ThoughtWorks
  • 联系我们
  • Español
  • Português
  • Deutsch
  • English
概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

    智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 低摩擦的运营模式

    提升组织的变革响应力

    企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

    合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
概况

特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
  • Español
  • Português
  • Deutsch
  • English
ThoughtWorks菜单
  • 关闭   ✕
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们
  • 返回
  • 关闭   ✕
  • 概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

  • 低摩擦的运营模式

    提升组织的变革响应力

  • 智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

  • 企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 返回
  • 关闭   ✕
  • 概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
  • 返回
  • 关闭   ✕
  • 概况
  • 特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

  • 数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

  • 所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

  • 返回
  • 关闭   ✕
  • 概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

  • 返回
  • 关闭   ✕
  • 概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
博客
选择主题
查看所有话题关闭
技术 
敏捷项目管理 云 持续交付 数据科学与工程 捍卫网络自由 演进式架构 体验设计 物联网 语言、工具与框架 遗留资产现代化 Machine Learning & Artificial Intelligence 微服务 平台 安全 软件测试 技术策略 
商业 
金融服务 全球医疗 创新 零售行业 转型 
招聘 
职业心得 多元与融合 社会改变 
博客

话题

选择主题
  • 技术
    技术
  • 技术 概观
  • 敏捷项目管理
  • 云
  • 持续交付
  • 数据科学与工程
  • 捍卫网络自由
  • 演进式架构
  • 体验设计
  • 物联网
  • 语言、工具与框架
  • 遗留资产现代化
  • Machine Learning & Artificial Intelligence
  • 微服务
  • 平台
  • 安全
  • 软件测试
  • 技术策略
  • 商业
    商业
  • 商业 概观
  • 金融服务
  • 全球医疗
  • 创新
  • 零售行业
  • 转型
  • 招聘
    招聘
  • 招聘 概观
  • 职业心得
  • 多元与融合
  • 社会改变
数据科学与工程Machine Learning & Artificial Intelligence转型技术商业

Taking urban drone delivery to new heights

Dane Sherburn Dane Sherburn
Katerina Khomyakova Katerina Khomyakova

Published: Jan 19, 2021

Aerialoop is a delivery company taking delivery to the next level by using drones to drastically reduce delivery times across the city. Within the city of Quito, it takes roughly 45 minutes to drive from one side to the other, but just 7 minutes to fly -- over a 5x reduction in delivery time.

During the pandemic, Aerialoop has also been delivering groceries to local restaurants and COVID-19 medical supplies from the local hospital, HospitalDLV, to rural patients.

Challenges with drone delivery services

Although drone delivery is significantly faster than existing services, it does come with some novel challenges. One such challenge is to ensure the drones navigate the city autonomously without malfunctioning. Drones can fail for a wide range of reasons, such as adverse weather conditions, user errors and mechanical parts failing due to general wear and tear.

Path to the problems solving

Aerialoop came to us with the inquiry of assisting with these prime business problems resolution. The support was given by Prototype.Lab( ), a technology hub that ThoughtWorks Ecuador created specifically to help entrepreneurs and artists develop a prototype of their product or idea. The hub contributes both to the advance of the technology community in Ecuador and also to partner and support a local entrepreneur or business leader.

With the strong back up of Prototype.Lab( ), we focused on the Aerialoop need  - creation of a system that can be proactive in predicting malfunctioning components, which is crucial for safe deliveries, especially in urban environments. The proactive maintenance also needs to be automated as the fleet of drones grows over the time.

Aerialoop uses the Wingquad3 to deliver payloads. The Wingquad3 has roughly 800 measurements from sensors on board, each sampling multiple times per second. A 10 minute flight therefore produces on the order of 10,000 data points, each in 800-dimensional space. Using this data, we’d like to determine if any parts have failed, or are likely to in the future. 

Improving the safety of drone delivery

In essence, the question we’d like to answer is: given the sensor data from a drones most recent flight, is it safe to fly it again?

This problem can be framed as an anomaly detection problem. By collecting sensor data from healthy drones, it’s possible to learn the underlying distribution of healthy sensor data. Then, given a future flight, we can say if the sensor data departed sharply from the learnt “healthy” distribution, in which case one or more components are likely malfunctioning.

Healthy Sensor Measurements diagram

In order to learn the full distribution of healthy sensor data, we flew the drone in a wide range of scenarios, such as adverse weather conditions and with varying payload weights. With this ‘healthy’ baseline, our team then developed a system to detect malfunctioning batteries and actuator controllers onboard the drone. 

We started by gathering, parsing and transforming the existing raw log data into a consumable state. In addition, new logs from recent flights had to be available in a timely manner. To support these requirements, we developed a data pipeline on Google Cloud Platform which transforms, enriches and stores flight logs data. This makes it available for quick user insights and to downstream machine learning models. Our anomaly detection models then used this data to detect if either the battery or actuator controller was malfunctioning during a given flight. The output of these models, as well as historical sensor data for each drone, were made available on a dashboard.

What's next

Future improvements could include incorporating local weather information into the dashboard to inform the pilot of any weather conditions that may be dangerous for deliveries that day. On a higher level, historical delivery data could be used to suggest where future take-off/landing pads should be built.

Acknowledgements

This work was accomplished in two months thanks to the joint effort of teams in Ecuador, England, Switzerland and Australia.

Thanks to the ThoughtWorks team, in particular Carlos Fuentes, Carlos Buñay, Michelle Peralbo, Eric Piñera, Andres Salazar, Andrea Santacruz and Rajat Jain; and the Aerialoop team: Andreas Antener, Pedro Meneses and José Barzallo.

Technology Hub

An in-depth exploration of enterprise technology and engineering excellence.

Explore
相关博客
软件测试

Why test the user journey?

Scott Davis
了解更多
敏捷项目管理

Transitioning from conventional to shift-left testing

Haritha Hari
了解更多
软件测试

AIMA: How to increase the performance of QA Analysts through indicators

Jonas Davila
了解更多
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们

WeChat

×
QR code to ThoughtWorks China WeChat subscription account

媒体与第三方机构垂询 | 政策声明 | Modern Slavery statement ThoughtWorks| 辅助功能 | © 2021 ThoughtWorks, Inc.