

AUTONOMY

By

aidanjali

Venkatiaman

INTRODUCTION

AUTONOMY IS THE ASPIRATION THAT MACHINES THINK AND ACT INDEPENDENTLY, MAKING DECISIONS IN THE PLACE OF HUMANS.

WE ARE ALREADY SEEING DRONES AND SELF-DRIVING CARS
ACHIEVING SOME OF THESE GOALS.

AUTONOMOUS SYSTEMS CAN EXTEND HUMAN CAPABILITIES USING ARTIFICIAL INTELLIGENCE. THEY ARE SUBJECT TO THE SAME HYPE AND FEAR ASSOCIATED WITH AI. SO THE PROSPECT OF ROUTINELY ENCOUNTERING SUCH MACHINES IN DAILY LIFE IS AT ONCE FASCINATING AND TERRIFYING.

WHAT FEATURES AND USES DO THEY HAVE? HOW DO WE KNOW THEY ARE SAFE AND TRUSTWORTHY? ARE WE READY AND PREPARED FOR LARGE-SCALE ADDPTION?

THIS BOOK EXPLORES THE CONCEPT OF AUTONOMY, HOW IT CAN BE INTRODUCED WITH THE RIGHT PROCESSES & SUPPORT SYSTEMS.

WE ALSO EXAMINE ITS LIMITATIONS & ASSOCIATED ETHICAL ISSUES.

AN ILLUSTRATED AUIDE TO ARTIFICIAL INTELLIAENCE IN THIS SERIES IS A RECOMMENDED PRE-READ.

SCOPE

WHAT IS

AUTONOMY

AUTOMATION

- ROBOT

DEGREES' OF AUTONOMY

A CLOSER LOOK

DESCRIPTION

FEATURES / ABILITIES

OUSES IN SAFETY/WAR

BEHIND THE SCENES

ARTIFICIAL INTELLIGENCE

DATA

TESTING

ENAINEERINA

CHALLENGES

IS IT SAFE?

STANDARDS

REGULATION

- LAW

WHO DO WE TRUST?

PEOPLE OR MACHINES ?

THE FOUR 'P's

WHO DO WE BLAME?

HUMAN IN THE LOOP

MORAL CRUMPLE ZONE

WHY DO WE CARE?

ETHICS/DANGERS

A BRIEF OUTLOOK

MORE TO EXPLORE

REFERENCES

WHAT IS AUTONOMY?

AUTONOMY

AUTONOMY IS REGARDED AS A STATE OF BEING ABLE TO EXIST ACT INDEPENTLY, SELF-DIRECT AND SELF-GOVERN

uninfluenced by time period or location?

independent of law/social norms?

unaffected by peers or trends?

THIS IS AN AMBIGUOUS DEFINITION WHETHER APPLIED TO HUMANS OR TO THE MACHINES WE BUILD.

algorithms & data

Law?

Bias | Ethics?

AN AUTONOMOUS SYSTEM CAN MAKE DECISIONS AND OPTIMISATIONS IN A CHANGING ENVIRONMENT WITHOUT (MUCH) HUMAN INSTRUCTION

			501	ME	7	ER	MS	
LET US	STAR	T BY	EXPLD	RING A	FEW	BASIC	TERMS.	A UTO MATION,
				RING A AUTONI		BASIC	TERMS.	A UTO MATION,
						BASIC	TERMS.	AUTOMATION,

AUTOMATION

AUTOMATION

MECHANISING A TASK SO A HUMAN HAS VERY LITTLE TO DO THIS MECHANISATION COULD BE THROUGH HARDWARE OR SOFTWARE.

well defined algorithm

> Predictable result

Same behaviour in all environments

Repeatable set of actions

Speeds up feedback loops

Preset assumptions

Cannot handle un planned scenarios

AUTOMATION PARADOX IS THAT THE More AUTOMATION

- CAN LEAD TO NEW, UNFORESEEN ERRORS
- MAKES HUMAN INPUT EVEN MORE CRITICAL TO THE NON-AUTOMATED ASPECTS OF A TASK

AUTOMATION VS AUTONOMY

TASK

USE A MACHINE TO HELP

GET THE MACHINE TO DO THE JOB

ROBOTS

ROBOT

A PROGRAMMABLE PHYSICAL DEVICE THAT CAN DO A SET OF TASKS

REPETITIVE

DIFFICULT

COGNITIVE

ROBOTS ARE NOT INTENDED TO REPLACE HUMANS ENTIRELY
ROBOTS ARE NOW ABLE TO ASSIST IN WELL-DEFINED TASKS AND
IN TASKS THAT ARE MORE COMPLEX AND NEED COGNITIVE SKILLS.

A PERFECT ROBOT MAY EXIST ONLY AS A FICTIONAL WORK

LEONARDO DA VINCI'S HUMANOID 14005

BICENTENNIAL MAN FILM 1990S

EMOTION READING ROBOT - 2014

ELMER

THE FIRST AUTONOMOUS ROBOTS WERE ELMER AND ELSIE, CREATED IN THE 1940s. THEY RESPONDED TO LIGHT AND TOUCH AND COULD TAKE THEMSELVES TO RECHARGE.

'DEGREES' OF AUTONOMY

AS IT STANDS, AUTONOMY IS NOT YET A BINARY CONCEPT. THERE ARE VARYING 'DEGREES' OF AUTONOMY.

MANUAL CONTROL / TELE OPERATION

- THE MACHINE EXERCISES

 NO INDEPENDENCE
- IT IS FULLY OPERATED AND

 CONTROLLED BY A HUMAN

SHARED AUTONOMY

- THE MACHINE WORKS CLOSELY WITH THE OPERATOR TAKING ON PART OF THE TASK
- THE OPERATOR STAYS ENGAGED

PERSISTENT AUTONOMY

THE MACHINE

- OPERATES
- ADAPTS
- SELF-HEALS

IN AN UNPREDICTABLE SETTING
TO COMPLETE A TASK SET BY
AN OPERATOR

may take over ... and may make when the machine a bad decision cannot decide... if I wasn't engaged

FOR SELF-DRIVING CARS, THE SOCIETY OF AUTOMOTIVE ENGINEERS HAVE DEFINED SIX LEVELS OF AUTONOMY. sae.org/blog/sae-j3016-update

A CLOSER LOOK

IN THIS SECTION, WE DESCRIBE AUTONOMOUS SYSTEMS, FEATURES AND APPLICATIONS, AND WHY CONDITIONS ARE RIGHT FOR RESEARCH & DEVELOPMENT OF AUTONOMOUS SYSTEMS.

AUTONOMOUS SYSTEMS

ROBOTS AND AUTONOMOUS SYSTEMS ARE THE ARMS, LEGS AND SENSORS OF BIG DATA WORKING IN THE INTERNET OF THINGS.

-PROF DAVID LANE

THE RIGHT CONDITIONS

WITH ALL THESE BENEFITS TO ENJOY, INTEREST AND INVESTMENT IN ROBOTS AND AUTONOMOUS SYSTEMS APPEARS TO BE TAKING DFF.

FEATURES

ACHIEVE A JET OF GOALS
IN A CHANGING ENVIRONMENT

AND WORK

FOR AN EXTENDED PERIOD

WITHOUT

HUMAN CONTROL OR INTERVENTION

EXAMPLES

ABILITIES

GATHER DATA

PROVIDE STATS ABOUT AN OBJECT, REGION OR PROCESS

EXAMPLE

MARINE CONSERVATION

MANIPULATE

WORK WITH PHYSICAL OBJECTS AND TOOLS AS A HUMAN MIGHT

EXAMPLE

MANUFACTURING AND ASSEMBLY

TRANSPORT

CONVEY ITEMS OVER SHORT OR LONG DISTANCES.

EXAMPLE

MATERIALS IN A FACTORY FLOOR MEDICINES TO A REMOTE AREA

SORT AND STORE

MANAGE INVENTORY - IDENTIFY,
PACK, TRACK AND STORE ITEMS

EXAMPLE

MEDICAL SAMPLES
RETAIL & MANUFACTURING

AUTONOMY FOR SAFETY

AUTONOMOUS SYSTEMS PROVIDE AN OPTION TO HELP WITH DECISION.

MAKING AND TO KEEP HUMANS DUT OF PHYSICAL HARM/INJURY.

AN AUTONOMOUS SYSTEM COULD BE DEPLOYED IN PLACE OF A

HUMAN IN THE FOLLOWING SCENARIOS

TO MONITOR CONDITIONS

EARTHRUAKE ZONES
TO LOOK FOR SURVIVORS

RESCUE OPERATIONS
TO DELIVER AID

LIFE SAVING SURGERY
REMOTE SURGERY USING HAPTIC TECHNOLOGY

UNDER SEA

TO INSPECT ASSETS | MARINE LIFE

SPACE PROBES

IN EXPLORATIONS OR ASTERDID DEFLECTION

AUTONOMY IN WARFARE

MOST TECHNOLOGY IS DUAL - USE:

- USED FOR CIVILIAN/COMMERCIAL APPLICATIONS AND
- USE IN THE MILITARY.

UNSUPRISINALY, AUTONOMOUS SYSTEMS ARE USED

- DURING PEACETIME TO PREPARE FOR CONFLICT AND
- DURING WAR

SOME EXAMPLES ARE:

TRAINING FOR BATTLEFIELD EXPERIENCE

WITH VIRTUAL | AUGMENTED REALITY

INTELLIGENCE ANALYSIS

WITH INFORMATION/LANGUAGE PROCESSING

CONTROLLING SEMI-AUTONOMOUS WEAPONS AND MISSILE GUIDANCE SYSTEMS
WITH COMPUTER VISION, GPS

PSYCHOLOGICAL WARFARE

84 EXPLOITING ECHO-CHAMBERS, DEEPFAKES

BEH	IND THE SCENES	
LIMITATIONS. SOME	HAVE THEIR RESPECTIVE STRENATHS AND CHALLENAES CAN BE MET WITH PROCESSES OTHERS MIGHT REMAIN UNSOLVED.	D.R.

INTELLIAENCE

AUTONOMOUS SYSTEMS ARE POSSIBLE ONLY DUE TO THE IMPROVEMENTS IN ARTIFICIAL INTELLIGENCE.

AN INTELLIGENT AUTONOMOUS SYSTEM CAN ANALYSE A DEVELOPING SITUATION AND ACT TOWARDS ACHIEVING ITS GOALS SAFELY.

SEMI SUPERVISED
LEARNING

REINFORCEMENT

APPROXIMATE

DYNAMIC PROGRAMMING

REGRESSION

THE KIND OF
METHODS REQUIRED

DEPENDS ON

THE PROBLEM
BEING SOLVED

DATA & ITS SEQUEL

AUTONOMOUS SYSTEMS COLLECT A HUGE AMOUNT OF DATA

THIS DATA IS

PROCESSED

INTERPRETED

STORED

FOR ANALYSIS/ FUTURE USE

BETWEEN

SHARED

TO CONSOCIDATE
UNDERSTANDING

TO MAKE DECISIONS

CONSIDERATIONS

THE DATA COLLECTED LIVES DUTSIDE THE SOURCES AND LIKELY NOT WITH THE OWNER OF THE SOURCE ITSELF.

WHO OWNS AND
ACCESSES THE DATA

HOW TO DEVELOP DATA SHARING STANDARDS

PUBLIC SAFETY
IN MIND

HOW TO PROTECT PRIVATE INFORMATION HOW TO TAP INTO THE

ENAINEERINA CHALLENGES

UNCERTAIN ENVIRONMENTS

TO ENSURE REASONABLE HDW AND SAFE BEHAVIOUR IN NEW UNCERTAIN ENVIRONMENTS ?

INCOMPLETE SPECIFICATIONS

HOW TO ENSURE THAT RELEVANT CONDITIONS ARE HANDLED AND HOW 'COMPLETENESS' CAN IMPROVE?

SCALING & ARCHITECTURE

TO ENSURE ARCHITECTURES HOW THAT CAN SCALE, USE RESOURCES AND VERIFY COMPLEX SYSTEMS?

SELF LEARNED NEW BEHAVIOUR

ENSURE BEHAVIOUR IS HOW TO CONSISTENT TO ORIGINAL SPECIFICATION AS NEW LEARNING OCCURS?

REASONING ETHICAL

HOW TO CODIFY ETHICAL REASONING FROM THE VIEW OF RIGHTS, JUSTICE, COMMON GOOD, CARE, VIRTUE ETC?

TRAINED & QUALIFIED PEDPLE

TO ENSURE THAT HOW THERE IS A GOOD SUPPLY OF QUALIFIED PROFESSIONALS FOR THE JDB?

ON TESTING

AUTOMATED SYSTEMS.

- FIXED SET OF RULES
- MOSTLY REPEATABLE
- FAIRLY DEFINED INPUT SPACE

AUTONOMOUS SYSTEMS

- NON-DETERMINISTIC
- COMPLEX EMERGENT
- VAST INPUT SPACE

DIFFERENT TESTING METHODS NEED

AUTONOMOUS SYSTEMS

MAKE CRITICAL DECISIONS

OPERATE IN HIGH-RISK SITUATIONS

THEREFORE,

SAFETY TESTS 7

ARE

SAFETY TESTS

IMPORTANT

CHALLENGING

BLACK BOX PROBLEM

THE AI/ML CODE POWERING AUTONOMOUS DEVICES TEND TO BE VERY HARD TO EXPLAIN. SO, VERIFICATION & VALIDATION PROCESSES NEED TO

MAKE THE ALGORITHM TRANSPARENT TRACE THE DECISION MAILING PROCESS RELIABILITY WHEN UPARADED PROVE

THIS WILL AD PART WAY TO ANSWERING SOME OF THE CONCERNS PERFORMANCE AND PROCESS IN PROVING TRUST WORTHINESS UNDER

AUTONOMY TESTINA TASKS

SAFETY AND RELIABILITY

KNOW THAT THE GOAL(S) ARE MET AND IT IS SAFE FOR ALL

EVIDENCE FOR CERTIFICATION

UNDERSTAND WHAT DECISION WAS MADE AND WHY

FIGURE OUT WHAT SOCIAL OR CULTURAL BIASES ARE EXHIBITED

AI TEST AUTOMATION TOOLS

DEVELOP FIT-FOR-PURPOSE TEST TOOLS AND CONTINUOUSLY EVALUATE

TESTING METHODS

THERE ARE A FEW METHODS TO TEST AUTONOMOUS SYSTEMS. WE WILL LOOK VERY BRIEFLY AT JUST THREE OF THOSE HERE.

SIMULATIONS . . .

STAND IN PLACE OF THE REAL PHYSICAL WORLD

> BOTH HARDWARE USE AND SOFTWARE

COGNITIVE TESTS ...

.. RUN A SET OF WELL-DEFINED

Scenarios Disruptions constraints

AND COMPARE OUTCOMES THE TO A SET OF

Expectations: Law Experience Expertise Ethics morms

MAKE THE IMPLICIT RULES TO THE ALGORITHM TRANSPARENT - IN

SHORT FIELD TESTS

INVOLVE

THE SYSTEM using A CONTROLLED REAL SETTING

RECORDING DATA FROM ALL SENSORS

LOGGING ALL OPTIONS THE CONSIDERED

THE MAKE TO FEEDBACK REWARD MECHANISMS TRANSPARENT & OPTIMISE OFFLINE

CHALLENGES IN TESTING

TRACKING DECISIONS

HOW TO TRACK AND UPDATE

DECISIONS AS THE SYSTEM

LEARNS OR GETS UPGRADED?

SECURITY CHALLENGES

IN THE ABSENCE OF CONTINUOUS SUPERVISION, HOW TO TEST FOR SELF-DEFENCE AGAINST ATTACKS?

UNCLEAR REQUIREMENTS

- MPLICIT | UNSTATED
- OPEN TO INTERPRETATION
- CONTRADICTING GOALS
- TENDING TOWARDS A BIAS

HOW TO PROVE CORRECTNESS

GIVEN ANY DF THESE IS TRUE?

TESTING VERIFICATION TOOLS

HOW TO PROVE CORRECTNESS

OF THE VERIFICATION TOOLS?

		ST					
RE	auc	ATI		AN	D	LAW	
PRODUCTS	PERFORM	ON SAFET WELL-DEFI TONOMOUS	NED DPE	RATIONS	IN WELL	- UNDERST	00D

ON STANDARDS

A STANDARD IS USUALLY DEFINED HOW

PERFORMANCE STANDARD HAS THREE **ASPECTS**

FUNCTION

TOLERANCE

CONTEXT

WHAT THE TECH DOES TO ACHIEVE ITS GOAL

HOW OFTEN/CLOSELY IT MUST ACHIEVE ITS FUNCTION

ENVIRONMENTS IN WHICH THE TECH IS MEANT TO DPERATE

WHY THIS IS A CHALLENGE WITH AUTONOMOUS SYSTEM

FOR

AUTONOMOUS SYSTEMS STUDY THE CONTEXT AND ADAPT THEMSELVES TO DISPLAY BEHAVIOURS SUITABLE TO THE ENVIRONMENT AND ARE NOT LIMITED BY FUNCTION, TOLERANCE OR CONTEXT. THIS LACK OF BOUNDARY BECOMES PARTICULARLY CONCERNING IN LIFE-AND-DEATH SITUATIONS. EXAMPLE:

- SECF-DRIVING CARS ON ROADS WITH PEDESTRIANS WILDLIFE
- AUTONOMOUS WEAPONS MISSILES IN A CIVILIAN AREA

DN REGULATION

REGULATION

A RULE OR MECHANISM THAT
LIMITS, STEERS OR OTHERWISE
CONTROLS CERTAIN BEHAVIOURS.

ENFORCEABLE BY LAW

LIMITED TO THE SCOPE OF
THOSE UNDER THE AUTHORITY
THAT REGULATES THEM.

REASONS TO REGULATE

- TO PROTECT THE INTERESTS

 OF CUSTOMERS OF THE SERVICE

 AND OF COMPETITORS AND
- TO ESTABLISH ACCOUNTABILITY

CONSIDERATIONS

OBJECTIVES OF THE SYSTEM

STANDARDS TO EVALUATE PERFORMANCE

POTENTIAL RISK POSED BY THE COMPANIES

COLLABORATION WITH

THE PRIVATE SECTOR

PROPRIETARY STRUCTURES

HOW TO REGULATE INTERFACES TO AUTONOMOUS SYSTEMS LEAVING LOW-LEVEL STRUCTURES TO STAY PROPRIETARY ?

REGULATORY CHALLENAES

COUNTRIES DIFFERENT

HOW TO ENSURE AUTONOMOUS SYSTEMS COMPLY WITH DIFFERING OR CONTRADICTING LAWS IN EVERY COUNTRY IT OPERATES?

CONFLICTING POSITIONS

HOW CAN REGULATION STRIKE A BALANCE BETWEEN HELPING INNOVATION AND CURBING MALICIOUS TECHNOLOGY?

WHAT WE DON'T UNDERSTAND

HOW REGULATE WHAT WE DO UNDERSTAND - A TECHNOLOGY NOT THAT IS RELATIVELY NEW?

HOW TO REAULATE

A PAPER PUBLISHED IN IEEE

Regulating Autonomous
systems: Beyond Standards
DAVID DANKS
ALEX JOHN LONDON
Carnegie Mellon University

PROPOSES TWO OPTIONS

- LIMITING THE SCOPE OF AUTONOMY
- USING A MORE DYNAMIC METHOD
 AS WITH PHARMACEUTICALS

LIMIT THE SCOPE

LIMITING THE SCOPE OF AUTONOMY ENABLES THE USE OF MORE CONVENTIONAL APPROACHES TO REGULATION

BY MAKING HUMANS IDENTIFY CONTEXT

NOT IDEAL, BUT USED IN SEMI AUTONOMOUS DRIVING

BY REGULARISING THE ENVIRONMENT

METHODS SUCH AS: (LIMITED ACCESS POINTS FOR AIR TRAFFIC

ANIMAL FENCING ON HIGHWAYS

REDUCE NEED TO CLARIFY CONTEXT

UNFORTUNATELY, THESE TWO APPROACHES STOP US ENJOYING THE PROMISED BENEFITS OF AUTONOMY.

A MORE DYNAMIC METHOD -1

THE PHARMACEUTICAL DRUG APPROVAL PROCESS IN STAGES IS ROUGHLY

PRE-CLINICAL EVALUATION

> FIRST- IN- HUMAN STUDIES

THIS MODEL

COULD BE

RESPONSIBLY PRESCRIBED

ADAPTED TO

REGULATE

AVAILABLE

AUTONOMOUS SYSTEMS.

IT REQUIRES

- CONTINUOUSCY GATHERING DATA
- A REGULATORY BODY THAT EVALUATES / BENCHMARKS

A MORE DYNAMIC METHOD-2

WHEN APPLIED TO AUTONOMOUS SYSTEMS, THE STAGES MIGHT BE:

STAGE

TESTING IN

SIMULATED

ENVIRONMENTS

GOAL: TO FIND

- HOW IS DATA USED?
- HOW ARE DECISIONS MADE?
- SITUATIONS HOW ARE RULES CONSTRAINTS OBEYED?

LIMITED TARGETED

REAL-WORLD

SETTING

BEHAVIOUR IN REAL SETTING

CAN CONTEXT RECOGNITION IN

HARDWARE SOFTWARE IMPROVE?

REPEAT IN A

DIFFERENT

SETTING

- WHAT MAKES IT NEW?
- HOW TO MONITOR IT ?

RELAXING
RESTRICTIONS ON
MARKET ACCESS

- SOCUTIONS, IMPROVEMENTS
- DEAREES OF AUTONOMY
- ANY LONG TERM RELIABILITY

 PATTERNS

ONLAW

WHY CARE ABOUT LAW?

AUTONOMOUS SYSTEMS IMPACT

- RISKS & OPPORTUNITIES
- RIGHTS & DUTIES
- SAFETY & ACCOUNTABILITY

OF INDIVIDUALS & ORGANISATIONS

CONSIDERATIONS

- IS ITS USE ETHICAL ?
- IS ITS USE MORAL ?
- . WILL EXISTING LAWS SUFFICE?
- IF NOT, WHAT TO DO?

COMMERCIAL USE

- MOSTLY DOMESTIC LAWS APPLY
 FOR CIVILIAN USE PRODUCTS
- INTERNATIONAL LAW RELEVANT
 ONLY FOR CONSISTENCY

MILITARY USE

INTERNATIONAL HUMANITARIAN LAW

- IMPOSES LIMITS ON SUFFERING
 CAUSED BY ARMED CONFLICT
- NO BAN YET ON AUTONOMOUS
 WEAPONS OR KILLER ROBOTS

SELF - REGULATION ?

WILL NOT SUFFICE - GIVEN
PRIVATE COMPANIES' HANDLING OF

- FAKE NEWS
- MANIPULATIVE ALGORITHMS
- BIASED/ABUSIVE CONTENT

IN BALANCE ...

IF THE LAW IS TOO SPECIFIC

AFTS OUTDATED QUICKLY

IF THE LAW IS TOO GENERAL

INSUFFICIENT GUIDANCE

WHO DO WE TRUST?

LIFE ALTERING DECISIONS ARE TO BE MADE BY INDEPENDENTLY DPERATING MACHINES. WHO DECIDES THAT THESE DECISIONS ARE 'RIGHT' OR 'MORAL'? HOW CAN THE PUBLIC TRUST MACHINES?

ON TRUST -

WHAT IS TRUST ?

- A BELIEF
- AN EXPECTATION
- AN EMOTIONAL STATE

 OF THE MIND
- AN INTERPERSONAL
 FEELING

TRUST IS USUALLY BETWEEN PEOPLE. WHAT HAPPENS WHEN WE NEED TO TRUST A MACHINE? WHAT RELATIONSHIP WORKS?

BASED ON WHAT WE HAVE SEEN OF AUTOMATION OVER THE YEARS AND MORE RECENTLY, WITH ARTIFICIAL INTELLIGENCE, WE KNOW TRUST IS NOT EASILY EARNED.

DN TRUST - 2

HOW THEN CAN TECHNOLOGY EARN THE TRUST OF THE PUBLIC?

ACCORDING TO JACK STILGOE (UCL) & GOPAL RAMCHURN (UKRI), ONE WAY

IS TO THINK ABOUT TECHNOLOGY IN THESE TERMS:

PEOPLE

WHO OWNS IT AND WHO BENEFITS?
WHOSE INTERESTS ARE PROTECTED?
WHO IS LIABLE WHEN THINGS GO WRONG?

PERFORMANCE

WHAT VALUE DOES IT PROVIDE?
WHAT HUMAN VALUES DRIVE IT?
WHAT ARE ITS BOUNDARIES AND RISKS?

PURPOSE

WHY DOES IT EXIST?
WHAT PURPOSE DOES IT SERVE?

PROCESS

WHICH INSTITUTIONS ARE INVOLVED?

HOW ARE THESE COMMUNICATED?

WHO	DO	NE	BLAME	?
-----	----	----	-------	---

MADELEINE CLARE ELISH, RESEARCH SCIENTIST, DESCRIBES THE DISPARITY
BETWEEN THOSE WITH CONTROL AND THOSE WITH RESPONSIBILITY.

THE TECH & PROCESSES SEEM TO GET AWAY...

HUMAN IN THE LOOP

SELF-DRIVING CAR KILLS PEDESTRIAN

ARIZONA

MAR 18, 2018

DURING A TEST-DRIVE, AN UBER SELF-DRIVING CAR COLLIDED AND KILLED A CYCLIST ON FOOT. THE CAR WAS UNABLE TO CORRECTLY IDENTIFY THE WALKING CYCLIST AS A PERSON.

THE BACK UP
SAFETY DRIVER
WAS CHARGED WITH

MANSLAUGHTER

OF WRONG - DOING.

HAVING A 'HUMAN IN THE LOOP' WAS A WAY TO ENSURE SAFETY, BUT THE EASIEST ONE TO BLAME.

MORAL CRUMPLE ZONE

WHO IS ACCOUNTABLE WHEN THINGS GO WRONG WITH TECHNOLOGY? CORPORATE AND LEGAL LIMBILITY RESPONSIBILITY HAVE NOT YET CAUGHT UP TO THE ADVANCES IN TECHNOLOGY.

MORAL CRUMPLE ZONE IS A PHRASE USED IN THIS CONTEXT.

UNFORTUNATELY, SOMETIMES IT HAPPENS THAT TECHNOLOGY IS VIEWED AS FAULTLESS TO THE DETRIMENT OF THE ESSENTIAL WORKERS OF TECHNOLOGY WHO HELP INTEGRATE IT INTO DUR LIVES.

THIS REMAINS AN OPEN PROBLEM WITH AUTONOMOUS SYSTEMS TOO.

	DO	WE	CAK	2E?	
CYBERPHYSICAL TO BE EVERYV ACCOMODATE T	VHERE. HO	W DO W	E PREPARE	DURSEL	

ON ETHICS/DANGERS

AUTOMATION CREATES JOBS THAT
PREVIOUSLY DIDN'T EXIST. BUT
HOW TO JUSTIFY BUILDING
TECHNOLOGY THAT MAKES
PEOPLE LOSE THEIR LIVELIHOOD?

WE ARE MORE TOLERANT OF A
HUMAN'S ERROR THAN OF MACHINE'S
HOW TO RECONCILE WITH AN
ALADRITHM THAT DECIDES WHO
SURVIVES AND WHO DOES NOT?

DEVICES POSSESS SO MUCH OF
PERSONAL DATA, LEAVING US
WITH SECURITY RISKS (OF WHICH
WE MIGHT NOT EVEN BE AWARE)

RESPONSIBILITY

WHEN STATES USE AUTONOMOUS WEAPONS AGAINST CIVILIANS, WHO CHARGES THEM WITH CRIMINAL INTENT?

LIVINA WITH AI

People + AI (EVERYWHERE)
coexisting...

... with social and cultural implications...

GENEVIEUE BELL

PROF BELL POSES 5 QUESTIONS
TO ASK, WHOSE ANSWERS MAY
PREPARE US BETTER FOR THE FUTURE

IS IT AUTONOMOUS ?

IS A DEVICE SMART?

IS IT AUTONOMOUS?

HOW CAN WE TELL?

DOES IT HAVE AGENCY?

ARE THERE LIMITS/CONTROLS

FOR ITS FUNCTIONS?

WHO DECIDES?

WHO EXERCISES?

CAN WE HAVE THE ASSURANCE?

WHAT IS TOLERABLE?
WHOSE SAFETY?
WHO DECIDES?

IS IT LIVES SAVED/LOST?
WHAT ARE OTHER INDICATORS?

CAN IT INTERACT HUMAN-LIKE?

WHAT MEANS OF INTERACTION FIT?
FOR ONE? FOR MANY?

A BRIEF OUTLOOK

PROF DAVID LANE IMAGINES A FUTURE WHERE AUTONOMOUS SYSTEMS CAN BE THOUGHT OF LIKE A PHONE WITH MANY APPS: ONE 'ROBOT' WITH MANY SKILLS.

AUTONOMY OF MACHINES IS HERE TO STAY.

HOWEVER, AUTONOMOUS SYSTEMS HAVE MANY LIMITATIONS.

THEY ARE CONSTRAINED BY THE TECHNOLOGY AVAILABLE TO BUILD DR BETTER THEM. THEY HAVE LIMITED FUNCTIONALITY.

THEY FAIL AT THE HANDOVER POINTS BETWEEN MACHINE AND HUMAN. THEY HAVE NO MORALS OR ETHICS OF THEIR OWN.

THEIR DECISION MAKING IS BIASED BY THE HUMANS THAT CODED TRAINED THEM.

PERHAPS, THEY CAN NEVER BE TRULY AUTONOMOUS, AS THEY WILL NEVER OPERATE INDEPENDENTLY OF HUMANS.

MORE TO EXPLORE

THERE ARE MANY TOPICS THAT THIS QUIDE DOES NOT COVER.

HERE IS A SMALL LIST OF INTERESTING RESEARCH TO FURTHER

PIQUE INTEREST.

- MACHINE TEACHING
 HUMAN EXPERTISE GIVEN TO MACHINES
- REINFORCEMENT LEARNING
 JOHN LANGFORD'S RESEARCH (INTERACTIVE LEARNING)
- LOW-CODE DEVELOPMENT OF AUTONOMOUS SYSTEMS
 PROJECT BONSAI
- SIX LEVELS OF AUTONOMY IN SELF-DRIVING CARS

 DEFINED BY THE SOCIETY OF AUTOMOTIVE ENGINEERS
- TECHNIQUES & TOOLS
- OTHER APPLICATIONS FOR AUTONOMOUS SYSTEMS

 e.g. SPACE EXPLORATION

19 REFERENCES

Essential Pre Read

Illustrated Guide to Artificial Intelligence: thoughtworks.com

What is Autonomy?

Lecture by David Lane: youtube.com/watch?v=oFNMk6JqfII

Blackberry: Ultimate guide to autonomous systems blackberry.qnx.com

WIRED Guide to Robots wired.com

Autonomous Systems with Microsoft AI: https://www.microsoft.com/

Beware The Automation Paradox: forrester.com/blogs

Papers/Engineering approach

Lloyd's Register Foundation's paper: Foresight review of robotics and autonomous systems ResearchGate 315787442

Towards A Holistic Software Systems Engineering Approach for Dependable Autonomous Systems: dl.acm.org

Machine teaching:

The next extension of machine learning intheblack.cpaaustralia.com.au How people's expertise makes AI even more powerful blogs.microsoft.com

Reinforcement learning

Reinforcement learning (Research collection) at microsoft.com

John Langford's Research On Interactive Learning: arxiv.org/abs/2106.04887

Microsoft's cutting-edge machine-learning tool moves from the lab to the mainstream technepublic.com

Testing Autonomy

Validation of Autonomous Systems infoq.com

Challenges and Current State-of-the-Art: researchgate.net 308092368

Towards a framework for certification of reliable autonomous systems: Springer.com

Verification and validation: liverpool.ac.uk

M4 REFERENCES

Online Debates

Trust in Autonomous Systems (Gopal Ramchurn, Jack Stilgoe, Kate Devlin): CogX youtube.com

Autonomous Systems Failures: Who is Legally and Morally Responsible? (Todd Murphey, Ryan Calo, Madeleine Clare Elish): Northwestern Engineering youtube.com

Ethics, Morals

Autonomy in Moral and Political Philosophy plato.stanford.edu Who Is Responsible When Autonomous Systems Fail? Cigionline.org Ethics in action ethicsinaction.ieee.org

War

Modern Conflict and Artificial intelligence: cigionline.org

Lethal Autonomous Weapon systems: futureoflife.org

Dual Use technology: wikipedia.org

The Use Of Artificial Intelligence Technologies In Information And

Psychological Warfare: researchgate.net 334454525

Standards, Regulation

International Legal Regulation of Autonomous Technologies: Cigionline.org

The IEEE Global Initiative on ethics: standards.ieee.org

Regulating Autonomous Systems: Beyond Standards: andrew.cmu.edu

Towards a framework for certification of reliable autonomous systems: link.springer.com

Ethics, regulation and the new artificial intelligence, part i: accountability and power: tandfonline.com

AI is mostly governed by 'soft law'. But that is set to change: techmonitor.ai

The Laws and Regulation of AI and Autonomous Systems: ResearchGate.net 347376505