
Getting started  
with GitHub Copilot

Ground rule: You’re still responsible for your code. Copilot is your assistant.

How to prompt?

Comments are  
part of the prompt.  
Describe what you want 
the code to do, it’s not  
like prompting a chatbot.

The more surrounding 
context, the better: Open 
files are part of the prompt. 
Whatever code you are 
typing is part of the prompt.

Test descriptions,  
and test code, are  
part of the prompt.  
Have your test file open 
while you’re implementing.

For changes to existing 
functions with good 
test coverage, consider 
deleting and regenerating 
the whole function.

group the customer list 
by the “city” field

Descriptive function  
and variable names  
are part of the prompt.

Iterate on your prompt - 
provide examples, make 
the comment or function 
name more specific, 
reduce the scope of  
what you are trying to do.

groupListOfCustomers 
ByCity()

describe(“should group a 
customer list by city”)

Read more about GitHub Copilot here

Beware:  
Copilot can 
amplify “bad” 
local code

Getting stuck in older patterns
After refactoring, or introducing new patterns into  
the codebase, you might find that Copilot is still  
stuck in “the old ways”. 

Proliferating bad practices
Copilot uses our existing code to make more  
suitable suggestions for our context, but depending 
on what it chooses as its example, it creates either  
the good or the bad kind of consistency.

Are you super  
excited about this?
Awesome, this is an important new area  
for developers to understand! But be careful 
not to overinvest into making it work all the 
time because you want it to work.

Are you  
skeptical?
That’s a healthy attitude, there is a lot of  
hype at the moment and the tool is not perfect!  
Give it a chance, and try some things even 
when you think “that won’t work anyway”.

Don’t become complacent

Automation bias
Once you have had some success  
with Copilot, be careful not to start  
over-trusting it.

Sunk cost fallacy
Even though with Copilot, we did not invest 
time to write a suggestion ourself, we might 
still get over-attached to the supposed time 
saved of a multi-line suggestion.

Security vigilance
Copilot does some pre-filtering for vulnerable 
patterns, but you cannot rely on the code to  
be secure for your context. Especially watch 
out for hallucinated dependency names. 

Anchoring bias
Be aware that once you have seen Copilot’s 
suggestions, you might have a harder time 
thinking about other solutions.

TLDR; Don’t become the person who drives into the lake because their navigation system tells them to.

Relatively 
straightforward  
or standard problems- 
repetitive, boilerplate, 
common logic like  
list processing,  
a repeating pattern, 
things you’d usually 
copy & paste.

Commonplace 
languages and 
frameworks. 

Typed languages 
provide a shorter 
detection loop for 
syntactically incorrect 
suggestions. 

Tasks you know how 
to do in theory, but 
you need assistance 
with the details.  
You should know 
enough to judge if 
Copilot’s suggestions 
makes sense.

For small chunks: 
About 10-15 lines  
of code, maximum,  
so that you can  
follow along, and  
don’t increase your 
cognitive load with  
lots of code review.

When it  
works better

These are some of the parameters under  
which it is expected to work better than 
in other situations.

It’s a balance: Flow boost vs flow disruption

Don’t spend too much time fixing things if the suggestions  
are obviously not useful. Two strikes and move on!

The larger the piece of code generated, the more code review  
you will have to do! Consider the balance between the “typing”  
boost and the energy needed for review.

Review  
fatigue

If prompting takes more time than coding itself, consider if  
it’s a good use case for Copilot, or if you should discard the  
assistance and write the code yourself.

Prompt 
abstraction

Move on

Version 1, July 2023

http://www.thoughtworks.com/insights/blog/generative-ai/getting-started-with-github-copilot

