/s3/
https://wiki.openstack.org/wiki/Swift
http://kubernetes.io/
http://rancher.com/
https://mesosphere.com/product/
http://mesos.apache.org/
http://www.theregister.co.uk/2015/05/15/wrestling_with_microsoft_nano_server_preview/?page=1
https://msdn.microsoft.com/en-us/library/mt126167.aspx
https://prestodb.io/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 11

We’ve seen the indisputable productivity gains that come
from deployment of applications and services into mature
cloud providers. Much of that gain comes from the ability
of teams to deploy and operate their own services with
a high degree of autonomy and responsibility. We are
now regularly coming across Superficial Private Cloud
offerings within organizations, where basic virtualization
platforms are being given the “cloud” label. Often teams

can self-provision a restricted set of fixed service types
with limited access and little ability to customize the
centrally governed “enterprise blueprints,” leading to
kludge solutions. Deployment pace regularly remains
constrained by manually provisioned infrastructure
such as network, firewall and storage. We encourage
organizations to more fully consider the costs of
mandating the use of an inadequate private cloud offering.

PLATFORMS continued

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 12

We’ve had rave reviews from a number of ThoughtWorks
teams using Browsersync. As the number of devices we
deliver web applications to grows, so does the amount
of effort that must be devoted to testing across these
different devices. Browsersync is a free, open source tool
that can dramatically reduce this effort by synchronizing
manual browser testing across multiple mobile or desktop
browsers. Providing both a CLI and a UI option, the tool
is build-pipeline friendly and automates repetitive tasks
such as form filling.

Dependency management in iOS and OS X projects
used to be either completely manual or completely
automatic as part of using CocoaPods. With Carthage,
a new middle ground has become available. Carthage
manages dependencies - it downloads, builds and
updates frameworks - but it leaves the integration of the
frameworks into the build of the project to the project.
This is in contrast to CocoaPods, which basically takes
over the project structure and build setup. It should
be noted that Carthage can only deal with dynamic
frameworks, which are not available on iOS 7 and below.

Previously, we recommended boot2docker as a way of
easily running Docker on your local Windows or OS X
machine. Docker Toolbox now replaces boot2docker,
adding some tooling as well. Now included is Kitematic
for managing your containers, as well as Docker
Compose for managing multi-Docker setup (Mac only).
It can be used safely as a drop-in replacement for
boot2docker, and it will even handle the upgrade for you.

Safely storing secrets such as passwords and access
tokens in code repositories is now supported by
a growing number of tools - for example, git-crypt
and Blackbox, which we mentioned in the previous

TOOLS

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102Technology Radar. Despite the availability of these
tools, it is still, unfortunately, all too common that
secrets are stored unprotected. In fact, it is so common
that automated exploit software is used to find AWS
credentials and spin up EC2 instances to mine Bitcoins,
leaving the attacker with the Bitcoins and the account
owner with the bill. Gitrob takes a similar approach
and scans an organization’s GitHub repositories,
flagging all files that might contain sensitive
information that shouldn’t have been pushed to the
repository. This is obviously a reactive approach. Gitrob
can only alert teams when it is (almost) too late. For
this reason, Gitrob can only ever be a complementary
tool, to minimize damage.

ADOPT
56.	 Composer
57.	 Mountebank
58.	 Postman

TRIAL
59.	 Browsersync
60.	 Carthage
61.	 Consul
62.	 Docker Toolbox
63.	 Gitrob
64.	 GitUp
65.	 Hamms
66.	 IndexedDB
67.	 Polly
68.	 REST-assured
69.	 Sensu
70.	 SysDig
71.	 ZAP

ASSESS
72.	 Apache Kafka
73.	 Concourse CI
74.	 Espresso
75.	 Gauge
76.	 Gor
77.	 ievms
78.	 Let’s Encrypt
79.	 Pageify
80.	 Prometheus
81.	 Quick
82.	 RAML
83.	 Security Monkey
84.	 Sleepy Puppy
85.	 Visual Studio Code

HOLD
86.	 Citrix for development

http://www.browsersync.io/
https://cocoapods.org/
https://github.com/Carthage/Carthage
https://www.thoughtworks.com/radar/tools/boot2docker
https://www.docker.com/toolbox
https://kitematic.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://github.com/AGWA/git-crypt
https://www.thoughtworks.com/radar/tools/blackbox
https://github.com/michenriksen/gitrob

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 13

TOOLS continued

Git can be confusing. Really confusing. And even when
it’s used in a simple trunk-based development process,
there are still enough nuances to how it works that
people can tie themselves in knots from time to time.
When this happens, having an understanding of how
Git works under the hood is very useful, and GitUp
is a Mac-based tool that gives you exactly that. GitUp
provides a graphical representation of what is happening
as you type normal Git commands into the terminal.
You can learn the various Git commands while also
understanding what each one does as you use it. GitUp
is a useful tool for both people new to Git and those with
more Git experience.

Several of our teams working on .NET projects have
recommended Polly as being useful in building
microservice-based systems. It encourages the fluent
expression of transient exception-handling policies and
the Circuit Breaker pattern, including policies such as
Retry, Retry Forever and Wait and Retry. Similar libraries
already exist in other languages (Hystrix for Java for
example), and Polly is a welcome addition from the
.NET community. Integrating well with Polly is Brighter.
Brighter is another small open source .Net library that
provides scaffolding to implement command invocation.
Combining the two libraries provides useful circuit-
breaking functionality especially in the context of the
Ports and Adapters pattern and CQRS. Although they can
be used separately, in the wild our teams find they work
well together.

Many monitoring tools are built around the concept of
the machine or instance. The increasing use of patterns
like Phoenix Server and tools like Docker mean this is
an increasingly unhelpful way to model infrastructure:
Instances are becoming transient while services are
the things that persist. Sensu allows an instance to
register itself as playing a particular role, and Sensu then
monitors it on that basis. Over time, different instances
playing that role may come and go. Given these factors
and the increasing maturity of the tool, we felt it was
time to bring Sensu back on to the radar.

Although SysDig isn’t the newest tool on the
Technology Radar, we’re still surprised by how many
people haven’t heard of it. A pluggable open source

CLI for Linux system troubleshooting, SysDig has some
pretty powerful features. One of the key things we like
is the ability to generate a system trace on a machine
that is experiencing difficulties, which you can then
interrogate afterward to find out what was happening.
SysDig also contains support for working with
containers, something that makes a previously useful
tool even more powerful.

Many development teams are making the move
from simple continuous integration servers to
Continuous Delivery pipelines, often spanning
multiple environments, reaching into production. To
implement such a pipeline successfully and operate it
in a sustainable way requires a CI/CD tool that treats
build pipelines and artifacts as first-class citizens; and
unfortunately there aren’t many. Concourse CI is a
promising new entrant in this field, and our teams that
have tried it are excited about its setup, which enables
builds that run in containers, has a clean, usable UI and
discourages snowflake build servers.

Espresso is an Android functional-testing tool. Its small-
core API hides the messy implementation details and
helps in writing concise tests, with faster and reliable
test execution.

Gauge is a lightweight cross-platform test-automation
tool. Specifications are written in free-form Markdown,
so test cases can be written in the business language and
can be incorporated into any existing documentation
format. Supported languages are implemented as
plugins to a single core implementation, which ensures
consistency across language implementations. This tool,
open sourced by ThoughtWorks, also supports parallel
execution out of the box for all supported platforms.

Despite the shrinking usage of Internet Explorer, for
many products the IE user base is not an insignificant
share of the market, and browser compatibility
needs to be tested. This is particularly troublesome
if you prefer the joys of a UNIX-based system for
development. To aid in this dilemma, ievms provides a
utility script that brings together Windows-distributed
VM images and VirtualBox to automate the setup and
testability of various IE versions, from 6 up to Edge.

http://gitup.co/
https://github.com/michael-wolfenden/Polly
https://www.thoughtworks.com/radar/tools/brighter
http://martinfowler.com/bliki/PhoenixServer.html
https://www.docker.com/
https://sensuapp.org/
http://www.sysdig.org/
http://concourse.ci/
https://google.github.io/android-testing-support-library/docs/espresso/index.html
http://getgauge.io/
https://github.com/xdissent/ievms

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 14

Although more sites every day are implementing HTTPS
to help protect their own users and improve the integrity
of the web as a whole, there are many more sites to go.
In addition, we see more and more people using HTTPS
within their enterprises, to provide additional security
guarantees. One of the main blockers to wider adoption
has been the process of getting a certificate in the first
place. Aside from the cost, the process itself is far from
slick. Let’s Encrypt, a new Certificate Authority, aims
to solve all this. First, it provides certificates for free.
Second, and arguably more important, it also provides
an extremely easy-to-use command-line API, making it
easy to fully automate the process of issuing, upgrading
and installing certificates. We think that Let’s Encrypt, in
beta at the moment, has the chance to be revolutionary
in terms of helping more of the web get on to HTTPS,
and at the same time showing what good, automatable
tools for the security-conscious should look like.

Pageify is a Ruby library for building page objects for
UI automation tests, focusing on faster test execution
and code readability. It offers simple APIs to dynamically
define, operate and assert on the page objects, allowing
readable code even when handling elements with
complex hierarchies in the DOM. It bundles integration
for WebDriver and Capybara.

SoundCloud has recently open sourced its monitoring
and alerting toolkit, Prometheus. Developed in reaction
to difficulties with Graphite in its production systems,
Prometheus primarily supports a pull-based HTTP
model (although a more Graphite-like push model is also
supported). It also goes further by supporting alerts,
making it an active part of your operational toolset. As of
this writing, Prometheus is still only in release 0.15.1 but
is evolving rapidly. We’re glad to see the recent product
focus on core time-series DB and multidimensional
indexing capabilities while allowing for export to a wider
variety of front-end graphing tools.

With a growing landscape of services providing RESTful
APIs, it is becoming increasingly important to document
them. We have previously mentioned Swagger, and in

this Technology Radar we’d like to highlight the RESTful
API modeling language (RAML). Our teams feel that in
comparison to Swagger it is more lightweight and moves
the focus from adding documentation to existing APIs to
designing APIs.

Sleepy Puppy is a delayed cross-site scripting (XSS)
payload-management framework recently open sourced
by Netflix. It enables you to test vulnerabilities for XSS
past the target application when the perpetrator intends
to attack a secondary underlying system. With XSS
being one of the OWASP Top10, we see this framework
assisting with automated security checks for several
applications. It simplifies the capturing, managing and
tracking of XSS propagation over long periods of time,
with customizable payloads. Sleepy puppy also exposes
an API that can be integrated with vulnerability tools like
ZAP, for automated security checks.

Visual Studio Code is Microsoft’s free IDE editor,
available across platforms. We find the version-control
integration with Git very beneficial to promoting
continuous integration practices. Visual Studio Code also
provides a means of integrating with external tools via
tasks, with autodetection of grunt/gulp tasks eliminating
the need for running grunt/gulp tasks via terminals and
simply using the editor. With the growth of the Docker
ecosystem, this IDE offers support for the dockerfile with
snippets and definitions of valid commands.

Many organizations are still forcing distributed or
offshore development teams to use Citrix remote
desktop for development. Although this provides a
simple security model – assets supposedly never leave
the organization’s servers - using remote desktops for
development absolutely cripples developer productivity.
There’s not much point paying a cheaper hourly rate
for developers if you’re going to impose both the
distribution and remote-desktop burdens on them,
and we wish more offshore vendors would admit these
drawbacks to their clients. It’s much better to use either
a ‘clean room’ secured offshore environment where local
development can be done, or a Hosted IDE (e.g. ievms).

TOOLS continued

https://letsencrypt.org/
https://github.com/paramadeep/pageify
http://prometheus.io/
http://graphite.readthedocs.org/
https://www.thoughtworks.com/radar/tools/swagger
http://raml.org/
https://github.com/Netflix/sleepy-puppy
https://www.thoughtworks.com/radar/tools/zap
https://code.visualstudio.com/
https://thoughtworks.com/radar/tools/ievms

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 15

Over many years, JavaScript has grown to become
probably the most widely used programming language
in the world. Nevertheless, the language itself has a
few problems that many have attempted to address
by using libraries or even by implementing their own
languages that run on top of JavaScript (of which we’ve
mentioned both CoffeeScript and ClojureScript before).
ECMAScript 6, the new version of JavaScript, addresses
many of the concerns of the older versions currently
in use. Although browser support is scarce, support
from mature transpilers like Babel allows you to write
ECMAScript 6 and have it supported in older browsers.
For new projects, we strongly suggest starting with
ECMAScript 6 from day one.

A year after its public debut, Swift is now our default
choice for development in the Apple ecosystem. With
the recent release of Swift 2, the language approaches
a level of maturity that provides the stability and
performance required for most projects. Swift still has
issues, especially around tool support, refactoring and
testing. However, we feel that these are not substantial
enough to warrant avoiding Swift. At the same time,
porting large, existing Objective-C codebases is unlikely
to pay off. The announcement that Swift will become
open source software is a further positive sign. We
are hopeful that this will not just be another dumping
of internally developed code into a public repository,
because Apple has clearly stated that community
contributions are encouraged and will be accepted.

Most templating frameworks like Mustache or FreeMarker
mix code with markup in a single file to implement
complex, dynamic content. Enlive is a Clojure-based
templating framework that completely separates
programming language from HTML markup and
employs CSS selectors to find and replace parts of the
document. Enlive demonstrates the power of functional
programming to implement complex behavior through
a series of simple, composable functions acting on a
common abstraction. Our teams working in Clojure have
found it to be a very useful and straightforward tool.

LANGUAGES & FRAMEWORKS

We have a number of reservations about the use of
HTML5 WebSockets. By allowing the server to initiate
actions on the browser, WebSockets departs from the
connectionless, request/response model that underpins
the World Wide Web today. Security is another big
risk with WebSockets. For example, the standard does
not impose any cross-origin request policy. However,
we do recognize that in certain monitoring or alerting
applications, WebSockets can be very useful. If you need
to build a .NET WebSockets server, SignalR conveniently
implements much of the additional code you need for
a robust production application. This includes some
recommended security practices such as validating
connection tokens and activating SSL when encryption is
needed. Although ThoughtWorks teams have been very
happy with SignalR, there are still fundamental issues with
WebSockets that you should consider before diving in.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

32

38

49

37

31
33

54

35
52

51

39

36

34

40

41

44

48

43

42

46

45

64

59

86

85

75

65

58

60

67

78

63
62

68

72

56

57

66

79

70

80

77

73

74

87 92

94

89

91

88

95

93

90

82

8469

61

71

47

1

3

2
4

5

6

26

23

11

30

28

15

7

8

9

10

12

13

14
16

17

18

19

20

21

22

29

24

25

27

76

83

81

50

53

55

96

97

98

99

100

101

102

ADOPT
87.	 ECMAScript 6
88.	 Nancy
89.	 Swift

TRIAL
90.	 Enlive
91.	 React.js
92.	 SignalR
93.	 Spring Boot

ASSESS
94.	 Axon
95.	 Ember.js
96.	 Frege
97.	 HyperResource
98.	 Material UI
99.	 OkHttp
100.	React Native
101.	TLA+
102.	Traveling Ruby

HOLD

https://www.thoughtworks.com/radar/languages-and-frameworks/coffeescript
https://www.thoughtworks.com/radar/languages-and-frameworks/clojurescript
http://es6-features.org/
http://babeljs.io/
https://developer.apple.com/swift/
https://mustache.github.io/
http://freemarker.org/
https://github.com/cgrand/enlive/wiki
http://signalr.net/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 16

Spring Boot allows easy setup of standalone Spring-
based applications. It’s ideal for pulling up new
microservices and easy to deploy. It also makes data
access less of a pain, thanks to the Hibernate mappings
with much less boilerplate code. We like that Spring Boot
simplifies Java services built with Spring but have learned
to be cautious of the many dependencies. Spring still lurks
just beneath the surface. If you’re writing microservices
with Java, you might also consider using DropWizard or
a microframework like Spark to get the benefits of Spring
Boot without the enormous weight of Spring.

While we still have some reservations about CQRS as
a general pattern, the approach can work very well in
specific places. In those specific situations, however, a
lot of work is left to the developer to properly execute
CQRS. Axon is a framework that can help with this on
the JVM, and we’ve used it with some success. Although
it certainly can’t be considered a perfect solution right
now, it continues to evolve and may make much more
sense than trying to write everything from scratch.

Following many other programming languages, one
of the language geeks’ absolute favourites, Haskell, is
now also available on the JVM in the form of Frege. This
brings a purely functional programming language onto
the platform, allowing for easy interoperability with
other JVM languages and libraries.

HyperResource is a Ruby framework for building
a RESTful API client. The framework accepts JSON
in HAL format and dynamically generates a model
object complete with hypermedia links. Although the
framework is still in its infancy, we like that it embraces
Richardson level 3 REST for better service discoverability
and self-documenting protocols.

Material UI provides reusable components for use in
React applications that implement Google’s Material
Design language. Filling a similar space to Twitter
Bootstrap, it gets you up and running quickly but doesn’t
have the same drawbacks as your application grows.
Elemental UI is worth investigating as an alternative.

OkHttp is a Java HTTP connection library from Square
that provides a fluent interface for creating connections,
as well as support for the faster HTTP/2 protocol.

Even when using HTTP/1.1, OkHttp can provide
performance improvements via connection pooling and
transparent gzip compression. Supporting both blocking
synchronous and nonblocking asynchronous calls, it can
also be used as a drop-in replacement for the widely
used Apache HttpClient.

Yet another entrant into the cross-platform mobile
development world, Facebook’s React Native brings
the React.js programming model to iOS and Android
developers. React Native programs are written in
JavaScript, but unlike a hybrid framework such as
Ionic, React Native gives developers access to native UI
components on the target platform. This is an approach
we’ve seen before (e.g., Calatrava), but React Native has
already inspired a substantial developer community and
builds on the momentum generated by React.js. This
framework could play a significant role in the future of
mobile app development.

Building systems using microservices requires us to
think more deeply about failure isolation and testing.
TLA+ is a formal specification language that can be
useful in both these scenarios. For failure isolation,
TLA+ can be used to identify invariants in your system
that can be monitored directly. An invariant can be
the ratio of number of requests to one service to the
number of requests to a second service, for example.
Any change in this ratio would lead to an alert. TLA+
is also being used to identify subtle design flaws in
distributed systems. Amazon, for example, used model-
checking based on a formal specification written in
TLA+ to identify subtle bugs in Dynamo DB before
it was released to the public. For most systems, the
investment required to create the formal specification
and then perform model checking is probably too great;
however, for critical systems - complex ones, or those
with many users - we think it’s very valuable to have
another tool in our toolbox.

Traveling Ruby makes it possible to distribute portable,
ready-to-run, platform-agnostic Ruby binaries without
the need to install an interpreter, packages or additional
gems. It decouples running Ruby applications from the
development environment they run in.

LANGUAGES & FRAMEWORKS continued

http://projects.spring.io/spring-boot
http://sparkjava.com/
http://martinfowler.com/bliki/CQRS.html
http://www.axonframework.org/
https://www.haskell.org/
https://github.com/Frege/frege
http://hyperresource.com/doc/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://material-ui.com/
https://www.thoughtworks.com/radar/languages-and-frameworks/react-js
https://www.thoughtworks.com/radar/languages-and-frameworks/twitter-bootstrap
https://www.thoughtworks.com/radar/languages-and-frameworks/twitter-bootstrap
http://elemental-ui.com/
http://square.github.io/okhttp/
https://facebook.github.io/react-native/
http://calatrava.github.io/
https://tlaplus.codeplex.com/
http://phusion.github.io/traveling-ruby/

© November 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR NOVEMBER 2015 | 17

ThoughtWorks is a software company and community
of passionate, purpose-led individuals that specialize
in software consulting, delivery and products. We think
disruptively to deliver technology to address our clients’
toughest challenges, all while seeking to revolutionize
the IT industry and create positive social change. We
make pioneering tools for software teams who aspire to
be great. Our products help organizations continuously
improve and deliver quality software for their most

critical needs. Founded over 20 years ago, ThoughtWorks
has grown from a small group in Chicago to a company
of over 3500 people spread across 35 offices in 12
countries: Australia, Brazil, Canada, China, Ecuador,
Germany, India, Singapore, South Africa,Turkey, the
United Kingdom, and the United States.

https://thoughtworks.com

