

POST-QUANTUM CRYPTOARAPHY

aitanjali Venkatiaman

INTRODUCTION

WE UNDERSTAND THE POTENTIAL OF QUANTUM COMPUTERS TO THREATEN THE SECURITY OF CURRENT ENCRYPTION SCHEMES.

THE REACTION TO THIS RISK IS THAT MUCH EFFORT HAS

BEEN PUT INTO CLASSICAL (NON-QUANTUM) ALGORITHMS

THAT CAN RESIST QUANTUM ATTACKS.

THE ILLUSTRATED AVIDE TO POST QUANTUM CRYPTOGRAPHY
DESCRIBES THE NATURE OF THESE CLASSICAL ALAORITHMS.

STARTING FROM WHY THIS NEEDS TO BE ADDRESSED, WE GO ON TO EXPLORING A GLOBAL COMPETITION TO IDENTIFY SUITABLE ALGORITHMS.

FAR TOO MANY BRILLIANT MINDS HAVE CONTRIBUTED TO THE RESEARCH TO MENTION INDIVIDUALLY.

ONCE WE'VE COVERED THE WORKINGS OF A HANDFUL OF ALGORITHMS, WE ALSO TAKE A LOOK AT WHAT IT MEANS TO MIGRATE TO A POST QUANTUM CRYPTO SCHEME.

PREREAD THESE ILLUSTRATED GUIDES FROM THOUGHTWORKS

HOW TO TELL SECRETS

THE STORY OF QUANTUM COMPUTING

avide to AES

WEB3 - THE PART ON MERKLE TREES

WHAT IS PAC?

POST QUANTUM CRYPTOGRAPHY OR PQC IS THE FOCUS ON DEVELOPING CLASSICAL ALGORITHMS THAT ARE SAFE FROM ANY DECRYPTION ATTEMPTS BY QUANTUM ALGORITHMS

PUBLIC KEY CRYPTOGRAPHY BROKEN?

WORKS ONLY TO DEFEND AGAINST CLASSICAL - NOT QUANTUM COMPUTERS

WHY NOW?

WHY THE SEARCH FOR

POST- QUANTUM CRYPTOGRAPHY?

A USEFUL QUANTUM COMPUTER

ISN'T HERE ... YET!

A RUANTUM COMPUTER

IS STILL SUSCEPTIBLE TO

NOISE AND ERRORS

RSA, ECC & OTHER

ASYMMETRIC ENCRYPTION &

DIGITAL SIGNATURE METHODS

ARE STILL STRONG - RIGHT?

SYMMETRIC KEY

BESIDES, AES 256 15
QUANTUM-PRODF!

REASON 1: ATTACKS

GOVERNMENTS

STORE DATA ABOUT CUSTOMERS / CITIZENS

USUALLY ENCRYPTED WITH RSAJECC

YZQ'
will be
here...!

And I could, carry out

- TA) HARVESTING ATTACK
 - DECRYPT YOUR
 ENCRYPTED DATA
- b) REWRITE HISTORY-

BY FAKING A

DIGITAL SIGNATURE

ON PAST RECORDS

USING THAT QUANTUM COMPUTER

p.s. 1 might be a lot greyer!

Y2Q Speculative

REASON 2: TIME

ACCORDING TO THE NIST, IT TAKES A LONG TIME TO ROLL OUT NEW ENCRYPTION AT SCALE

MODERN PUBLIC KEY CRYPTOGRAPHY INFRASTRUCTURE HAS TAKEN

20 YEARS TO DEPLOY

SO NOW MIGHT BE A GOOD TIME TO START BEING CURIOUS ABOUT HOW TO PREPARE IT SYSTEMS FOR THE FUTURE

MOSCA'S THEOREM

HOW LONG DOES DATA NEED TO BE SECURE? HOW LONG UNTIL A

RUANTUM SAFE SOLUTION?

26

y

HOW LONG UNTIL A USEFUL AND POWERFUL QUANTUM COMPUTER?

3

1F 2 + y > 3

WE HAVE A PROBLEM

Highlights the
store now
decrypt later
problem

MATHEMATICIAN &
COMPUTER SCIENTIST

WHAT OPTIONS DO WE HAVE?

OPTION - 1

USE AES, HOWEVER ...

AES IS BUANTUM-SAFE SYSTEMS AROUND IT ARE NOT

WHAT'S THE SOLUTION?

INCREASE THE SIZES

OF AES KEYS

+

FIND SECURE WAYS
TO DISTRIBUTE THE KEY

WHAT OPTIONS DO WE HAVE?

DPTION - 2

USE QUANTUM KEY DISTRIBUTION - QKD

The key of

ALICE

SENDS

POLARISED LIGHT

WHICH ENCODES BITS

RANDOMLY

IN ONE

0F 2

METHODS

BOB

MUST GUESS

WHICH METHOD

AND

'READ'

THE PHOTON

WHAT DPTIONS DO WE HAVE?

OPTION - 3

FIND 'QUANTUM-SAFE' ENCRYPTION

ALGORITHMS HARD FOR QUANTUM COMPUTERS TO CRACK

CONSTRUCT COMPLEX
TRAPDOOR FUNCTIONS

EASY TO DO HARD TO UNDO FOR QUANTUM COMPUTERS

THIS BOOK IS ABOUT QUANTUM-SAFE ALGORITHMS
AND HOW THEY WORK

TO CLARIFY

QUANTUM ALGORITHMS

QUANTUM RESISTANT ALGORITHMS

SHOR'S ALGORITHM

GROVER'S ALGORITHM

KYBER

SPHINCS+

AUANTUM ALGORITHMS
USED 34

CLASSICAL ALGORITHMS
THAT

AUANTUM COMPUTERS
TO SOLVE PROBLEMS

QUANTUM COMPUTERS
CANNOT CRACK/SOLVE

GOOD OLD BITS ARE USED

YES, QUBITS ARE USED

IT BEGAN IN 2016

NIST- NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

69 VIABLE CANDIDATES SUBMITTED AND DISCUSSED IN PUBLIC BOOGLE GROUP PRC-FORUM

SELECTION

SECURE

AGAINST ATTACKS FROM BOTH CLASSICAL AND QUANTUM COMPUTERS

BASED ON A HARD PROBLEM

CRITERIA

CONFIGURABLE

5 LEVELS OF SECURITY

PICK THE TRADEDFFS

EFFICIENCY

- KEY 312ES
- SIGNATURE SIZES
- CIPHER TEXT SIZES
- MEMORY
- BANDWIDTH

DTHERS

SIMPLICITY

EASE OF ANALYSIS

RESILIENCE TO

SIDE - CHANNEL ATTACKS

COMPATIBILITY WITH

EXISTING PROTOCOLS

IN 2022

4 ALGORITHMS THAT ARE DESIGNED TO WITHSTAND THE ASSAULT OF A FUTURE QUANTUM COMPUTER AND WILL BE PART OF THE STANDARD....

GENERAL ENCRYPTION

CRYSTALS - KYBER

DIGITAL SIGNATURES

CRYSTALS - DILITHIUM

SPHINCS +

INTERESTINGLY

BASED ON MERKLE TREES

SPHINCS +

WE NEED ADDITIONAL DIGITAL
SIGNATURES - BECAUSE 2 OF 3 ARE
LATTICE BASED! ALSO SPHINGS+
DOESN'T PERFORM GREAT.

1N 2024

HQC

Classic
McEliece

BIKE

HRC

CLASSIC MCELIECE

BIT FLIPPING EY ENCAPSULATION

HAMMING QUASI- CYCLE NAMED AFTER
ROBERT J MCELIECE

WILL PRESENT

THEIR UPDATES

TO BE CONSIDERED

PART OF THE STANDARD FOR

KEY ENCAPSULATION MECHANISM

AT THE

5TH NIST PAC STANDARDISATION CONFERENCE

STANDARDS ORGANISATIONS

THESE ARE NAMES OF STANDARDS ORGANISATIONS THAT NIST ALSO WORKS WITH.

- ASC X9
- IEEE
- 1ETF
- ETS1
- PRCRYPTO
- SAFE CRYPTO
- ISO/IEC JTC

THEY FREQUENTLY PUBLISH QUIDELINES AND PAPERS.

AS AN ASIDE, SOME COUNTRIES LIKE GERMANY, JAPAN, CHINA, RUSSIA, SOUTH KOREA ETC HAVE THEIR DWN STANDARDS.

RUANTUM-SAFE SCHEMES

HASH BASED

SPHINCS +

USE HASH FUNCTIONS FOR SIGNATURES CODE BASED

MCELIECE

USES ERROR CORRECTING
CODES FOR ENCRYPTION

LATTICE BASED

KYBER

NP HARD PROBLEMS

SYMMETRIC KEYS

AES

IDEAS THAT TRIED - AND FAILED - TO BE SECURE

ISOGENY BASED

MATHEMATICAL FUNCTIONS
IN AN ELLIPTIC CURVE

SIKE

MULTIVARIATE

USES EQUATIONS WITH MULTIPLE VARIABLES

RAINBOW

DEVELDPING AN INTUITION

IN THE NEXT FEW PAGES, WE WILL VISIT SOME OF THE CANDIDATE ALGORITHMS TO GAIN AN UNDERSTANDING OF THE PRINCIPLES | IDEAS BASED ON WHICH THEY WORK.

WHILE WE WILL NOT BE GOING INTO STEP-BY-STEP
WALKTHROUGH OF THE ALGORITHMS, I HOPE VERY MUCH
THAT THE READER WILL GET AN APPRECIATION FOR THE
DESIGN OF THE ALGORITHM AND WHAT MAKES IT HARD.

HASH BASED CRYPTOGRAPHY

HASH BASED CRYPTOSYSTEMS

HASH BASED ENCRYPTION SCHEMES USE HASH FUNCTIONS
AS THE BASIS FOR CREATING DIGITAL SIGNATURES

A HASH FUNCTION

MAPS DATA TO A FIXED LENGTH VALUE

THE HASH IS A

ONE WAY MATHEMATICAL FUNCTION

EASY TO DO

INFEASIBLE TO UNDO

HASH: SIMPLE EXAMPLE

THIS IS EASY TO CALCULATE

HOWEVER, IT IS

NEAR IMPOSSIBLE

TO WORK OUT

WHICH EXACT NUMBERS

ADD UP TO 97

Hash (59) = 115

Hash(40) = 16Hash(42) = 81

ANY OTHER NUMBER

PUT THROUGH THIS

ALAORITHM WILL

RESULT IN A COMPLETELY

DIFFERENT HASH

HASHES ARE USED FOR VERIFYING INTEGRITY

HASH: NIST CANDIDATE

SPHINCS +

SPHINCS + IN THE NIST LIST IS A HASHING ALGORITHM

THAT CENTRES AROUND MERKLE TREES.

A MERKLE TREE

IS A TREE

OF HASH VALUES.

A NODE IS THE HASH OF ITS CHILD NODES.

HASH BASED ALGORITHMS CAN BE USED IN DIGITAL SIGNATURES.

THE ABSENCE OF STRUCTURE PATTERNS IN THE HASH MAKES
IT HARD FOR QUANTUM COMPUTERS TO EXPLOIT THEM

BENEFITS

CONSIDERATIONS

FAST VERIFICATION SPEEDS

WELL UNDERSTOOD BUILDING

BLOCKS

RELATIVELY LARGE SIGNATURE
SIZES

DILITHIUM & FALCON PERFORM
BETTER

CODE BASED CRYITOGRAPHY

CODE - BASED CRYPTOSYSTEMS

CODE BASED ENCRYPTION SCHEMES ARE BASED ON THE DIFFICULTY OF DECODING ERROR CORRECTING CODES

AN ERROR CORRECTING CODE ENCODES MESSAGES.

SO, EVEN WHEN THE BITS ARE FLIPPED, THEY CAN

BE SPOTTED AND RECOVERED!

DECODING A CERTAIN TYPE OF CODE - A LINEAR CODE - IS AN NP COMPLETE PROBLEM.

On the Inherent intractability of certain coding problems

by

E.R. Berlekamp RJ McEliece HCA Tilborg, Van

Year - 1978

IMPLYING THAT
THERE IS NO
EFFICIENT
POLYNOMIAL - TIME
ALGORITHM TO
SOLVE IT

LET US TAKE A HIGHLY SIMPLIFIED EXAMPLE USING HAMMING CODES TO SEE HOW ERROR CORRECTION WORKS

HAMMING (7,4)
CAN CORRECT A
SINGLE ERROR

Can you

Can you hear me?

PARITY BITS
TO BUILD IN
REDUNDANCY

ODD PARITY IS ACHIEVED WHEN ADDING BITS

(1+0+1+...) MOD 2 = 1

EVEN PARITY IS ACHIEVED WHEN ADDING BITS $(1+0+1+\cdots) \text{ MOD } 2 = 0$

WE CONSIDER EVEN PARITY FOR THIS EXAMPLE HAMMING (7,4) USES 4 DATA BITS AND 3 PARITY BITS DATA BITS TO ENCODE IS 1011 PARITY BITS ARE PLACED IN POSITIONS 1,2,4,8... ENCODING -> PI P2 POSITIONS ---3 4 2 110 POSITIONS ____ 011 100 101 010 001 (BINARY) THE REST OF THE POSITIONS ARE PLACED IN BITS DATA 13 P2 PI

FINDING VALUES
FOR THE PARITY BITS

		a		Ь	Ç	d
PI	P2	1	P3	0	→	<i>-</i>
1	2	3	4	5	6	7
001	010	110	100	101	110	111

PI PARITY

PI = $a \theta b \theta d$

INCLUDES POSITION NUMBERS WITH I AS THE LEAST SIANIFICANT DIGIT POSITIONS 1, 3, 5, 7 PI = 0

P2 = PARITY $P2 = a \theta c \theta d$

INCLUDES POSITION NUMBERS WITH

I AS THE 2ND LEAST SIANIFICANT DIGIT

POSITIONS 2,3,6,7 P2 = 1

P3 PARITY
P3 = $b \oplus c \oplus d$

INCLUDES POSITION NUMBERS WITH

I AS THE 3RD LEAST SIGNIFICANT DIGIT

POSITIONS 4, 5, 6, 7 $p_3 = 0$

ENCODING 15 :

ERROR CORRECTION

PI	P2	a	ρ3	b	C	d
1	2	3	4	5	6	7
001	010	011	100	101	110	111

P3 IS POSITIONS
$$\rightarrow$$
 4567 \rightarrow 000/ \rightarrow PARITY = /
P2 IS POSITIONS \rightarrow 2367 \rightarrow 110/ \rightarrow PARITY = /
P1 IS POSITIONS \rightarrow 1357 \rightarrow 010/ \rightarrow PARITY = 0

110 — IS POSITION 6 IN BINARY.

FLIP THE BIT IN POSITION 6 TO CORRECT ERROR

HAMMING CODES AND MATRICES

HAMMING CODES SUCH AS THIS

0 1 1 0	0	1	1
---------	---	---	---

CAN ALSO BE GENERATED USING FORMULAE BASED ON MATRICES

A MATRIX IS DATA ARRANGED IN ROWS AND COLUMNS

ENCODING A MESSAGE AS A MATRIX

$$\begin{bmatrix} DATA \end{bmatrix} \cdot \begin{bmatrix} GENERATOR & MATRIX \end{bmatrix} = \begin{bmatrix} ENCOD/NG \end{bmatrix}$$
1×4

1×7

DECODING THE RECEIVED MESSAGE USING MATRICES

$$\begin{bmatrix}
PARITY CHECK MATRIX & -\begin{bmatrix}
ENCODING \\
3 \times 7
\end{bmatrix} = \begin{bmatrix}
POINTS TO THE \\
ERROR POSITION
\end{bmatrix}$$

ENCODING A MESSAGE AS A MATRIX

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

MATHEMATICALLY DEALVED

DECODING THE RECEIVED MESSAGE USING MATRICES

CODE: APPLICATION

My secret key is made of 3 matrices

[P] [G] and [S]

vsed Goppa codes-not Hamming codes

My public key is the product of [P][G][S]

$$[P][G][s] = \hat{G}$$

To encrypt message m send 4.m + 'errors'

SENDER: BOB

will struggle to invert the matrices or decode the message without [P][G][S]

EAVESDROPPER: EVE

THIS ROUGHLY IS THE BASIS FOR THE MCELIECE CRYPTOSYSTEM MCELIECE IS IN ROUND 4 FOR CONSIDERATION WITH NIST.

MKPC: NIST CANDIDATE

CLASSIC MCELIECE IS NOT YET IN THE STANDARDS LIST - BUT
IS BEING CONSIDERED AS A KEY ENCAPSULATION MECHANISM.

BENEFITS	CONSIDERATIONS
UNBROKEN FOR 40 YEARS	LARGE KEY SIZES
FAST ENCRYPTION DECRYPTION	NOT SUITABLE IN CASE OF LIMITED BANDWIDTHS

LATTICE BASED CRYPTOGRAPHY

LATTICE BASED SCHEMES

LATTICE BASED CRYPTOSYSTEMS USE WELL STUDIED

NP-HARD LATTICE PROBLEMS SUCH AS...

.. CLOSEST VECTOR PROBLEM

IN AN INFINITE GRID OF DOTS IN HUNDREDS OF DIMENSIONS PICK A POINT IN SPACE AND FIND THE NEAREST DOT.

· · · LEARNING WITH ERRORS

TAKE A SYSTEM OF ERUATIONS

CONSTRUCTED USING SOME SECRET KEYS

WITH SECRETLY ADDED ERRORS

MOD A PRIME NUMBER MOD 83

TURNS OUT THEY ARE BOTH SOME VERSION OF EACH OTHER AND ARE HARD FOR RUANTUM COMPUTERS TO SOLVE.

CLOSEST VECTOR PROBLEM

MATHEMATICALLY, GIVEN THE DEFINITION OF A LATTICE (ONLY IMAGINE THE LATTICE IN HUNDREDS OF DIMENSIONS) AND THE YELLOW DOT . IT IS HARD TO FIND THE RED DOT

SECRET KEY

MODULE LEARNING WITH ERRORS

 $A \cdot s + e = t$

PUBLIC INFORMATION

A, t, q

PRIVATE INFORMATION

s, e

RETRIEVING THE SECRET S IS INCREDIBLY HARD IN THE
PRESENCE OF E AND WHEN DIMENSIONS OF A ARE LARGE

THE NAME MODULE LEARNING WITH ERRORS IS THE NAME CHOSEN BY MATHEMATICIANS FOR THIS PROBLEM. SIGH

JOINING THE DOTS

WHAT IS THE CONNECTION BETWEEN THE CLOSEST VECTOR PROBLEM AND LEARNING WITH ERRORS?

A

DESCRIBES

THE LATTICE

THE LOCATION OF

THE SECRET POINT

RED DOT

5

IS THE
PUBLIC POINT

YELLOW DOT

ARE ALL EQUATIONS IN POLYNOMIAL FORM

e.g $5x^6 - 11x^5 - x^4 - 26x^3 + x + 5 = -5$ ARRANGED IN A MATRIX

LATTICE: SIMPLE EXAMPLE

TO ENCRYPT BOB MUST

CONVERT HIS BINARY

MESSAGE TO POLYNOMIALS

DECIMAL	BINARY	POLYNOMIAL
1	001	$0+0+1 \rightarrow 1$
2	010	$0+x+0 \rightarrow x$
3	011	0 + x +1 -> x +1
4	100	$\chi^2 + 0 + 0 \longrightarrow \chi^2$
5	101	$\chi^2 + 0 + 1 \longrightarrow \chi^2 + 1$
7	111	$\chi^2 + \chi + 1$
10	1010	$\chi^3 + 0 + \chi + 1$

CHOOSE A

RANDOM MATRIX

CHOOSE TWO OTHER

SMALL 'ERRORS'

LATTICE: SIMPLE EXAMPLE

ENCRYPTION

AND

DECRYPTION

ALICE FINDS MESSAGE

VERY SMALL TERMS WITH e, e,, ez ARE IGNORED - LEAVING M

LATTICE: NIST CANDIDATE

CRYSTALS - KYBER

THE ILLUSTRATION IN THE PREVIOUS PAGE IS A SIMPLIFIED VERSION OF THE KYBER CRYPTOSYSTEM.

	BENEFITS	CONSIDERATIONS
BASED	ON STRUCTURED LATTICES - KNOWN HARD PROBLEM	AS WITH ANY SCHEME, IT REQUIRES CAREFUL IMPLEMENTATION
400D	PERFORMANCE & SECURITY	LONG TERM SECURITY IMPLICATIONS UNCLEAR

A PRC SCHEME THAT HAS BEEN BROKEN

THE BROKEN SCHEMES

SIKE - AN ISOGENY BASED SCHEME

SIKE IS ROUGHLY SIMILAR TO THE DIFFIE-HELLMAN KEY EXCHANGE DISCUSSED IN THE ILLUSTRATED QUIDE 'HOW TO TELL SECRETS' PUBLISHED BY THOUGHT WORKS

SIRE WAS BROKEN IN 2022 AUGUST BY WOUTER CASTRYCK AND THOMAS DECRU OF BELGIUM IN UNDER AN HOUR WITH A SINGLE CORE. SIKE MADE IT TO ROUND 4.

RAINBOW - A MULTIVARIATE CRYPTOSYSTEM

RAINBOW IS A MULTIVARIATE CRYPTOSYSTEM. WHICH MEANS
THE SECURITY LIES IN THE DIFFICULTY OF SOLVING
A LARGE SYSTEM OF EQUATIONS WITH MANY VARIABLES.

RAINBOW WAS BROKEN IN 2022 USING A STANDARD LAPTOP OVER 53 HOURS BY WARD BEULLENS OF IBM, SWITZERLAND. RAINBOW MADE IT TO ROUND 3.

LET'S TAKE A QUICK LOOK AT RAINBOW'S APPROACH TO DESIGNING A QUANTUM-SAFE ALGORITHM- ALBEIT BROKEN.

MULTIVARIATE CRYPTOSYSTEMS

MULTIVARIATE PUBLIC LEY CRYPTOSYSTEMS ARE BASED ON THE HARDNESS OF SOLVING EQUATIONS WITH MULTIPLE VARIABLES

$$2x + 3xy + 5x^2 = 4 \mod 3$$

$$x^2 - 7x3 + 2y^2 = 1 \mod 3$$

find x find

find Z

SOLVING MEANS TO FIND THE VALUES OF THE VARIABLES x, y, z that works for each equation.

THE PROBLEM BECOMES HARDER WHEN THE NUMBER OF EQUATIONS AND VARIABLES DON'T MATCH EXACTLY.

IT TURNS OUT THAT THIS MANY VARIABLES AND POLYNOMIALS

(EQUATIONS) COULD CREATE A PROBLEM TOO HARD

— EVEN FOR A QUANTUM COMPUTER!

THE RESULT IS MULTIVARIATE PUBLIC KEY CRYPTOSYSTEM - MKPC

THIS SET OF EQUATIONS SERVES AS THE PUBLIC KEY

THE PRIVATE KEY IS A SUBSET OF THE VARIABLES ODDLY NAMED OIL VARIABLES AND VINEGAR VARIABLES.

MKPC: SIMPLE EXAMPLE

TAKE A SINALE EQUATION WITH VARIABLES a, b, c, d

$$a^2 + 3ab + 3ac + 2ad + b^2 + 6bc + 4bd = 25 \mod 3$$

POCYNOMIACS CAN BE EXPRESSED AS THE PRODUCT OF MATRICES. SO THE ABOVE BECOMES:

The trapdoor!

NOTICE THAT BY THE DELIBERATE PLACEMENT OF THE ZERDES
THE VARIABLES C, d DO NOT MULTIPLY WITH EACH OTHER
IN THE ORIGINAL EQUATION.

IF YOU KNOW $\alpha=1$ AND b=1 THEN THE EXPRESSION IS LINEAR - AND A BIT EASIER TO SOLVE THE EQUATION

1+3+3C+2d+1+6C+4d

MKPC: SIMPLE EXAMPLE

$$a^2 + 3ab + 3ac + 2ad + b^2 + 6bc + 4bd = 25 \mod 3$$

CHOOSE VARIABLES 100 VINEGAR & 50 OIL

CREATE SO EQUATIONS

EACH WITH THE TRAPDOOR

DECRYPTION WILL INVOLUE

SOLVING 50 EQUATIONS

AND

EXACTLY 50 UNKNOWNS!

THIS IS NOW BROKEN AND IT REMAINS TO BE SEEN IF NEWER SCHEMES WILL APPEAR BASED ON THIS METHOD.

FILST STEPS

GATHER AN

EXPERT TRANSITION

TEAM

CONDUCT A

RISK ASSESMENT

DF DATA & SYSTEMS

Risk Leport

- Med-Long term

- DATA & 84STEMS

IMAGINE A

TIMELINE FOR

IMPLEMENTING PRC

JANUARY	2020
FEBRUARY	2030
MARCH	2037
APAIL	
MAY	2040
JUNE	
	2043
JULY	

TO IDENTIFY RISK AREAS

ANY THERE DATA THAT IS SENSITIVE OR CONFIDENTIAL ?

LONG WILL THE MOH DATA NEED TO BE KEPT SAFE?

THE DATA IS PUBLIC FACING?

THE INFRASTRUCTURE 2300 NEED UPDATE?

COMMUNICATIONS WHICH NEED TO BE SECURED? SYSTEMS

WHICH APPS ARE AFFECTED? (INTERNAL AND EXTERNAL)

OTHER CONSIDERATIONS

PEOPLE (TEAMS WHO
NEED TO BE MADE AWARE

VENDOR ROADMAPS

CHALLENGES

INPRC

NOT IN SCOPE

SPECIFIC NUMBERS ASSOCIATED TO THE KEY 3/2ES DR COMPUTATION TIME REQUIRED - AS IT WILL DEPEND ON FINAL IMPLEMENTATION

STEPS FOR NAVIGATING A HYBRID APPROACH TO PRO

EXPLORING OTHER BASES FOR POST QUANTUM CRYPTOGRAPHY SUCH AS CELLULAR AUTOMATA OR DIOPHANTINE EQUATIONS

HOW AT AND RUANTUM MIGHT WORK TOGETHER

WE SHOULD NOT GET TOO COMFORTABLE
WITH THE TERM 'SECURE'

- VINT CERF

SEPTEMBER 2023 PRC PANEL DISCUSSION

MY REFERENCES

Fundamental concepts

- Introduction to Post Quantum Cryptography <u>learning.quantum.ibm.com</u>
- What is it going to take to break cryptography with a quantum computer by PKI
 Consortium
- NIST Pages csrc.nist.gov/projects/post-quantum-cryptography
- The new millennium bug: everything you need to know about Y2Q: weforum.org
- Panel Discussion: Post-Quantum Cryptography | September 23 <u>youtube.com</u> by Heidelberg Laureate Forum
- Status Update from NIST on youtube.com by PKI consortium

Algorithms: Videos on Youtube.com

- Quantum Algorithms and Post-Quantum Cryptography by Simons Institute
- ISBA2022: Workshop | Demystifying Quantum Part 2 by Parallel Chain Lab
- Lattices and Kyber PQC Presentation by Mojtaba Bisheh Niasar
- Kyber and Post Quantum Crypto How does it work by All Hacking Cons
- Learning with errors: Encrypting with unsolvable equations by Chalk Talk
- Lattices: Algorithms, Complexity, and Cryptography by Simons Institute
- Jintai Ding State of Art of MPKC by PQCrypto 2016
- Code-based Cryptography by PKI Consortium
- Code based Crypto by USF Crypto Center
- Oil and Vinegar variables : Bill Buchanan

Implementation

- Paper Challenges in the Transition towards a Quantum-safe Government: tudelft.nl
- Transitioning Organizations To Post Quantum Cryptography youtube.com by SandboxAQ